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Abstract
Video has become one of the main ways of information transmission with the develop-
ment of the Internet. Video copyright protection becomes an urgent task. Video water-
mark technology embeds copyright into the redundant information of the carrier, and
video copyright protection is achieved. However, most video watermark algorithms do
not use the correlation and redundancy among adjacent frames of a video and are weak to
resist frame attacks. In order to make up this shortage and improve robustness, a video
watermark algorithm based on a tensor feature map is proposed. A grayscale video
segment with the same scene is selected and represented as a 3-order tensor, a high-
order singular value decomposition is performed on the video tensor to obtain a stable
core tensor and three factor matrices. A feature tensor is obtained by the mode-3 product
of the video tensor with the transpose of the factor matrix that contains a time axis. It is
called a tensor feature map. Since the tensor feature map contains the main information of
each frame of a video, the watermark is distributed in each frame of a video by
embedding the watermark into the tensor feature map. The first-order discrete wavelet
transform and discrete cosine transform are used to embed the watermark into the tensor
feature map. The experimental results show that the proposed watermark algorithm based
on the tensor feature map has better transparency and is robust to common video attacks.
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1 Introduction

Video usage and transmission are becoming more and more popular with the development of
information technology. Due to the nature of digital information, pirated videos are easily
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made by modifying the contents based on a non-destructive copy of the original video, video
copyrights are infringed on the Internet [11]. The need for video copyright protection, proof of
ownership, and tampering verification become urgent. Digital watermark technology is the
most popular method among the solutions to these problems. Video watermark technology
uses a digital watermark in the video carrier. It can embed copyright into the redundant
information of the carrier. It is invisible and resistant to malicious attacks. In this way video
copyright protection and content certification are achieved.

Video watermark technology is divided into spatio-temporal domain and transform domain
watermark technologies, depending on the domain of watermark embedding [5]. The basic
idea of time-space video watermarking algorithm is to embed watermarks into the original
pixel domain. The algorithm based on plane [16] embedded the watermark information into
the lowest four bit planes of the video brightness and used a pseudo-random sequence to
determine which plane should be replaced. This algorithm has the advantages of low compu-
tational complexity and easy implementation, but its robustness against compression and
geometric attacks still needs to be improved. Transform domain watermark technology
embeds the watermark in a transform domain of a video signal, for example, the cosine
domain or wavelet domain. Although transform domain watermark algorithms are more robust
to common attacks, the computational cost is often high. In order to overcome these short-
comings, watermark algorithms based on Singular Value Decomposition (SVD) have attracted
researchers. Literature [4] introduced singular value decomposition into digital watermark in
2001 and embedded the watermark image into the singular value of a carrier image. The
singular value representing the image’s intrinsic characteristics, is stable, can improve algo-
rithm’s robustness (especially, to geometric attacks). Literature [21] proposed a real-time
video watermarking scheme applicable to MPEG-1 and MPEG-2 videos. In their proposed
scheme, they embed watermarks into histograms calculated from low-frequency subbands
in the DWT domain. They claim that their scheme provides high robustness and transpar-
ency for geometric distortions, including rotation with cropping, zooming, frame drop,
aspect ratio variation and swapping. Most singular value decomposition watermark algo-
rithms embed the watermark by modifying singular value [10, 15]. The maximum singular
value in a singular value matrix is usually modified to embed the watermark. The water-
mark image is well concealed. High-Order Singular Value Decomposition (HOSVD) is a
generalization of matrix singular value decomposition in multi-dimensional space [19]. It
has been widely used in computer vision analysis such as face recognition [6] and gesture
recognition [9]. More and more researchers have used tensor in digital watermark, they
have proposed many watermark algorithms based on high-order singular value decompo-
sitions recently. Because tensor can intuitively represent the structural characteristics of a
video, compared to the traditional watermark algorithms, video watermark algorithms
based on tensor can make better use of the correlation and redundancy among adjacent
frames of a video and further improve algorithms’ robustness.

