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GTL-ASENet: global to local adaptive spatial encoder
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Abstract
Crowd counting from a single image is a challenging task due to perspective distortion and
large-scale variation in crowd scenes. Many Researches only focus on local features to cre-
ate density maps which is not effective in handing the challenges. This paper proposes a
novel network named global-to-local adaptive spatial encoder network, which focuses on
global features to generate a total structure density map of the population distribution, and
then utilizes local features to reconstruct the total structure density map in detail to generate
high-quality density map. To capture global features, local information and correlate them,
we design a contextual module using different kernels with convolution and transposed con-
volution. To create a density map from global structure to local detail, two branches are
designed, the global distribution branch and the local detail branch. The former aims to
capture the population distribution region of interest in terms of global structure, and the
latter aims to focus on the local details of each unit. Furthermore, to overcome the prob-
lem of pixel-wise loss of MSE, this paper proposes an efficient loss function that focuses
on perceiving the possible crowd distribution over the whole image. We also apply a new
upsampling mechanism that learns to create high-quality density maps on its own is advis-
able. The proposed network can capture the characteristics of pedestrian distribution and
predict accurate results. It is evaluated on four crowd counting datasets (ShanghaiTech,
NWPU, UCF QNRF, UCF CC 50), it obtains MAE of 67.1 and MSE, and achieves 108.8
in ShanghaiTech and gets MAE of 139.2 and the best MSE of 217.7 in UCF CC 50 dataset
and so on, and our method shows state-of-the-art on all the datasets.

Keywords Crowd counting · Density map · Spatial encoder · Global distribution ·
Contextual module

1 Introduction

Crowd counting which predicts the number of people from images/videos is important to
many applications such as urban planning, public safety, space management and so on. But
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it’s a challenging task owing to a large number of features similarity, perspective distortion
and large scale variation.

Early heuristic crowd counting models fall into two categories: detection-based meth-
ods and regression-based methods. The former designs a sliding window to scan the entire
image and detect pedestrians [8, 16, 17, 32]. Detection-based methods cannot handle scenes
with large scale variation and occlusions between individuals. Then many regression-based
algorithms [4, 5, 13] appeared to solve the crowd counting problems. But the main problem
with these methods is always ignoring global and spatial features like SIFT [23] and HOG
[7]. With the advent of deep learning, CNN-based algorithms have achieved remarkable per-
formance in crowd counting. Several methods [9, 33, 34, 36, 42] implement a Basic-CNN
architecture to calculate crowd counting, and achieve better performance than traditional
computer vision-based methods. But they can’t effectively encode large scale variation
and diversified crowd distribution in congested scenarios. To address the the problems,
multi-column architectures [1, 2, 26, 27, 43] are proposed to capture multi-scale features.
However, multi-column network architectures are difficult to encode large scale variation
and perspective distortion as similar network architectures have most same parameters. And
training multi-column network architectures is not easy.

Due to the shortcomings of multi-column network architectures, simpler but effective
single-column network architectures are widely used for crowd counting [3, 10, 12, 15,
18, 20]. They show good performance in creating density maps because they focus more
on extracting and processing features, but they also struggle to challenge large-scale vari-
ation and diverse population distribution. In addition, the single-column approach suffers
from three disadvantages at least. First, these architectures focus on local information while
ignoring global and contextual information. Second, bilinear interpolation or convolution
upsampling operators often lead to poor statistic distribution of predictions. Finally, MSE
in loss function only focuses on pixel-wise correlation and ignores global structure.

To address the above problems, feature similarity, perspective distortion and large scale
variation, a novel global-to-local adaptive spatial encoder network which try to solve above
problems by crowd distribution and is proposed and using contextual information, unlike
current methods focus on creating density maps by local information leads to density map
difficult to create in hard region, model of this paper first focus on utilizing global structural
information to create crowd distribution maps, and then based on the crowd distribution
maps integrating global information and local cell details to generate density maps. Com-
pared with current methods, the novelty of this model is as follow. Firstly, the model not
only focuses local details but utilizes distribution of crowd to create density maps, Secondly,
it uses contextual information to solve problems caused by perspective change, to specific,
the model focuses on simple objects’ change which are adjacent hard objects to predict hard
objects.

