
https://doi.org/10.1007/s11042-022-14306-9

Two-stage anomaly detection for positive samples
and small samples based on generative adversarial
networks
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Abstract
Anomaly detection approaches based on generative adversary networks usually directly
input the image into the generator for reconstruction. As a result, the results of anomaly
detection are not ideal. This paper proposes a novel anomaly detection model based on a
two-stage generative adversarial network to improve the results. It consists of feature extrac-
tion and anomaly detection networks. The former combines a convolutional neural network
and multi-scale feature extraction to study latent code. The latent code from the former
model instead of the original image is fed to the generator of the anomaly detection module.
The experiment shows the proposed method outperforms several existing anomaly detection
methods with multiple datasets. Additionally, the quantitative result indicates the proposed
model optimizes anomaly detection performance and improves by 8.8% and 19.2% on both
the liver CT image medical dataset and the CIFAR10 public dataset respectively compared
to the baseline of the skip-GANomaly model.
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1 Introduction

Artificial intelligence was applicated to different fields such as recommendation system
[5, 34], face recognition [30], machine translation [3], medicine [6, 20, 21] and so on. It
has brought not only huge economic benefits for various industries but also brought great
changes to our lives. Artificial intelligence’s gradual penetration into our daily life, its
application in various fields and scenarios is also known and used by people.

The use of various AI techniques for anomaly detection is also important research in
the field of AI. Anomaly detection is a technology to identify abnormal or illogical sam-
ples from a large number of samples. It has important applications in industrial quality
inspection, video surveillance, fraud detection, medical diagnosis, and other fields. Some
traditional anomaly detection methods [32], are often based on statistics [22], rules [28],
nearest neighbors [7] or clustering [15] to judge the characteristic of data. However, in prac-
tice, a common feature of anomaly detection datasets is that the normal data occupies the
vast majority, while the abnormal data is very small. The two are in a highly unbalanced
state. In addition, there are many types of abnormal data. For example, for medical images,
the shape of abnormal lesions may even change over time, so the type of abnormal data can-
not be determined. In this situation, the above-mentioned traditional methods are generally
ineffective in the task of anomaly detection.

Later, anomaly detection methods based on deep learning [8, 9, 12, 19] gradually
emerged. In terms of feature extraction, compared with some traditional methods, deep
learning methods can capture richer semantics and nonlinear relationships between features.
[14, 29, 36] also proposed anomaly detection based on generative adversarial networks.
They let the generative model only learn the distribution of normal data, and at test time
distinguish between two types of data based on the size of the difference between the gen-
erated image and the original image. The premise of these models is that abnormal samples
not only have different distributions in the image space than normal samples but also have
large encoding differences in the low-dimensional latent space. This ensures that the recon-
structed image retains the important features of the original image. Therefore, the process
of mapping an image into a low-dimensional latent space becomes particularly important.
The above methods usually take the image as the input of the generator and only obtain
the low-dimensional latent encoding of the image through several layers of downsampling
operations in the generator. The latent code obtained by this method may not fully capture
the feature distribution of the image, thus affecting the quality of the reconstructed image.

This paper proposes a novel anomaly detection method. It first passes the image through a
feature extraction module consisting of multi-scale convolutional streams and convolutional
neural networks. Then, the acquired image features are input into the generative adversarial
network with an Attention Gate, and the normal samples and abnormal samples are distin-
guished according to the difference between the generated image and the original image.
Compared to directly feeding the image into the generative network, the image features are
better able to capture the image details, which can lead to the better generation of accurate
and high-quality images. Similar to [1], our method also learns the distribution of images
and the latent space through the generator and discriminator. In the image feature extraction
network, we also use convolution kernels of different scales to extract image features sep-
arately and then fuse them. This approach not only ensures low-dimensional local features
but also ensures high-dimensional global features of the image. The main contributions of
this research include the following:
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• We propose a new two-stage anomaly detection model that adds an image feature
extraction network to the anomaly detection GAN. The image features extracted by
convolutional neural networks and multi-scale convolution kernels are input into the
generator of anomaly detection GAN to generate reconstructed images.