However, most current tensor-based watermark algorithms use the stability of the core
tensor and embed the watermark into the core tensor directly to improve the robustness of the
watermark algorithm. Among them, Zhang et al. [23] represented a grayscale video as a 3-
order tensor, they obtained core tensor using tensor decomposition (i.e. High-Order Singular
Value Decomposition) on the video tensor, embedded the watermark by quantizing the
maximum of the core tensor. The correlation and redundancy among adjacent frames of a
video were used to encapsulate video into the tensor, thereby robustness was improved.
However, the transparency of algorithm was at the cost of the capacity of the algorithm. Since
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only one bit of watermark was embedded into one tensor, thousands of video frames are
required to embed a complete watermark. In order to make full use of the correlation among
RGB channels, Xu et al. [22] represented a color image as a tensor, embedded watermark by
the parity quantization of core tensor, their algorithm is robust. Zhang et al. [24] represented
a color image as a 3-order tensor, extracted the feature map that contains RGB channels of
color information from the color image by the mode-3 product of the color image tensor
and the transpose of the factor matrix that contains the color information. Embedding the
watermark into the feature map guarantees robustness and improves transparency. Because
a video sequence consists of a series of still images, the correlation and redundancy among
adjacent frames of a video are considered, we propose a video watermark algorithm based
on the tensor feature map. The watermark embedding process is shown in Fig. 1. Firstly, a
grayscale video segment with the same scene is represented as 3-order tensor, and high-
order singular value decomposition is performed on the video tensor to obtain a stable core
tensor and three factor matrices. The three factor matrices represent the information of row,
column and time axis of video frames, respectively. Secondly, a feature tensor of the same
size as video tensor is obtained by the mode-3 product of the video tensor and the transpose
of the factor matrix of the time axis. The first front slice of the feature tensor contains the
main information and is called tensor the feature map. Finally, Discrete Wavelet Trans-
formation (DWT) is performed on the tensor feature map to obtain four sub bands: LL, LH,
HL, and HH. Sub band LL is the coefficients after low-pass filtering and concentrates the
most energy of an image. Sub band LL is divided into blocks of size 8 × 8, Discrete
Cosine Transform (DCT) is performed on each block and the watermark is embedded into
the coefficient matrix of transform domain. The robustness and transparency of the
algorithm is ensured.

Fig. 1 Embedding process of watermark (extraction is the inverse process of embedding)
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The innovations of the study are as follows:

(1) The tensor is used to video watermark, the redundancy and correlation among
adjacent frames of a video are used, the robustness to common video attacks is
improved.

(2) The tensor feature map that contains the information of video frames is proposed, the
watermark is distributed in different video frames by embedding the watermark into the
tensor feature map, then the robustness and transparency are ensured.

The next sections of this paper are organized as follows. The basic knowledge related to the
proposed algorithm is introduced in Section 2, the watermark embedding and extracting
algorithms are described in details in Section 3, the experimental results are in Section 4 to
verify the performance of the proposed watermark algorithm. The final section is about
conclusions.

2 Tensor

The following notations are used in this paper:
Scalar: (a, b, etc); Vector: (a, b, etc); Matrix: (A, B, etc); High order tensor: ( ).
A tensor is the generalization of a vector or a matrix, a vector or a matrix may be regarded

as the 1-order or 2-order tensor, respectively [14]. A N-order tensor is defined as
. A grayscale video is represented as a 3-order tensor, its three dimensions

are the width, height, and duration of the video.

2.1 Slices of tensor

A slice is a two-dimensional part of tensor, that is, a matrix extracted from a tensor [13].
The two indexes are fixed and the rest index is used. The horizontal, vertical, and front

slices of a 3-order tensor are shown in Fig. 2. They are represented by

respectively.

2.2 Tensor expansion

Tensor has many advantages in representing multi-dimension data. For example, the feature
information of a video is retained to the maximum extent after encapsulating the video as a

Fig. 2 Three slices of a 3-order tensor
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tensor, the correlation and redundancy among adjacent frames are fully used. However,
high-dimensional characteristics need heavy calculation. A tensor is usually expanded
into matrices according to different orders to facilitate calculation. Tensor expansion is
the process of rearranging elements in a tensor into matrices in order and is defined as
follows [20]:

Given a N-order tensor , is unfolded into a series of matrices A1,

⋯, AN, Ak∈RIk� I1�⋯�Ik−1�Ikþ1�⋯INð Þ. The expansion of a 3-order tensor is shown in Fig. 3. The
third order tensor is sliced according to three axes of the space coordinate system and then
the tensor slices are rearranged into the second order matrix Ai.

