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A correlation analysis framework via joint sample
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Abstract
Correlation Analysis is a popular technique for describing relationships between two
datasets. In this paper, we proposed a correlation analysis framework via Joint Sample and
Feature Selection (CAF-JSFS). Different from traditional correlation analysis where only
feature selection is considered and each data point is treated equally, the significance of
each data point is measured by a sample selection strategy in this framework. Considering
that the principal projection is a feasible representation of data, the relationship between this
principal projection and each data sample is recursively learnt through two sample selec-
tion strategies: cosine similarity and total distance metrics. In addition, CAF-JSFS solves
the problem of feature redundancy caused by sample feature selection, and eliminates irrel-
evant features, thereby improving classification accuracy. This enhances the discriminative
power of CAF-JSFS in noisy scenarios which makes better correlation projections achiev-
able to improve performance. Extensive experiments on several datasets demonstrated the
effectiveness of the proposed method compared to the state-of-the-art methods.

Keywords Correlation analysis · Sample selection · Feature selection ·
Cosine similarity metric · Total distance metric

1 Introduction

In the fields of machine learning and data mining, researchers are confronted with different
forms of data, such as video, audio, image and text in very high dimensions which lead to the
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problem of dimensionality curse [17]. Therefore, it is crucial to avoid this problem through
dimensionality reduction (DR) [24] techniques, to improve the performance of subsequent
processing such as classification and clustering. DR techniques can be broadly classified
into feature selection [9] and subspace learning [33]. Feature selection techniques selects a
subset of most representative or discriminative features from the input feature set, and while
subspace learning methods transforms the original input features to a lower dimensional
subspace.

Principal Component Analysis (PCA) [4], Linear Discriminant Analysis (LDA) [4],
Locality Preserving Projection (LPP) [11] and Correlation Analysis (CA) [12] are perhaps
the most popular DR methods. Despite the different motivations of these methods, they can
all be interpreted by a unified graph embedding framework [33]. One major disadvantage
of the above methods is that, the projections are a linear combination of all the original fea-
tures. Thus, it is often difficult to interpret the results. Sparse subspace learning methods
attempted to solve this problem. For example, Zou et al. proposed a sparse PCA algorithm
based on L2-norm and L1-norm regularizations [36]. Mohammad et al. [20] proposed both
exact and greedy algorithms for binary class sparse LDA as well as its spectral bound.
Cai et al. proposed a unified sparse subspace learning (SSL) framework based on L1-norm
regularized Spectral Regression [5].

Among these DR algorithms, correlation analysis is a widely used technique for model-
ing the relationship between two datasets. There exist several variants of correlation analysis
(CA) techniques. For instance, Magnus et al. proposed a unified approach to PCA, PLS,
MLR, and Canonical Correlation Analysis(CCA) [2]. Discriminant CCA (DCCA) and local
discriminant CCA (LDCCA) [29] were presented for fusing multi-feature information. Sun
et al. [34] combined CCA with uncorrelated linear discriminant analysis and proposed a
multi-view uncorrelated linear discriminant analysis (MULDA). It seeks discriminative cor-
relations in the inter-view and intra-view data points simultaneously by dealing with new
linear weighted combination methods for sparse ensembles.

Although all the above methods can attain a good performance on clean datasets, their
performances degrade seriously when noisy data points are present in the datasets. This is
because existing techniques concentrate on only useful feature selection and therefore, fail
to effectively learn the correlation structure of datasets in the presence of noise. This leads
to decreasing performances of models in classification and DR. Unfortunately, due to social
media upsurge, these noisy or corrupt data points are prevalent these days. To address this
problem, a Correlation Analysis Framework via Joint Sample and Feature Selection (CAF-
JSFS) is proposed in this paper. In the propose model, in order to discriminate between
noisy and relevant data points and suppress the impact of the former in pursuing projections,
we introduced sample factors which impose penalties on each data point. To effectively
suppress the effect of outliers, two sample selection strategies: cosine similarity and total
distance metrics are used geometrically to iteratively learn the relationship between each
sample and the principal projections in the feature space. In addition, feature selection is
introduced into the proposed sample selection methods to obtain joint sample and feature
selection methods to ensure that the proposed framework can classify data more accurately.

The main contributions of this paper are as follows:

1) We propose a novel framework by introducing sample factors into some traditional
correlation analysis (CA) models to suppress the impact of outliers in order to obtain
better correlation structures.

2) We further propose two sample selection strategies: cosine similarity and total distance
metrics. These metrics iteratively evaluate the importance of each sample in pursuing
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projections by learning the relationship between each sample and the principal projec-
tions in the feature space. This is to discriminate between authentic and corrupt data
samples.