• In the image feature extraction module, we combine convolutional neural networks
and multi-scale convolution kernels to perform feature extraction and fusion on input
images, in order to obtain better low-dimensional latent codes.

• In the anomaly detection GAN, we modified the ordinary UNet-based generator to a
generator with Attention Gate to perform a more detailed reconstruction of the region
of interest.

• This method achieves the best results on both the medical dataset we provide and the
public dataset CIFAR10.

The overall framework of this paper is as follows: Section 1 is the Introduction, which
briefly introduces the related applications of anomaly detection and our proposed method.
Section 2 is Related Works, which mainly introduces the work related to anomaly detection.
Section 3 is the Proposed Method, which provides a detailed introduction to our proposed
method. Section 4 is Experiments, and Sections 5 and 6 are Discussion and Conclusion.

2 Related works

Anomaly detection is an important research part of machine learning at present, and it has
corresponding practical applications in medicine, chip, video, and other fields. As more and
more relevant people begin to study anomaly detection, the existing technical solutions in
this field have also increased significantly. Traditional anomaly detection methods are often
based on some basic algorithms. In [28], a RIPPER classification algorithm is proposed,
which uses logical rules to describe some temporal states obtained after using the cluster-
ing algorithm. Nong et al. [22] propose an anomaly detection method based on chi-square
statistics. Boriah et al. [7] investigated the performance of various similarity measures in the
context of outlier detection. A FindCBLOF technique is proposed in [15] which assigns an
anomaly score called Cluster-Based Local Outlier Factor to each data instance. This score
is then used to capture the size of the cluster to which the data instance belongs and the
distance of the instance from the cluster’s center of gravity.

Later, with the continuous development of deep learning, researchers began to propose
anomaly detection methods based on deep learning. Some methods use a knowledge distil-
lation model for anomaly detection [4, 27]. They distinguish normal images from abnormal
images by using the differences in image features learned by the teacher model and the
student model. There are also some methods that use generative models for anomaly detec-
tion, such as [13, 19]. AutoEncoder maps the original data to the low-dimensional feature
space through the encoder and then uses the decoder to restore the data from the low-
dimensional space to the original space. The training goal is to restore the input data as
much as possible. Various AutoEncoders have been proposed to learn more efficient feature
representations. For example, [33] utilizes pre-defined contaminated data for reconstruction
to enhance the anti-interference of the model, [26] enhances the robustness of the model by
adding a penalty term to the activation function of the encoder, and [17] prevent overfitting
of the model by adding a regularization term to the prior distribution of the samples. These
improved AutoEncoders all improve the data reconstruction performance to a certain extent.
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However, these methods cannot avoid the feature information about abnormal data that the
model may learn, resulting in a bias in the final learned information.

Generative Adversarial Networks (GANs for short) [13] is an unsupervised deep learn-
ing framework for evaluating generative models through an adversarial process, which is
mainly based on the competition of two networks in a zero-sum game framework. GAN
consists of two parts of the network, called the generator and the discriminator. The net-
work architecture diagram of GAN is shown in Fig. 1 below. Among them, the goal of the
generator is to capture the data distribution, learn image features from the original data, and
generate images that are as similar as possible to real images. The goal of the discriminator
is to judge whether the sample comes from the dataset or the generator, which is usually
regarded as a binary classifier. Through the optimization of the zero-sum game framework,
both networks can enhance their predictive ability until a balance is reached.