The architecture of our model is shown in Fig. 1, where the first innovation is the con-
textual module. The contextual module sits behind the backbone and is designed to capture
and correlate local and global information. Next, two branches are designed, the global
distribution branch and the local detail branch, where the global distribution branch aims
to generate high-quality density maps from the global structure. The latter consists of an
adaptive spatial encoder module and a content-aware upsampling mechanism. The adap-
tive spatial encoder module consists of deformable convolutional layers and spatial encoder
layers, which play an important role in encoding large-scale changes and diverse crowd
distributions in crowded scenes. To create a better statistical distribution of density maps
similar to ground truth density maps, a content-aware upsampling mechanism is introduced.

The main contributions of this paper are summarized as follows:
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Fig. 1 Architecture overview of GTL-ASENet

(1) A novel Global-to-Local Adaptive Spatial Encoder Network (GTL-ASENet) is
proposed, which can generate high-quality density maps from global structure to local
details.

(2) Deep contextual information can be understand by contextual module.
(3) An adaptive spatial encoder module designed to adapt to complex and varied scenes,

highlights useful crowd features, encodes complex geometric transformations and diverse
crowd distributions.

(4) This paper deploys a content-aware upsampling mechanism that efficiently learns to
cast feature maps to density maps.

The rest of this paper includes four sections. This paper first reviews the development
process of crowd counting in Section 2. Section 3 introduces each module of the pro-
posed method in detail, as well as the motivation and problems solved the module. Then, in
Section 4, we introduce the evaluation criteria for crowd counting and the public datasets
used, and give a detailed introduction to the performance of the model on every dataset.
Meanwhile, this paper also analyzes results and the setting of the parameters. In the last
section, we deduce the conclusions, meanwhile the future work and limitations of proposed
study are given.

2 Related work

In this section, This paper reviews related works about crowd counting from basic-CNN,
multi-scale models, local information models.

2.1 CNN-basedmodels

This class of models uses the basic CNN architecture to estimate density maps and com-
pute crowds without additional feature processing blocks. The first CNN-based method was
proposed by Fu et al. [9], which designed a cascaded architecture to improve processing
speed and prediction accuracy. Wang et al. [34] used the Alexnet architecture as a base and
added many negative samples for counting. The CNN-based architecture is easy to apply,
but usually not very accurate compared to state-of-the-art methods.
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2.2 Multi-scale models

Several methods employ multiple branches to capture features at different scales, such as
MCNN [43], Switch-CNN [1] and ACSCP [27]. MCNN proposes a multi-column architec-
ture, where different branches use different convolution kernels to accommodate different
receptive field features. Given that each branch needs to process a corresponding density,
Switch-CNN adds a classifier to select the best branch to process image patches on a multi-
column architecture. ACSCP uses an adversarial loss and splits the image into sub-blocks
and parent blocks across scales to improve the performance of generating density maps.
SASNet [30] introduces a bottom-up pyramid architecture designed to capture low-level and
high-level features. To balance parameters and effectiveness, some methods choose VGG
[29] or ResNet [11] as the backbone, such as SCAR [10] and SFCN [36]. Obviously, multi-
column architectures have come a long way, but they still have some drawbacks. First, they
are difficult to train because each branch needs to be trained individually. Furthermore,
the number and density of crowds in the real world vary widely, it is difficult to design
the number of branches. Finally, the bottom-up pyramid architecture consumes too much
memory.

2.3 Local informationmodels

The hallmark of such models is that they usually design elaborate encoders, such as adding
attention mechanisms, introducing excellent upsampling operators. SANet [3] uses the
inception module to capture multi-scale features, which consists of two parts: FME and
DME, where FME introduces a scale aggregation module to address the independence
between columns inMCNN [43]. DME is used to generate high quality density maps. SCAR
[10] introduces spatial attention and channel attention to challenge the perspective changes
of crowd scenes, and solves the dependence on the channel dimension through learning to
improve the accuracy of regression. ADCrowdNet [20] introduces an attention map genera-
tor and a density map generator, where the former is used to develop the attention map, and
the latter connects the input image and the output of the attention map generator to gener-
ate high-quality density maps. SAAN [12] applies an attention mechanism to fused density
maps. All the above methods have good performance in generating density maps, but they
only focus on local information and ignore the use of global information to make density
maps.