2.3 The mode-n product of tensor and matrix

The mode-n product of a N-order tensor and a matrix B∈RJ�In is denoted

as , where . The mode-1 product of a

3-order tensor and a matrix is shown in Fig. 4 [8]. The entries are given by:

(1)

Fig. 3 Matrix expansion of a 3-order tensor
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2.4 High-order singular value decomposition

For a two-dimensional matrix, the singular value decomposition of image I of size I1 × I2 is
represented by the product of three matrices, namely:

I I1�I2 ¼ UI1�I1 � SI1�I2 � VT
I2�I2 ð2Þ

where U and V are the left and right singular matrix of matrix I, respectively. S is a diagonal
matrix that contains the singular values of matrix I, and its elements are arranged in decreasing
order [17].

High-order singular value decomposition(HOSVD) is the generalization of matrix’s singu-
lar value decomposition in high-dimension. Given a 3-order tensor of sizeM × N × K, the
high-order singular value decomposition of is represented as follows [7]:

where factor matrices U, V, and W satisfy:

(3)

A1 ¼ U � D1 � VT
1 ; ð4Þ

A2 ¼ V � D2 � VT
2 ; ð5Þ

A3 ¼ W � D3 � VT
3 : ð6Þ

where A1, A2, and A3 are the expanded matrices of the tensor along three directions,
respectively. The core tensor S is represented as:

(7)

An example of HOSVD decomposition of a 3-order tensor is shown in Fig. 5, where 1 ≤ R1 ≤
M, 1 ≤ R2 ≤ N, 1 ≤ R3 ≤ K.

Fig. 4 The mode-1 product of a 3-order tensor and a matrix
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In order to make full use of the correlation and redundancy among adjacent frames of a
video, the feature tensor of representing the time axis is extracted from the video tensor, that is,
E ¼ S�1U�2V, and its size is the same as that of the video tensor. Expression (3) can be
written as follows:

(8)
Since the rows in W represent the correlation among different frames of a video,
according to (8), the linear relationship between W and video tensor is represented
as follows:

(9)

where represents the t-th frame of the video tensor , and Ei represents the i-th front slice
of feature tensor E. Wt, i represents the i-th value of the t-th row in the factor matrix W.

According to Expression (8), the feature tensor of representing the time axis is obtained
using the modulo-3 product of the video tensor and the transpose of factor matrixW, that is:

(10)

and

E1j jj j2≥ E2j jj j2≥ � � � ≥ EKj jj j2 ð11Þ

while Ei represents the i-th front slice of E, and E1; E2;…EK are regarded as the first, second,
..., and K-th feature map of the video, respectively. Eij jj j represents the Frobenius norm of the
i-th feature map Ei. The extracted feature map after HOSVD decomposition of a video of size
480*640*4 is shown in Fig. 6. The first feature map obviously contains the main information
of the video, and is therefore called the tensor feature map.

3 The proposed watermark algorithm

In order to make full use of the correlation and redundancy among adjacent frames of a video,
we represent a grayscale video segment with the same scene as a 3-order tensor, and extract the
feature tensor of representing the time axis from the video tensor through high-order singular

Fig. 5 HOSVD of a 3-order tensor
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value decomposition. The first front slice of a feature tensor contains the main information of
each frame of the video and is called a tensor feature map.

3.1 The process of watermark embedding

Given a video segment V of resolutionM × N, the size of the watermark B is assumed to bem
× n. The correlation and redundancy among adjacent frames of a video considered, a grayscale
video of K frames is represented as a 3-order tensor, the size of tensor isM × N × K. The
process of watermark embedding is as follows:

(1) Watermark image preprocessing. In order to eliminate the spacious correlation among
binary watermark pixels, the watermark image is scrambled using Logistic chaotic
sequence. The scrambled watermark is denoted as B′.

(2) Obtaining the tensor feature map. The feature tensor E is obtained by the mode-3 product
of the video tensor and the transpose of factor matrix W of containing time axis, and
the first front slice of E is a tensor feature map F.

W is obtained using A3 ¼ W � D3 � VT
3 .

(3) Obtaining sub band LL. Sub band LL is obtained by the level-1 DWT transformation on
tensor feature map.