Thomas et al. found that the Generative Adversarial Network architecture was able
to generate normal data better than AutoEncoder. They proposed the [29] model, one of
the earliest GAN-based anomaly detection models. After that, Zhao et al. in [36] mainly
improved the discriminator. They treat the discriminator as a function of energy, assigning
lower energy to regions near the data stream and relatively higher energy to other regions.
This is used to distinguish whether the data is normal or abnormal. The use of GAN algo-
rithms for anomaly detection on time series datasets was studied in [14], where Wasserstein
GAN was used to learn the normal distribution of the data, and stacked encoders were used
for anomaly detection. Akcay et al. [1, 2] are two anomaly detection models successively
proposed by Samet et al. [1] is a convolutional neural network with the skip-connected
encoder-decoder structure proposed on the basis of [2], which can better capture the spa-
tial distribution of normal data in images. These models use only normal data to train the
generator and discriminator during training, and use both normal and abnormal data during
testing. Then use the bias between the reconstructed data and the original data to distinguish
normal data from abnormal data, so as to realize anomaly detection. Among these GAN-
based anomaly detection methods, the ways in which the output of the discriminator is used
to distinguish the two types of data can also be roughly classified into two categories. One
is used by models such as [31], which directly uses the discriminator to classify the input
data, and the final output is the label. The other is used by models such as [2, 35], which
propose the concept of anomaly score. They divide two types of data according to the size
of the value.

Fig. 1 The network architecture diagram of GAN
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Some current methods to improve the performance of GAN networks usually focus on
optimizing the generator. Oktay et al. [23] proposed the concept of Attention Gate(AG for
short) on the basis of ordinary UNet, and each downsampling layer is directly connected to
the corresponding upsampling layer through AG. Huang et al. [16] is based on the idea of
full-scale skip connections. It adds the downsampling output of each layer of UNet to the
corresponding upsampling and lowers dimensional layers. At the same time, each upsam-
pling layer is also connected to all the upsampling layers above it to retain the feature
information of each scale. Fu et al. [11] based on a dual attention mechanism, combining
channel attention and spatial attention for image reconstruction. Li et al. [18] proposed to
use convolution kernels of different scales to extract image features to ensure more accu-
rate low-dimensional feature information. Song et al. [31] proposed a two-stage method for
anomaly detection using an attention map and data hard augmentation. In this way, an atten-
tion map is used to concentrate the reconstruction range in the useful area, and useless areas
such as background are removed to prevent unrelated regions have an impact on anomaly
detection.

3 Proposedmethod

The proposed network mainly consists of two stages: the image feature extraction stage to
obtain multi-scale image features, and the anomaly detection GAN stage to learn the feature
distribution to achieve anomaly detection. The overall implementation details are explained
in the following sections.

3.1 The overall proposedmodel

The overall network architecture and the detail table of the proposed model are shown in
Figs. 2 and 3. The image feature extraction stage consists of two convolutional neural net-
works and parallel convolutional streams at three scales. For the input image x, it first
obtains the initially extracted image feature Ff irst through a convolutional neural network.
Then, through three parallel convolution streams with convolution kernels of 1x1, 3x3, and
5x5, the features of different scales are fused in pairs. After a 1x1 convolution kernel, the
quantity is adjusted to obtain further image features. Finally, the final image feature Ff inal

is obtained through a convolutional neural network again.

Fig. 2 The overall network architecture of the proposed model. The input image is the original image from
the dataset. Then it goes through the first stage of multi-scale feature extraction. Then input the obtained
features into G to get the corresponding generated image. Finally, the original image and the generated image
are input into D to judge real or fake
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Fig. 3 The detail table of the proposed model

The anomaly detection GAN part mainly includes a generator and a discriminator. The
main function of the generator is to generate the reconstructed image xre according to the
image feature Ff inal obtained in the previous stage. Among them, the generator part also
adds the Attention Gate module, which focuses on image reconstruction of the region of
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interest. The role of the discriminator can be divided into the training phase and the testing
phase. The role of the discriminator in the training phase is to distinguish whether the input
image is from the generator or the original dataset, and the role of the discriminator in
the testing phase is to output an anomaly score used to distinguish normal and abnormal
data(used in [1]).

3.1.1 Feature extraction module

3.1.2 Multi-scale feature fusion

Taking image features at different scales and fusing them [18] has been shown to yield
better-reconstructed images. The overall architecture diagram of the feature extraction mod-
ule is shown in Fig. 3. In our model, three-scale convolution kernels of 1x1, 3x3, and 5x5
are selected for multi-scale feature fusion. This method can help to learn global features as
well as local features. In addition, we also use the residual structure to integrate the final
extracted features and the preliminary extracted features to prevent the loss of features as
much as possible.