3) Finally, we introduced structured sparse L2, 1-norm to eliminate feature redundancy in
the process of sample selection and thus, propose a joint sample and feature selection
framework (CAF-JSFS). CAF-JSFS can therefore learn a compact subspace resulting
in better correlation structures in noisy datasets. Extensive experiments on many image
datasets demonstrate the superiority of our method over state-of-the-art methods such
as ALPCCA [31] and SPCA [18].

The rest of this paper is organized as follows. In Section 2, we present related work.
Section 3 presents formulation of the proposed CAF-JSFS, experiments and result anal-
yses is presented in Section 4, conclusion and future work are also presented in Section
conclusion 5.

2 Related work

2.1 Dimension reduction through feature selection

DR has gained much attention in recent years due to the vital role it plays in machine learn-
ing. Many DR methods have therefore been proposed with the same focus on mapping high
dimensional data to low dimensional spaces. In other words, given a problem of classifi-
cation as in [33], with the training sample set X = [x1, x2, · · · , xN ] ,xi ∈ Rm with N

samples and m dimensions for each sample. DR methods focus on finding a mapping func-
tion that transform the original data xi to a low-dimensional representation yi ∈ Rd where
m >> d.

Compared with subspace learning techniques which create new features, feature selec-
tion does not change the original representations of data variables. Consequently, many
feature selection techniques have been proposed in the past few years. These feature selec-
tion methods are mainly put into two different categories: supervised and unsupervised.
Since there is no label information in unsupervised feature selection methods, they are more
difficult to implement than their supervised counterparts. Due to this, there are relatively
fewer investigations dedicated to unsupervised techniques. Most unsupervised feature selec-
tion approaches are either based on filters [22], wrappers [26] or embeddings [8]. Although
the performances of traditional unsupervised feature selection approaches are prominent in
many cases, their efficiencies can still be improved since: (1) from the view of manifold
learning [6], high dimensional data naturally lie on a low dimensional manifold. Traditional
methods have not taken full considerations of data manifold structures. (2) Different from
feature learning, traditional feature selection approaches only employ data statistical char-
acter to rank the features essentially. There is a lack of learning mechanism as in feature
learning, which is proved to be powerful and widely used in many areas [23].

2.2 Correlation analysis

Correlation analysis is a well-known family of statistical tools for analyzing associations
between variables or sets of variables. Principal Component Analysis (PCA), Canonical
Correlation Analysis (CCA), Partial Least Squares (PLS) and Multiple Linear Regres-
sion (MLR) are four efficient correlation analysis methods. Based on the least squares
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Table 1 Four models of correlation analysis

Method functions constraint

PCA J (v) = ∥
∥XT v

∥
∥
2
2 s.t .v

T
v = Ir

CCA J (v,w) = ∥
∥XT v − YT w

∥
∥
2
2 s.t .vT XXT v = Ir , w

T YYT w = Ir

PLS J (v,w) = ∥
∥XT v − YT w

∥
∥
2
2 s.t .vT v = Ir , w

T w = Ir

MLR J (v,w) = ∥
∥XT v − YT w

∥
∥
2
2 s.t .vT XXT v = Ir , w

T w = Ir

framework, we present four different correlation analysis objective functions of these four
methods in Table 1.

Among these methods, PCA is the most popular correlation analysis technique. It can
assist in understanding underlying data structures, clustering analysis, regression analysis,
and many other tasks. Hu et al. [14] presented methodological, theoretical, and numerical
studies on PCA in high-dimensional settings. In many practical studies, it is found that only
a small subset of variables are relevant, while others are noise. To identify relevant vari-
ables and generate more interpretable results, a sparse PCA (SPCA) [18] technique that
applies regularized estimation to generate sparse loadings has been developed. New PCA
algorithms for graph embedding that incorporate data distribution and multiple penalty fac-
tors into the least squares framework regularized with multiple local graphs for multiview
dimension reduction were proposed [3, 27]. Nie et al. [21] proposed to maximize the L21-
norm based robust PCA objective, which is theoretically connected to the minimization of
reconstruction error. More importantly, we propose the efficient non-greedy optimization
algorithms to solve our objective and the more general L2, 1-norm maximization problem
with theoretically guaranteed convergence.