3 The proposedmethod

3.1 Overview

In this section, flowchart of our networks is shown and contextual and adaptive spatial
encoder module are described.

Our model mainly consists of two parts, an encoder and a decoder. The encoder is back-
bone for extracting efficient feature maps, and the decoder consists of two branches, the
global distribution branch and the local detail branch. The global distribution branch is used
to generate efficient crowd distribution maps that help the model understand the density
map from the entire structure, the local detail branch aims to focus on globally distributed
unit details. Specifically, first, an image is fed into the extractor, which uses ResNet-101
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[11] as the backbone. Then, the characteristics are captured and enlarged with kernels of dif-
ferent sizes by a contextual models inspired by the Dilation module [41]. The output of the
contextual module consists of 4 parts with 16-dimensional channels, which are connected
in the channel dimension. It achieves significant improvements in the accuracy of map-
ping images to density maps, but still struggles with diverse crowd distributions in crowded
scenes and distortions caused by perspective views. To this end, we use a global distribu-
tion branch to handle features that generate possible distributions in the global structure
of crowd scenes, and an adaptation module is used to adapts to distortion by deformable
convolutions that take the offset of sampling locations as learning parameters and popula-
tion distribution. After this, a spatial encoder module is adopted to encode spatial features.
Finally, the GTL-ASENet generates a 1-channel density map through the content-aware
upsampling mechanism. For training , MSE (standard mean squared error) and BCE (binary
cross-entropy loss) are used as loss functions.

3.2 Contextual module

Some researches such as CSRNet [18], SFCN [36] enable the model to obtain more spatial
information through dilated convolution, and dilated convolution can increase the receptive
field to obtain more spatial information, but it ignores the relationship between adjacent
features. This module utilizes larger kernels to enlarge the receptive field and correlate local
and global features, as shown in Fig. 2, which is an architecture consisting of convolution
and transposed convolution. Specifically, this method applies 7×7, 5×5, 3×3 convolutions
and 7 × 7, 5 × 5, 3 × 3 transposed convolutions to capture the feature maps of different
effective feature sizes. The contextual model inherits the advantages of dilated convolution
and extracts sufficient effective information, while it significantly avoids noisy information
without padding. Our goal is to extract local and global features and correlate them with
the contextual model, so it is essential and useful to use various kernels and concatenate the
input and output features of the contextual module.

Fig. 2 The contextual module of GTL-ASENet
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3.3 Adaptive spatial encoder module

In the scene of large-scale crowds, as the visual distance becomes farther, the objects
become smaller and it is difficult to distinguish the objects from the background. However,
the data distribution, the change of visual distance, the characteristics of pedestrians are
similar in a certain area, so this paper focuses on the easy samples with short visual distance
first, and uses the easy samples to predict the slightly difficult samples, and then uses the
easy samples and the slightly difficult samples to predict the hard samples. Meanwhile, the
distribution of pedestrians in different scenes is random, and the characteristics of pedestri-
ans also change greatly with the increase of visual distance, which makes it difficult for the
model to capture the characteristics and distribution of pedestrians. To challenge the tiny
hard objects and diverse crowd distributions in crowded scenes, an adaptive spatial encoder
module is designed, which consists of an adaptive module and a spatial encoder mecha-
nism. The spatial encoder mechanism can deal with the random distribution of pedestrians
in diverse scenes, and better perceive the law of crowd distribution. The adaptive module is
used to solve the problem of huge changes in pedestrian characteristics in the same scene,
and to grasp the law of pedestrian characteristics changes. The former use the simple objects
to predict the difficult objects, while the latter understands the law of pedestrian distribution
in areas where pedestrian characteristics change continuously.