3.1.3 Convolutional neural network

There is a convolutional neural network before and after the multi-scale feature fusion
module, as shown in Fig. 4, both of which have the same structure and are also used to
extract image features. The main function of the first convolutional neural network is to per-
form preliminary feature extraction on the input image and convert high-dimensional data
into low-dimensional encoding for subsequent further convolutional feature extraction. The
main function of the second convolutional neural network is to extract the image features
after multi-scale feature fusion again so that the extracted overall features are more com-
plete and stable. This convolutional neural network structure mainly includes three layers,
namely Conv layer, InstanceNormalization layer, and ReLU layer.

Fig. 4 The overall architecture diagram of the first stage. Among them, the part framed by the dotted line is
the Multi-scale module. During this stage, we get the final features from the input image
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3.2 Anomaly detection GAN

Unlike the previous GAN-based anomaly detection methods, we do not use the entire image
as the input of the generator, but the image features obtained by the input image after passing
through the above feature extraction module as the input of the generator of this anomaly
detection GAN. The input image features are passed through a series of down-sampling
layers and then connected with the corresponding up-sampling layers through the Attention
Gate structure to generate the final reconstructed image. Through the AG structure, the
reconstruction of the region of interest can be focused on in the process of reconstructing
the image, so that the key region of the reconstructed image is closer to the corresponding
region of the original image. The discriminator part adopts the discriminator structure of
DCGAN [25]. The network architecture diagram of the anomaly detection GAN module is
shown in Fig. 5.

In the training phase, since only normal data is used for training, the generator needs
to learn the feature distribution of normal data to generate reconstructed images that are as
similar as possible to the original images. The discriminator needs to learn to distinguish
the original image from the reconstructed image. In the testing phase, the generator obtains
the feature distribution of normal data and abnormal data to generate corresponding recon-
structed images. The discriminator computes an anomaly score based on the context loss and
latent loss between the input original image and the reconstructed image. Since the training
phase, the generator only learns the feature distribution of normal images. Therefore, when
an abnormal image is an input, the bias between the reconstructed image generated by the
generator and the original image is large, that is, the corresponding anomaly score value is
also large. Finally, it is judged whether the input image is normal or abnormal according to
the anomaly score output by the discriminator.

3.3 Loss function

As mentioned in the previous section, only normal images are used during training, while
both normal and abnormal images are used during testing. Our training goal is to expect
the model to be as accurate as possible for the reconstruction of normal images in both

Fig. 5 The network architecture diagram of the anomaly detection GAN module,i.e. the second stage. In this
stage, the features obtained in the previous stage are reconstructed into images by G with Attention Gate.
Then the original image and the reconstructed image are input into D together to get the anomaly score
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the image space and the low-dimensional latent space. During testing, we believe that the
generator only learns the feature distribution of normal images during training. Therefore,
when an abnormal image is an input, the reconstruction effect of the generator is relatively
poor, resulting in a large difference between the generated image and the original image.
Based on these purposes, we propose the following three loss functions to achieve.

1. Adversarial Loss
To maximize the reconstruction power of the generator for normal images as possi-

ble, we use the adversarial loss mentioned in [1]. The calculation formula for this loss
is shown in (1). It means that the generator G wants to make the difference between the
original image x and the generated image x̂ as small as possible. At the same time, the
discriminator D wants to make the difference between x and x̂ as large as possible.

Ladv = E
x∼px

[logD(x)] + E
x∼px

[log(1 − D(x̂))] (1)

2. Contextual Loss
In order to make the bias between the reconstructed image of the normal image

and the original image as small as possible, we use contextual loss. The formula for
calculating this loss is shown in (2). It represents the L1 loss between the input image
x and the reconstructed image x̂, ensuring that the model can make the original image
and the generated image as similar as possible.