Fig. 6 Examples of feature map

(12)
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(4) Obtaining the transform coefficient matrix. Sub band LL is divided into blocks of size 8
× 8, the DCT transform is performed on each block to obtain the transform coefficient
matrix.

(5) Embedding the watermark by modifying the mid-frequency coefficient of the transform
coefficient matrix.

a. A mid-frequency coefficient yi, j(u, v) in the transform coefficient matrix and its six
adjacent coefficients in Zig-Zag sorting are selected. We use u = 4 and v = 4.

b. Calculating the average of the six adjacent coefficients.

avgi; j ¼
yi; j uþ 3; v−3ð Þ þ yi; j uþ 2; v−2ð Þ þ yi; j uþ 1; v−1ð Þ þ yi; j u−1; vþ 1ð Þ þ yi; j u−2; vþ 2ð Þ þ yi; j u−3; vþ 3ð Þ
h i

6

ð13Þ

c. Modifying yi, j(u, v) according to the scrambled binary watermark B′.

y
0
i; j u; vð Þ ¼ avgi; j þ T if B

0
i; jð Þ ¼ 1

avgi; j−T if B
0
i; jð Þ ¼ 0

(
ð14Þ

Where 1 ≤ i ≤ m, 1 ≤ j ≤ n, T is the quantization intensity and its value is discussed below.

(6) Reconstructing the tensor feature map after embedding the watermark.

a. IDCT transformation is performed on each modified transform coefficient matrix, and
every block is merged into the watermarked sub band LL in order.

b. IDWT transform is performed on the watermarked sub band LL, the watermarked tensor
feature map F′T′ is obtained.

(7) Reconstructing the watermarked video

a. The watermarked tensor feature map is merged into the first front slice of the feature

tensor, the watermarked feature tensor E0
is obtained.

b. Watermarked video is reconstructed from the watermarked feature tensor E0
.

3.2 The process of extracting watermark

Watermark extraction, the reversed process of watermark embedding, is as follows:

(1) Obtaining the watermarked tensor feature map. The feature tensor E0
is the mode-3

product of the watermarked video and the transpose of factor matrix W′ of repre-

senting time axis. The first front slice of E0
is the watermarked tensor feature map F′.

E0 ¼ A0�3W
0T ð15ÞW′ is obtained from A

0
3 ¼ W

0 � D0
3 � V

0T
3 .
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(2) Obtaining the watermarked sub band LL. The level-1 DWT transform is performed on
the watermarked tensor feature map, sub band LL is obtained.

(3) Obtaining a transform coefficient matrix. The watermarked sub band LL is divided into
blocks of size 8 × 8. DCT transform is performed on each block to obtain a transform
coefficient matrix.

(4) Watermark extraction is determined according to the relationship between element y
0
i; j

u; vð Þ and the average avg
0
i; j of its six adjacent coefficients in the transform coefficient

matrix.

B
0 0 i; jð Þ ¼ 1; if y

0
i; j u; vð Þ > avg

0
i; j

0; if y
0
i; j u; vð Þ≤avg0

i; j

(
ð16Þ

(5) Watermark B′′ is restored by scrambling reversely using Logistic chaotic sequence.

4 Experimental results and performance analysis

In our experiment, a set of 480 × 640 videos and a watermark B with size of 30 × 40 are
used. In one scene of the video, 8 frames in the video are represented as a third-order tensor,
then the video tensor is decomposed with HOSVD to a gain core tensor and three factor
matrix. Secondly, the feature tensor is obtained by multiplying the video tensor and the factor
matrix transposes with the time axis information. Finally, the Discrete Wavelet Transformation
(DWT) is applied on the first slice of the feature tensor to obtain four subbands (LL, LH, HL,
HH). Further, LL subband is divided into 8 × 8 subblocks, and Discrete Cosine Transform
(DCT) is performed on each subblock, thus embedding watermark into the Transform domain
coefficient matrix, which ensured the robustness and transparency of the algorithm.