Proposed by H. Hotelling in 1936 [10], CCA finds basis vectors for two sets of variables
such that the correlation between the projections of the variables onto these basis vectors
are mutually maximized. In an attempt to increase the flexibility of feature selection, ker-
nelization of CCA (KCCA) has been applied to map the hypotheses to a higher-dimensional
feature space. KCCA has been applied in some preliminary work by Fyfe and Lai [15],
Akaho [1] and recently by Vinokourov et al. [32] with improved results. Ping [25] pro-
posed the label-wise orthogonal canonical correlation analysis (LOCCA), which constrains
the label-based relationships and orthogonalizes correlation projection directions. In the
method, the discriminative structures constrained by class labels are effectively preserved,
and the correlation projection directions from LOCCA reduce the information redundancy
by orthogonality criterion as much as possible. Chen [7] introduces four deep neural net-
work (DNN) models that are suitable to combine with CCA, and the general form of
DNN-CCA is given in detail. Then, the experimental comparison of these methods is con-
ducted through three cases, so as to analyze the characteristics and distinctions of CCA
aided by each DNN model. Finally, some suggestions on method selection are summa-
rized, and the existed open issues in the current DNN-CCA form and future directions are
discussed.

PLS is a multivariate technique that delivers an optimal basis in x-space for y on x

regression. Reduction to a certain subset of the basis introduces a bias but reduces the vari-
ance. In general, PLS is based on a maximization of the covariance between < v, x > and
< w, y >, which are successive linear combinations in x and y spaces respectively. L. Hoe-
gaerts et al. proposed kernel Partial Least Squares (KPLS), which fits naturally in a primal
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dual optimization class of kernel machines [30]. To model the function of non-linear rela-
tionships among videos in NDVR, KPLS maps the original video data into a Reproducing
Kernel Hilbert Space (RKHS), and therefore it is able to efficiently handle high-dimensional
videos in NFVs.

Multiple linear regression (MLR), also known simply as multiple regression, is a statis-
tical technique that uses several explanatory variables to predict the outcome of a response
variable. The goal of multiple linear regression (MLR) is to model the linear relationship
between the explanatory (independent) variables and response (dependent) variables.

3 Proposedmethod

3.1 Sample selection induced correlation analysis

In this section, we present a framework of the proposed correlation analysis based on sample
selection (CAF-JSS). From Table 1, the four correlation analysis(CA) algorithms can be
summarized as the using the objective function as shown in (1), and PCA is a special case:

argmin
∑

i,j

∥
∥
∥vT xi − wT yj

∥
∥
∥ (1)

It can be seen that the CA algorithms use least square framework to minimize the sum
distance between the original data set X and the reconstructed data set vT X, the original
data set Y and the reconstructed data set wT Y .

This geometrical characteristic will force the projection vectors v and w to pass through
the densest data points to minimize the sum distance, which is illustrated in Fig. 1, where v

and w are the principal projection vectors. We consider the relationship between the projec-
tion vectors and the data samples. This geometrical relationship between data samples and
projection vectors motivates us to evaluate the importance of each data sample in pursu-
ing projections. Therefore, we reformulate formula (1) by introducing sample factors which
impose penalties on the sample spaces to minimize the impact of corrupt data samples in
(2) as follows:

argmin
∑

i,j

∥
∥
∥vT xidxi

− wT yjdyj

∥
∥
∥

2

2
(2)

where dx1 and dy1 are sample factors that consider the contributions of data samples to
projections.

Similarly, by introducing sample factors into the four traditional CA models presented
in Table 1, we obtain our four proposed D-CA models as presented in Table 2. In our
new model, a new data representation is presented as X̂ = XDX and Ŷ = YDY , there-

fore,
∧
X and

∧
Y are now obtained with the effect of corrupt data samples suppressed. DX

and DY are diagonal sample factor matrices where Dx = diag
(

dx1 , · · · , dxn

)

and Dy =
diag

(

dy1 , · · · , dyn

)

. By introducing the Lagrange multiplier (λ) into the DCA models and
taking partial derivatives w.r.t. v and w, we obtain the eigenvector solutions presented in
Table 3.

To demonstrate the effectiveness of our proposed models, we give a mathematical singu-
lar value decomposition (SVD) explanation to the CCA model. Mathematically, there is a
direct relationship between CCA and SVD when CCA components are calculated from the
covariance matrix [19]. The following demonstrate the singular value decomposition (SVD)
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Fig. 1 Illustration of importance evaluation of data samples

of X and Y . However, we first introduce some notations, let Cxx = XT X, Cyy = YT Y and
Cxy = XT Y . For simplicity, assume Cxx and Cyy are full rank, and also let

C̃xy = C
− 1

2
xx CxyC

− 1
2

yy (3)

Let C̃xy = V �WT be the SVD of Cxy where vi , wj denote the left, right singular vectors

and τi denotes the singular values. Then XC
− 1

2
xx vi , YC

− 1
2

yy wj are the canonical variables of

theX, Y spaces respectively. In our proposed model, as
∧
X = XDX and

∧
Y = YDY , therefore

XDXC
− 1

2
XXvi , YDY C

− 1
2

yy wj are the canonical variables respectively. In this way, with the
imposition of the sample factors DX and DY on the sample spaces, our proposed model can
learn a better low dimensional subspace in corrupt data sets.