Given a convolution kernel atK sampling positions, letw(pn) denote the weight at the n-
th position, and pn denote the learnable offset at the n-th position, R denote the regular grid
for sampling the input feature map x. setting R = {(−1, −1), (−1, 0), · · · , (0, 1), (1, 1)},
and using a deformable convolution scheme similar as [6]. The 2D modulated deformable
convolution is formulated as

y(p0) =
∑

pnεR

w(pn) · x(p0 + pn + �pn) · �mn, (1)

where x(p0) denotes the features at location p0 from x, y(p0) denotes the output fea-
ture maps at location p0, pn belongs to R denoting the pre-specified offset, and �mn is a
modulation scalar.

Random population spatial distribution information is obtained by utilizing the spatial
encoder mechanism. Let F be a feature map of size C × H × W , which is first processed
into H slices and then processed by a convolutional layer with C kernels of size C × w,
where w is the kernel width. The output of the convolutional layer is added to the next slice
to generate a new slice. New slices are processed in the same way until the last slice is
updated. It can be expressed as:

Fh
c,w

′ =
⎧
⎨

⎩

Fh
c,w, h = 1

Fh
c,w + R

(∑
m,n

Fh
m,w+n−1

′ · Wh
m,n

)
, h � 2

, (2)

where Fh
c,w is the input tensor, c denotes channel, h and w indices row and column

respectively, and R is the ReLU activation function.

3.4 Global distribution branch

To understand crowd distribution and help the model create density maps from the global
structure, the branch of global distribution is designed. Specifically, method first concate-
nates the contextual module to obtain the output T , then down-samples T to 1/16 of the
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original image size, and then modulates C by the Sigmoid function. The value in C indi-
cates the likelihood of anyone being present in the area. The ground-truth labels for C are
generated from the ground-truth density map. Using maxpooling to process the ground-truth
density map to obtain the ground-truth label Dot , Doti,j represents the ground-truth label
on region (i, j), which is defined as:

Doti,j =
{
1 Doti,j > threshold

0 otherwise
. (3)

The global distribution branch is supervised by a binary cross entropy(BCE) loss
function:

L(Ci,j , Doti,j ) = Doti,j log(Ci,j ) + (1 − Doti,j )(1 − log(Ci,j )), (4)

where Ci,j is the predict possibility of region (i, j).

3.5 Content-aware up-samplingmechanism

By visualizing the outputs of the current methods, it is found that the density maps gener-
ated by up sampling introduced in current many methods has defects on the performance of
local details. Specifically, the pedestrians’ features in density maps are a process of grad-
ual changes in the circle from the inside to outside, but the changes of local features in
the density maps generated by current methods are not. To specific, many current methods’
upsampling operator is the bilinear interpolation algorithm. However, the output of bilinear
interpolation is different from the Gaussian distribution of the valid area of the ground-truth
density map, which is generated by the Gaussian kernel function. Further more, bilinear
interpolation cannot capture rich density information because only sub-pixel neighborhoods
are considered. Another method of upsampling is deconvolution [24]. Unfortunately, decon-
volution is prone to “uneven overlap”, putting more of the metaphorical paint in some
places. Developing density maps from feature maps is not just linear interpolation, but
content, contextual information, and spatial feature transformations. Therefore, a content-
aware upsampling mechanism is essential to learn the above transformations to generate
high-quality density maps. Therefore method tries to introduce a method which can con-
sider every feature point and content of feature map. Thus, this paper believes that different
upsampling kernel should be used by different input contents, and each feature point should
use its own upsampling kernel, rather than all feature points sharing the up-sampling kernel.
Thus introducing CARAFE [35] as our upsampling operator to learn the above transforma-
tion. Given a feature map F of size C × H × W and the upsampling size of kup × kup, the
kernel prediction module consists of three parts. First F is compressed from C to Cm con-
volutional layer of size 1×1, the predicted upsampling kennel size is σH ×σW ×kup ×kup.
Second, the kencoder ×kencoder convolutional layer is used to predict the upsampling kernel,
resulting in a shape of σH ×σW × kup × kup. Finally, the predicted kernels are normalized
using the Softmax function. The content-aware reconstruction module aims to reconstruct
the function using the above-predicted upsampling kernel. For each reorganization kernel
Wout , the content-aware reorganization module will reorganize the features within the local
region through a weighted sum function. For the output position Lout and the corresponding
square region R(F, kup) centered on L = (i, j), the process is formulated as (5),

X′
Lout

=
r∑

n=−r

r∑

m=−r

Wout(m,n) · X(i+n,j+m), (5)

where r = �kup/2� and setting k up = 2.
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4 Experiments

This section first describes implementation details and then describe the evaluation metrics
and datasets followed by a detailed ablation study to understand the effects of different
components in the proposed counting network. Finally, comparing results of the proposed
method against several state-of-the-art methods on 4 publicly available datasets (NWPU
[37], ShanghaiTech [43], UCF QNRF [14], UCF CC 50 [13]).