Lcon = E
x∼px

∥
∥x − x̂

∥
∥
1 (2)

3. Latent Loss
On top of the above two loss functions, a latent loss is also used to make x and x̂ as

similar as possible. The calculation formula for this loss is shown in (3). It represents
the latent representation constructed from the image features extracted from the last
convolutional layer of the discriminator.

Llat = E
x∼px

∥
∥f (x) − f (x̂)

∥
∥
2 (3)

The overall loss function of the model is the weighted sum of the three losses above, as
shown in (4).

Lcon = wadvLadv + wconLcon + wlatLlat (4)

3.4 Anomaly score

In order to distinguish normal data from abnormal data, we adopt the metric of anomaly
score, which was also used in [1]. For any test image x, its anomaly score calculation
formula is as follows:

A(x) = λLcon(x) + (1 − λ)Llat (x) (5)

Among them, Lcon() represents the reconstruction score between the input image and
the generated image in (2) above. Llat () is the latent representation score between the input
image and the generated image in (3) above. λ is a weight coefficient that controls the
importance of the two functions. During the experiment, we mainly adjusted the parameters
several times to ensure that this anomaly score distinguishes normal data from abnormal
data as accurately as possible.

For each input test image x, the discriminator outputs an anomaly score based on the
original and generated images. The images of the entire test set Dtest can be corresponding
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to a set of anomaly score vectors A = Ai : A(xi), xi ∈ Dtest . In order to visually distin-
guish the two types of data, we normalize these scores, using the following formula, so that
the range of all values becomes [0,1]. For normal class images, since the difference between
the original image and the generated image is small. Therefore, the corresponding anomaly
score value is also small, that is, the final normalized value of these samples will approach
0. Conversely, for abnormal images, the difference between the original image and the gen-
erated image is large because the generator does not learn its feature distribution. Therefore,
the corresponding anomaly score values are also larger, so the final normalized value of
these samples will approach 1. In this way, we set the threshold to 0.5. Those smaller than
this threshold are considered as normal images, otherwise, they are considered as abnormal
images.

A′(x) = A(x) − min(A)

max(A) − min(A)
(6)

4 Experiments

4.1 Dataset and evaluationmetrics

Datasets: To verify the performance of the proposed model, we perform validation on a
medical dataset and a public computer vision dataset.Medical dataset: This is a CT image
of the liver of several patients provided by the Department of Hepatobiliary and Pancreatic
Surgery of the Second Affiliated Hospital of Zhejiang University School of Medicine. The
total amount of data is about 5k. The image content is mainly the partial CT image of
the patient’s liver. Among them, the color of the normal area is light gray, and the lesion
area is displayed as dark gray in the CT image. The used liver CT image data is shown in
Fig. 6 below, where Fig. 6(a) represents a normal liver CT image, and Fig. 6(b) represents
a cancerous liver CT image. In the experiment, we take normal CT images as normal data
and lesion CT images as abnormal data. In the data preprocessing stage, we performed
a 4-fold crossover process on the dataset. In addition, due to the small amount of data,
when loading data, we also use a relatively basic random rotation [-5,5] degrees for data
augmentation. CIFAR10 Dataset: It is a dataset containing ten categories of natural images
such as automobiles, airplanes, dogs, birds, etc. It contains 50k training images and 10k test
images. In the experiments, we used one of the categories as abnormal data and the other
nine categories as normal data for a total of ten experiments. Data will be made available on
reasonable request.

Evaluation metrics: The performance of the model is evaluated by the area under the
Receiver Operating Characteristic (ROC) curve. ROC is a curve with the true positive rate
(TPR) as the vertical axis and the false positive rate (FPR) as the horizontal axis. Using the
metric AUC, the predictive performance of the model can be judged (also used in previous
work [2, 29]).