4.1 Metrics

In order to verify the performance of the proposed video watermark algorithm, the following
metrics are used to measure the robustness and transparency of the algorithm. Peak Signal to
Noise Ration (PSNR) and Mean Square Error (MSE) are used to evaluate the transparency of
the algorithm objectively. MSE is calculated as follows:

MSE ¼ 1

MN
∑M

i¼1∑
N
j¼1 I i; jð Þ−I 0 i; jð Þ�� ��2 ð17Þ

where M and N are the height and width of a single frame image, respectively. I and I′ are the
original and the watermarked video frame, respectively. The smaller the MSE value is, the
smaller the difference between a single watermarked image and the original image will be.
PSNR is easily calculated using MSE as follows:

PSNR ¼ 10 Log10
2552

MSE

� �
ð18Þ

The smaller the PSNR of the watermarked video frame from the original video frame, the
greater the distortion of a single watermarked frame image will be [1]. In addition, the
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robustness of the algorithm is evaluated using normalized correlation coefficient (NC). The
expressions are as follows:

NC ¼ ∑m
i¼1∑

n
j¼1 B

0 0 i; jð Þ � B i; jð Þ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

i¼1∑
n
j¼1 B i; jð Þð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

i¼1∑
n
j¼1 B

0 i; jð Þ� �2q ð19Þ

where m and n are the width and height of the watermark, and B and B′′ are the original and
extracted watermark, respectively. The larger NC is, the more robust the algorithm will be.

4.2 Experimental parameters

The size of the test video is 480 × 640, and the size of the watermark is 30 × 40. A grayscale
video of K frames is regarded as a whole unit, that is, the size of the video tensor is 480 × 640
× K, and K = 8.

The relationship among quantization intensity T, NC of the watermark and the average
PSNR of the video is shown in Fig. 7 when there is no attack. NC of watermark increases as
quantization intensity T increases, and the average PSNR of the video decreases as quantiza-
tion intensity T increases. When T ≥ 40, NC of watermark is 1, and the average PSNR of the
video is above 45db. Both the robustness and transparency of algorithm are considered, we set
T = 50.

The original watermark image and the scrambled watermark image using Logistic chaotic
sequence are shown in Fig. 8. Scrambled watermark image eliminates spatial correlation
between binary watermark pixels.

Fig. 7 a relationship between quantization strength T and watermark NC b relationship between quantization
strength T and video average PSNR
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4.3 Transparency test

In our method, embedding watermark in the tensor feature map can improve the transparency
of the watermarking algorithm. The experimental result of the proposed watermark algorithm
is shown in Table 1. The difference between the original and the watermarked video is not
obvious to human eyes. In addition, in Table 1, we list the PSNR of our algorithm using DWT,
our algorithm without DWT and the algorithm in [23]. Our algorithm has higher transparency
than the algorithm in [23], and our algorithm using DWT has higher transparency.

Fig. 8 a original watermark image b scrambled watermark image

Table 1 Watermarked video examples

Original video Watermarked video PSNR

with DWT

PSNR without

DWT

PSNR

[23]

47.8913 47.9850 44.8913

48.1160 47.4322 45.1160

48.1417 44.6049 45.4417
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4.4 Robustness test

Some experiments are used to test the robustness of the proposed watermark algorithm to
video attacks (e.g. Frame deletion, scaling, rotation, cropping, and noise adding). We used
a set of grayscale videos as test data, the experimental results show that the watermark
algorithm based on the tensor feature map is robust to these attacks. NC of the extracted
watermark for a tensor of size 480 × 640 × 8 with the deletion from 1 to 5 frames are
shown in Table 2. NC of the extracted watermark is high enough even if 50% of the total
video frames are deleted. The proposed algorithm is more robust than the algorithm in [23]
in the case of frame deletion. Because the watermark is evenly distributed in every frame of
a video, every frame contains a part of watermark. The proposed algorithm can extract the

Table 2 Results of frame deletion attack

Number of frames deleted NC (Proposed) NC [23]

1 1 1
2 0.9992 0.9933
3 0.9958 0.9925
4 0.9817 0.9533
5 0.9475 0.8825

Table 3 Results of scaling attack

Scaling ratio Extracted watermark NC(ours)

0.7 0.9367

0.9 0.9825

1.2 1

1.5 1
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embedded watermark based on the embedded information in only a small portion of total
video frames.

Geometric attacks usually cause information to be out of sync, therefore most watermark
extraction algorithms are ineffective in such cases. Scaling and rotation are common geometric
attacks. Attacks with the scaling ratios of 0.7, 0.9, 1.2, and 1.5 are used in our experiment. NC
of the extracted watermark at different ratios are shown in Table 3. The results show that no
matter whether the video is reduced or enlarged, the proposed algorithm can extract the
watermark correctly.