4.1 Implementation details

In all experiments, Adam is used as the optimizer and the initial learning rate is set to
0.1. Weight decay is stetted by 0.005. The number of iterations depends on complexity
and the count of images. Backbone is the first 23 convolutional layers of Resnet101. For
CARAFE σ is 8. Label of Global Distribution Branch is smoothed, positive object equals
0.998, negative object is 0.002 and loss of this branch is BCELoss. Input size depends on
datasets, as well as batch size. Output is evaluated by MAE and MSE which calculate every
corresponding pixel. MAE and MSE are recognized evaluate tools thus it is essential to
prove authority of method.

4.2 Evaluationmetrics

MAE and MSE are used to evaluate density map.

MAE = 1

N

N∑

i=1

| D
pred
i − D

gt
i |, (6)

MSE =
√√√√ 1

N

N∑

i=1

(D
pred
i − D

gt
i )2, (7)

where N is the number of images in one test sequence, D
gt
i is the ground truth of density

map, and D
pred
i is the final output of model.

4.3 Datasets

NWPU [37] NWPU is collected by Qi Wang et al. NWPU is randomly split into three parts,
namely training, validation and test sets, containing 5109 images, in a total of 2133375
annotated heads. Compared with existing crowd counting datasets, it contains various illu-
mination scene and the largest density range from 0 to 20033. It’s also the largest from the
perspective of image and instance level.

ShanghaiTech [43] This dataset is collected by ShanghaiTech University. This dataset con-
sists of two parts: Part A and Part B. Part A contains 482 images and Part B includes 716
images. Images in Part A almost are token in congested scenes and most of them are ran-
domly downloaded from the Internet. While images in Part B are token from streets in
Shanghai.

UCF QNRF [14] The UCSD dataset was acquired with a stationary camera mounted at an
elevation, overlooking pedestrian walkways.There are 1,535 crowd images and 1.25 million
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Table 1 Statistics of the five crowd counting datasets

Dataset Number Resolution Total Min Ave Max

NWPU 5109 2191 × 3209 2,133,375 0 418 20,033

UCF-QNRF 1535 2013 × 2902 1,251,642 49 815 12,865

UCF CC 50 50 2101 × 2888 63,974 94 1279 4,543

ShanghaiTech part A 482 589 × 868 241,677 33 501 3,139

ShanghaiTech part B 716 768 × 1024 88,488 9 123 578

Table 2 Performance of adaptive spatial encoder and contextual module on NWPU

Method MAE MSE R2

Res101 107.67 543.4 0.35

Res101+adaptive 80.4 428.9 0.37

Res101+contextual 89 487.7 0.36

Res101+adaptive+contextual 76.9 401.7 0.39

Table 3 Performance of global distribution branch on SHHB

Method MAE MSE R2

Res101 7.8 13.4 0.35

Res101+global 7.2 11.8 0.42

VGG 9.29 14.07 0.37

VGG+global 9.13 13.0 0.41

CSRNet 9.73 14.68 0.41

CSRNet+global 8.63 13.21 0.45
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Table 4 Performance of global distribution branch on NWPU

Method MAE MSE R2

Res101 107.67 543.4 0.002

Res101+global 80.2 468.7 0.0024

head annotations in UCF QNRF, and this dataset has a wide range of counts. This dataset is
a challenging dataset as the diversified scenes, extremely congested scenarios.

UCF CC 50 [13] UCF CC 50 only has 50 annotated images collected from internet, in a
total of 67974 annotated heads. As the tiny number of images, diversified scenes and large
amounts of individuals, this dataset is a challenge for every method.