4.2 Implementation details

For the model loss L represented by (4) in 3.4, we use the Adam optimizer to optimize it.
The initial learning rate lr is set to 1e-3. For the three weight parameters in L, we set them as
Ladv = 1, Lcon = 50, Llat = 1. The number of training times for the model was initially set
to 40 epochs(on the medical dataset) and 15 epochs(on the CIFAR10 dataset). In practice,
during the training process, we found that the model has learned enough information and
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Fig. 6 The example of liver CT image dataset

showed better prediction performance fewer times. Therefore, we save the models trained
in each epoch, test each saved model in the testing phase, and save the network parameters
of the best model. The overall model is implemented using PyTorch (v1.8.1, Python3.7,
CUDA11.1, cuDNN8.0.5). Experiments were performed on NVIDIA GeForce RTX 2080
Ti.

In the following sections, we will mainly introduce two categories of experiments we
conduct on the dataset, namely ablation experiments and comparative experiments. Abla-
tion experiments are validated on both the liver CT image medical dataset and the CIFAR10
public dataset, respectively. The purpose of ablation experiments is to demonstrate the effec-
tiveness of the key components of the proposed model. At first, we conduct experiments on
the skip-GANomaly[1] model and use it as the baseline. Then we retrain the proposed model
with the same network parameters for each ablation experiment by removing or adding dif-
ferent key components of the proposed model. Comparative experiments are also conducted
on the above two datasets. The purpose is to verify that our proposed model performs better
than some existing models on different types of datasets.

4.3 Ablation experiment

To investigate the effectiveness of each component in the proposed method, we conduct
ablation experiments. We choose skip-GANomaly [1] as the baseline model, and the exper-
iments are performed on the 4-fold cross-validated liver CT image medical dataset and the
public dataset CIFAR10, respectively. The average AUC results based on the medical dataset
are shown in Table 1 below, and the average AUC results based on the CIFAR10 dataset are
shown in Table 2 below.

The Baseline experiments are performed without changing any skip-GANomaly [1]
model structure. In the experiment Stage 2 with AG, an Attention Gate is added to the
structure of the generator. The purpose of this experiment is to verify that the Attention Gate
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Table 1 AUC results of ablation experiments on medical datasets

Model +Attention gate +CNN +Multi-scale AUC

Baseline [1] 0.5652

Stage 2 with AG � 0.6160

Stage 1 with CNN � 0.5612

Stage 1 with multi-scale � 0.5705

Proposed model � � � 0.6534

can focus attention on the region of interest in the image. In the reconstruction process, the
influence of irrelevant regions such as background on the reconstructed image is minimized,
so that the reconstructed image can retain as much important feature information of useful
regions as possible. The experimental results show that after adding the Attention Gate, the
AUC metric of the model is improved by 5.1% and 19.1% on the two datasets, respectively.
The experiment Stage 1 with CNN is to replace the image that was originally input directly
into the generator with the image features extracted by passing the image through a convolu-
tional neural network. The purpose of this experiment is to verify that using image features
instead of images to input into the generator can get better-reconstructed images. Experi-
mental results show that replacing images with image features as input into the generator
improves the model’s AUC by 2.1% on the CIFAR10 dataset, but decreases by 0.4% on the
medical image dataset. We speculate that it may be due to the fact that ordinary convolu-
tion extraction cannot obtain enough feature information for finer images such as medical
images, resulting in a slight decrease in the prediction accuracy. The experiment Stage 2
with multi-scale is to replace the image with the image features obtained after multi-scale
feature extraction. This experiment is also to verify that image features can reconstruct
better-generated images than images, and that image features extracted by multi-scale con-
volution kernels can better extract global and local features. Experimental results show that
the metrics of the model are improved by 0.5% and 5.7% on the two datasets, respectively.
The experiment Proposed model is based on the model proposed in this paper. Accord-
ing to the quantitative results in Tables 1 and 2, it can be proved that our model has a
significant improvement in anomaly detection performance compared to skip-GANomaly
[1], and improved by 8.8% and 19.2% on the two datasets, respectively. In addition, from
the perspective of the performance improvement effects of the three contributions, adding
an Attention Gate to the generator part has the most obvious effect on the performance
improvement of the model.