In the experiment with rotation attack, clockwise rotation angles from 5 to 90 degrees are
used. The rotation correction algorithm [12, 18] is used before the watermark extracting. An
example of video rotation correction is shown in Fig. 9. The extracted watermark and NC are
shown in Table 4, Both our algorithm and the algorithm in literature [23] have the performance
of resisting rotation attack.

The extracted watermark and NC after video cropping attack are shown in Table 5.
Our algorithm has a slightly better robustness against cropping attacks than literature
[23].

Compression is the most vulnerable video attack. Video watermark algorithms should be
robust to compression attack. H.264 compression is used in watermarked video. The water-
mark and NC extracted using different compression ratios are shown in Table 6. The
experimental results show that the proposed algorithm is robust to compression attack, when
the compression ratio is above 60%, our algorithm can fully extract the watermark informa-
tion, and the watermark information extracted when the compression ratio is 20% has only
slight error.

In addition, the video is susceptible to noise pollution both in storage and transmission. The
performance of the algorithm is tested with noise attack. Common noises are salt and pepper
noise, Poisson noise, Gaussian noise and so on. Noise-enhanced videos are shown in Fig. 10,
and NCs of the extracted watermark are shown in Table 7. All NCs in Table 6 are above 0.9,
therefore the algorithm is robust to common noise attacks.

In order to further prove the effectiveness of our algorithm, we compare it with the
watermarking schemes proposed in literature [2, 3]. In [3], all the videos are of size 352 ×
288 with number of frames 300, the watermark of size 32 × 32 is presented. In [2], all the
videos are of size 352 × 288 with number of frames 300, the watermark of size 23 × 46 is

Fig. 9 Example of rotation correction
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presented. In Table 8, we use NC values to evaluate the robustness of each algorithm, and it
can be seen that our algorithm is more robust for equalization, frame deletion, and video
compression.

5 Conclusions

In order to make full use of the correlation and redundancy among adjacent frames of a video,
a video is encapsulated as a tensor and high-order singular value decomposition is used to
obtain the feature tensor of representing its main energy in this study. The first front slice of the
feature tensor is the tensor feature map that contains the main information of each frame of a
video. According to the stability of the tensor feature map, a video watermark algorithm based
on the tensor feature map is proposed. Different from the general video watermark algorithms,

Table 4 Results for rotation attack

Rotation angle Extracted watermark NC(ours) NC[23]

15 0.9800 0.9817

30 0.9750 0.9775

45 0.9667 0.9725

60 0.9717 0.9700

75 0.9825 0.9650

90 1 0.9917
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Table 5 Results for cropping attack

Cropping attack Extracted watermark NC NC[23]

Crop left 1 column 0.9800

Crop left 2 column 0.9275

Crop top 1 line 0.9933

Crop top 2 line 0.9600

Table 6 Results for compression attack

Compression ratio Extracted watermark NC(ours)

80% 1

60% 1

40% 0.9983

20% 0.9983
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Fig. 10 Example of video noise adding

Table 7 Results for noise attack

Noise type (mean, variance) NC(ours)

Gaussian (0, 0.01) 0.9258
(0, 0.02) 0.9333
(0, 0.04) 0.9158

Salt & Pepper (0, 0.01) 0.9800
(0, 0.02) 0.9550
(0, 0.04) 0.9017

Speckle (0, 0.01) 0.9983
(0, 0.05) 0.9750
(0, 0.1) 0.9583

Poisson \ 0.9983

Table 8 Comparison with [2, 3] for different attacks

Algorithm Equalization Frame Deletion(50%) Video Compression(50%)

[3] 0.7793 \ 0.9941
[2] 1 0.9263 0.9007
Our 1 0.9813 0.9983
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tensor is used in video watermark, the correlation and redundancy among adjacent frames of a
video are used to improve the robustness of the algorithm to common video attacks. The
watermark information is distributed in each frame of a video by embedding the watermark
into the tensor feature map. The robustness and transparency of the algorithm are ensured.
However, because a cropped video causes energy loss to its feature tensor, the robustness of
the algorithm to cropping attack should be further improved in the future.
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