The statistics of above datasets are shown in Table 1, which includes the number of
images in corresponding dataset, image’s resolution, total number of annotated people, the
minimum and maximum number of annotated people in image and the average number of
annotated heads. And we use a graph to show distribution of number range on three datasets
in Fig. 5.

4.4 Ablation study

In order to demonstrate the effects of the proposed method, many ablation studies on Shang-
haiTech PartB dataset and NWPU dataset to validate the effect of the proposed methods are
advisable. Firstly, using ShanghaiTech PartB dataset to confirm the effectiveness of pro-
posed methods, and then the necessity of global distribution branch is confirmed by four
ablation experiments.

Effectiveness of adaptive spatial encoder and contextual module on the NWPU dataset
is verified first. The experiment is divided into four categories according to the module
combination: Res101, Res101+Adaptive, Res101+Contextual, and Res01+ Adaptive + Con-
textual. Then proving the validity of the global distribution branch on both SHHB and
NWPU datasets. The verification experiment on the SHHB data is divided into two steps.

Table 5 The comparison results on the Shanghai Tech dataset

PartA PartB

Method MAE MSE MAE MSE

MCNN [43] 110.2 173.2 26.4 41.3

CSRNet [18] 68.2 115.0 10.6 16.0

SCAR [10] 66.3 114.1 9.5 15.2

BL [22] 62.8 101.8 7.7 12.7

LA-Batch [45] 65.8 103.6 8.6 13.6

SFCN [36] 64.8 107.5 7.6 13.0

DUBNet [25] 64.6 106.8 7,7 12.8

TransCrowd [19] 66.1 105.1 9.3 16.1

Ours 67.1 108.8 7.0 11.7
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Table 6 The comparison results on the NWPU dataset

Method MAE MSE

MCNN [43] 218.53 700.6

SANet [3] 171.16 471.51

CSRNet [18] 104.89 433.48

SCAR [10] 81.57 397.92

BL [22] 93.64 470.38

CAN [21] 93.6 489.9

SFCN [36] 95.46 608.32

CCFD [28] 76.8 343

MARNet [38] 80.8 422.8

Ours 74.4 390.5

First, Res101, VGG, and CSRNet are used as the baselines, and then the global distribu-
tion branch is added in these three baselines. The results of effectiveness of adaptive spatial
encoder and contextual module on the NWPU dataset are shown in Table 2. With Res101 as
the baseline, the MAE and MSE are 107.67 and 543.4 respectively. Then using the adaptive
spatial encoder. The module was applied to Res101 and we got MAE 80.4 and MSE 428.9.
This module improved MAE by 25% and MSE by 21%. Then we only apply the contextual
module to the Res101, and the MAE obtained was 89, and the MSE was 487.7, thus the
MAE increased by 17%, and the MSE increased by 10.3%. Finally, the Contextual Module
and the adaptive spatial encoder module are applied to the Res101, and we got MAE 76.9
and MSE 401.7.

To prove the validity of the global distribution branch, conduction of three sets of com-
parative experiments on the SHHB data, using VGG, Resnet101 and CSRNet as baselines
respectively is performed. In order to ensure the fairness of the experiments, the three meth-
ods used the same hyperparameters such as batch size, optimizer, and loss function. The
results are shown in Table 3, from which we can see the global distribution branch has a
good improvement effect for all the three methods. For VGG, MAE and MSE increased by
1.7% and 7.6%, respectively, for Res101, MAE and MSE increased by 7.7% and 11.9%,
respectively, and CSRNet’s MAE and MSE increased by 11.3% and 10%, respectively.
Lastly, we verify the effectiveness on NWPU with Res101 as the baseline and the results

Table 7 The comparison results on the UCF QNRF dataset

Method MAE MSE

MCNN [43] 277 426

TEDNet [15] 113 188

RANet [44] 111 190

S-DCNet [39] 104.4 176.1

DUBNet [25] 105.6 180.5

CAN [21] 107 183

LA-Batch [45] 113 210

Ours 101.3 187.3
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Table 8 The comparison results on the UCF CC 50 dataset

Method MAE MSE

MCNN [43] 377.6 509.1

TEDNet [15] 249.4 354.5

RANet [44] 239.8 319.4

SPN+L2SM[40] 188.4 315.3

DUBNet [25] 243.8 329.3

CAN [21] 212.2 243.7

LA-Batch [45] 203.0 230.6

M-SFANet [31] 162.33 276.76

SASNet [30] 161.4 234.46

Ours 139.2 217.7

are shown in Table 4 with Res101 as the baseline, and MAE increased by 25.5%, and MSE
increased by 13.7%.