Table 2 AUC results of ablation experiments on CIFAR10 dataset

Model +Attention gate +CNN +Multi-scale AUC

Baseline [1] 0.731

Stage 2 with AG � 0.922

Stage 1 with CNN � 0.752

Stage 1 with multi-scale � 0.788

Proposed model � � � 0.923
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4.4 Comparative experiment

In addition, we also conduct comparative experiments on these two different datasets. In
order to ensure as much as possible that apart from the model itself, no other objective
factors will affect the experimental results. When we conduct experiments on each type of
data set, we ensure that the values of relevant parameters remain unchanged.

4.4.1 Experimental results on liver CT dataset

We still use AUC as the evaluation metric for model performance. During training, only
normal liver CT images were used; and during testing, normal liver CT images and cancer
CT images were used. Based on the 4-fold crossover dataset, we train and validate the model
four times, and use the average AUC value of the four times as the final experimental result.
We selected several models [1, 2, 27] to compare with our proposed model. The total AUC
result of the models is shown in Fig. 7 below.

Figure 8 is a comparison of the reconstruction effect of skip-GANomaly [1] and the
generator of the proposed model for normal images. We randomly choose 8 corresponding
liver CT images from the test result images for display. Among them, the first row shows
the original liver CT image in the dataset, the second row shows the image reconstructed by
the generator in skip-GANomaly [1], and the last row shows the image reconstructed by the
generator in our proposed model. For the three small images in a column, the following two

Fig. 7 The total AUC result of the models. The abscissa represents the 4-fold dataset and the average result,
respectively, and the ordinate represents the value of AUC. Among them, the blue axis represents GANomaly,
the green axis represents skip-GANomaly, the yellow axis represents the KD AD model, and the red axis
represents our proposed model
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Fig. 8 Comparison of the generator reconstruction performance. The first row is the original image, the
second row is the generated image by the generator of skip-GANomaly, and the third row is the generated
image by the generator of our proposed method. It can be found from the figure that the image reconstructed
by the proposed method is more similar to the original image, and the gap between the two is smaller.
However, the image reconstructed by skip-GANomaly is relatively blurry, and the reconstruction effect for
small areas is poor

images are the reconstruction results of the first image by the generators of the two models.
By comparison, it is obvious that the proposed model reconstructs images better than skip-
GANomaly [1] for normal CT images. The stronger the reconstruction performance of the
generator for normal images, the smaller the value of the anomaly score obtained from the
original image and the generated image, so that the normal and abnormal images can be
better distinguished.

4.4.2 Experimental results on the CIFAR10 dataset

In order to make the experimental results more objective and persuasive, in addition to
the experiments on the medical image dataset, we also conduct related experiments on the
public dataset CIFAR10. In each experiment, one type of data in the data set is regarded
as abnormal data, and the rest of the data are regarded as normal data, so we conduct a
total of ten model training and validation. Table 3 below shows the quantitative comparison
results of our proposed model and some existing anomaly detection models under the AUC
indicator. As can be seen from the table, the AUC values obtained by our proposed model
are significantly improved compared to the existing models.

In addition to using AUC as an evaluation metric, we also plot the distribution of anomaly
scores using the anomaly scores output by the discriminator. As shown in Fig. 9 below. The

Table 3 The AUC results on the CIFAR10 dataset

Model Plane Car Bird Cat Deer Dog Frog Horse Ship Truck Mean

AnoGAN [29] 0.671 0.547 0.529 0.545 0.651 0.603 0.585 0.625 0.758 0.665 0.618

OCGAN [24] 0.757 0.531 0.640 0.620 0.723 0.620 0.723 0.575 0.820 0.554 0.656

GANomaly [2] 0.633 0.631 0.510 0.587 0.593 0.628 0.683 0.605 0.616 0.617 0.610

SkipGANomaly [1] 0.797 0.953 0.448 0.607 0.602 0.615 0.931 0.788 0.659 0.907 0.731