4.5 Comparisons with state-of-the-arts

In this section, we compare the proposed model with state-of-the-art methods on three
challenging datasets.

Results on ShanghaiTech. As shown in Table 5, in PartA, our method obtains MAE of
67.1, and achieves 108.8 in MSE. In terms of Shanghai PartB, our model is the best in MAE
of 7.0. In addition, ours also obtains the MSE of 11.7 which is the first best.

Results on NWPU. The comparison results on NWPU is shown in Table 6, where we get
that our model achieves the best MAE of 74.4 and the second MSE 390.5.

Fig. 3 Some density maps on ShanghaiTech. Row 1: original image, Row 2: groundtruth, Row 3: predicted
density map by GTL-ASENet. “GT” denotes groundtruth count. “Pred” means the predict count
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Fig. 4 The first row includes three region distribution at same position. From left to right, the first one is a
unit in ground truth density map, the second one is a predicted unit with bilinear upsampling. The third is
predicted by CARAFE upsampling. “GT” denotes groundtruth density map. “Linear” means using bilinear
upsampling method. “CARAFE” means using CARAFE upsampling method

Results on UCF QNRF. The comparison results of our method and other state-of-the-art
methods on UCF QNRF are shown in Table 7, our method obtains the best MAE of 101.3
which is better than S-DCNet by 3.0%.

Results on UCF CC 50. As shown in Table 8, our model obtain the best MAE of 139.2
and the best MSE of 217.7. Compaerd with the second best of MAE and MSE, our method
improves the MAE by 13.8% and the MSE by 5.6%.

4.6 Visualization results

Figures 3 and 4 are the visualization results generated by our GTL-ASENet. Figure 3 illus-
trates that the predict crowd distribution is very similar to the groundtruth and the estimation
counting numbers are close to groundtruth counting numbers.

Fig. 5 The distribution of number range on three datasets

61709Multimedia Tools and Applications (2024) 83:61697–61714



Fig. 6 The convergence speed graphs of train loss function and validation function

Figure 4 shows the comparison result of the bilinear upsampling method and the
CARAFE, where the ground truth density map is created by a Gaussian kernel. The bilinear
interpolation is not visible for mapping feature maps to density maps because the regions
of interest in the bilinear interpolation output appear uniformly distributed. The CARAFE
Fig. 5 method, on the other hand, outputs a better distribution, similar to the halo in the
ground truth density map. Figure 6 shows the convergence speed graphs of train loss func-
tion and validation function, Fig. 7 shows the cure lines of MAE and MSE. Figure 8 shows
the difference of ground truth and predicted density map

Fig. 7 The cure lines of MAE and MSE
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Fig. 8 From left to right, the second one is a ground truth density map, the third one is a predicted density
map. The forth is the difference between predict and ground truth. “GT” denotes ground truth density map.
“Pred” means predicted density map. “Difference” means difference of ground truth and predicted density
map. The darker the color, the greater the difference

5 Conclusion

In this paper we propose a novel network that simultaneously focuses on building the global
structure and local details of crowd distribution to generate higher quality density maps. To
improve the effectiveness of mapping features to density maps, CARAFE is applied as an
efficient upsampling mechanism. This work proposes the global distribution branch for gen-
erating high-quality density maps from global structures, and introduces contextual module
to capture global and local features and to understand contextual information. Through the
design of connecting receptive fields of different sizes, more effective contextual informa-
tion can be captured. In addition, the adaptive spatial encoder module helps to cope with
the distortion caused by the diverse crowd distribution and perspective. The algorithm is
demonstrated on four challenging counting datasets with state-of-the-art performance. Last
error label of such a large-scale scene is relatively large, and the influence of labeling noise
on the model is relatively bad. The noise of label hinders the model’s ability to learn.
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