KD-AD [27] 0.905 0.905 0.797 0.772 0.867 0.914 0.890 0.868 0.915 0.889 0.872

IGD [10] 0.906 0.979 0.839 0.823 0.886 0.899 0.909 0.964 0.969 0.948 0.912

Proposed 0.999 0.936 0.922 0.853 0.986 0.767 0.999 0.813 0.994 0.956 0.923
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(a) (b)

Fig. 9 Comparison of abnormal score distributions between Skip-GANomaly and the proposed model when
[abnormal class=cat]

Fig. 9(a) is the result of the anomaly score distribution of skip-GANomaly [1] when [abnor-
mal class=cat]. It can be seen that the overlapping area of the blue part and the orange part
is large, which means that the discriminator has a poor distinguishing effect on normal and
abnormal data. Figure 9(b) is the result of the anomaly score distribution of the proposed
model when [abnormal class=cat]. The overlapping parts of blue and orange are signifi-
cantly less, and the blue area(ie, normal data) is mainly concentrated in the part close to 0,
indicating that the discriminator can distinguish the two types of data better. The purpose of
the discriminator is to distinguish the two types of data according to the size of the output
anomaly score, that is, the less the overlap between the two types of data, the better the dis-
criminator’s discriminative effect. As can be seen from the figure, the overlapping part of
the figure on the right is significantly smaller than the figure on the left.

In order to further visually demonstrate the discriminator’s ability to distinguish between
normal data and abnormal data, we extracted the features and labels of the last convolu-
tional layer in the discriminator D, and used a three-dimensional t-SNE graph to show their
distribution results, as shown in Fig. 10 below. Among them, Fig. 10(a) and (b) represent
the distribution results of the skip-GANomaly [1] discriminator for two types of data in the
original data and the generated data, respectively. Figure 10(c) and (d) represent the distri-
bution results of the discriminator in our proposed method for two classes of data in the
original and generated data, respectively. The red dots in the figure represent the distribu-
tion of normal data, and the gray dots represent the distribution of abnormal data. It can be
seen from the results in the figure that in the proposed method, the red points (ie, normal
data) are gathered at positions close to 0, while the gray points (ie, abnormal data) are gath-
ered at positions close to 1. Compared with the results in Fig. 10(a) and (b), the distribution
positions of the two types of points in Fig. 10(c) and (d) are more clearly distinguished.
Therefore, it can be shown that the proposed method is more effective in distinguishing
normal and abnormal data.

5 Discussion

Some anomaly detection methods proposed at present, such as [1, 2], basically input the
original image directly into the generator. The encoder in the generator is used to extract
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Fig. 10 3D t-SNE results of normal and abnormal features extracted from the last convolutional layer of the
discriminator. The small Fig. 10(a) and (b) are the distribution results of skip-GANomaly. It can be seen
that the two types of data represented by the red and gray points are still mixed together chaotically. This
shows that the network does not distinguish the two types of data well. The small Fig. 10(c) and (d) are the
distribution results of our proposed model. It can be seen that the red and gray points are clustered together
to form two distinct parts. In addition to this, the red dots representing the normal data are clustered near 0

the features of the image, and the decoder is used to transform the latent expression into
image-level data. The image features extracted by this method are likely to lack feature
information of different scales, so the reconstructed image cannot be generated accurately.
In [1], the skip-connection structure is used to directly connect the output of different layers
of the encoder with the corresponding decoder layer, which to a certain extent integrates the
feature information of different scales. However, compared with our proposed method, its
prediction accuracy is still lower than ours.

6 Conclusion

This paper proposes a novel image anomaly detection method that includes two stages
image feature extraction and anomaly detection. In the former stage, a convolutional neural
network and three parallel multi-scale convolutional streams are adopted to extract image
features from the original image. In the anomaly detection stage, the generator reconstructs
the corresponding generated image given a latent code from the first stage, and then the dis-
criminator judges whether the image is normal or abnormal. The experimental results show
that the proposed architecture is significantly better than the baseline anomaly detection
methods on both the liver CT image dataset and the CIFAR10 dataset.
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