Table 2 The Four proposed canonical analysis methods

Method functions constraint

D-PCA argmin
∑

i,j

∥
∥dxi

xT
i v

∥
∥ s.t .v

T
v = Ir

D-CCA argmin
∑

i,j

∥
∥vT xidxi

− wT yj dyj

∥
∥
2
2

s.t .vT XD2
XXT v = Ir , w

T YD2
Y Y T w = Ir

D-PLS argmin
∑

i,j

∥
∥vT xidxi

− wT yj dyj

∥
∥
2
2

s.t .vT v = Ir , w
T w = Ir

D-MLR argmin
∑

i,j

∥
∥vT xidxi

− wT yj dyj

∥
∥
2
2

s.t .vT XD2
XXT v = Ir , w

T w = Ir
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Table 3 Standard eigenvector solutions of the proposed D-CA models

Method Derivation process

D-PCA XD2
XXT v = λv

D-CCA
(YD2

Y Y T )−1(YDY DXXT )(XD2
XXT )−1(XDXDY YT )w = λw

(XD2
XXT )−1(XDXDY YT )(YD2

Y Y T )−1(YDY DXXT )v = λv

D-PLS
(YD2

Y Y T + λ2I )−1(YDY DXXT )(XD2
XXT +λ1I )−1(XDXDY YT )w = λw

(XD2
XXT + λ1I )−1(XDXDY YT )(YD2

Y Y T +λ2I )−1(YDY DXXT )v = λv

D-MLR
(YD2

Y Y T + λ1I )−1(YDY DXXT )(XD2
XXT )−1(XDXDY YT )w = λw

(XD2
XXT )−1(XDXDY YT )(YD2

Y Y T + λ2I )−1(YDY DXXT )v = λv

3.2 Obtaining sample factors dx and dy

In this subsection, we discuss how to model the relationship between data samples and
the principal projections. Intuitively, the closer a sample to the projection vector v or w,
the more important the sample is for calculating the projections. Based on this intuitive
observation, we iteratively learn the relationship between data samples and the principal
projections v and w using two strategies: total distance and cosine similarity metrics. This
is to effectively distinguish between authentic and corrupt data samples based on how a data
sample and the principal projection relate. Both can be obtained geometrically as shown in
Fig. 1.

The first strategy uses total distance metric to iteratively learn the relationship between
each sample and the principal projection. The total distance of an instance is the square sum
of the distances between the coordinate of each instance and the coordinates of every other
instance in the training set to the projections v or w. From Fig. 1, the coordinate (si) of data
sample xi to the projection v and the coordinate (ti ) of data sample yi to the projection w

are obtained based on (4) respectively as follows:

si = vT xi, ti = wT yi (4)

We then compute the total distance of data samples as follows:

dxi
=

∑n

i,j=1
(si − sj )

2, dyj
=

∑n

i,j=1
(tj − ti )

2 (5)

The total distance of a data sample is a natural way to evaluate its importance within the
dataset in constructing projections. From Fig. 1, we can observe that the total distance of
sample xi or yi which are outside the clusters will be relatively bigger than that of samples
xj and yj within the clusters. Therefore, samples xi and yi are more likely to be outliers
than samples xj and yj . Thus, the bigger dxi

or dyi
, the more likely xi and yi are noisy data

samples and hence their relevance will be scaled accordingly to suppress their effects on the
projections.

The second strategy uses the cosine similarity metric to build the sample factors dxi
and

dyi
. This iteratively learns the angle relationship between each data sample in the training

set and the principal projections v and w . In Fig. 1, the angle between data sample xi and
the projection v is αi , and the angle between data sample yi and the projection w is εi . The
construction of sample penalty factor proposed can be obtained by normalizing (6):

dxi
= cosαi = vT xi

‖v‖ ‖xi‖ , dyj
= cos θj = wT yj

‖w‖ ∥
∥yj

∥
∥

(6)
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In formula (6), a bigger cosαi implies a smaller angle α between sample xi and the
principal projection v and vice versa. Similarly, a bigger cos εi implies a smaller angle ε

between sample yi and the principal projection w. From Fig. 1, it can be seen that, the angle
β between sample xj and the principal projection v is smaller than the angle α of sample
xi and the principal projection v. Thus, xi is considered less important in finding the best
projections than xj ; likewise, we consider that yi is less important than yj .

Futhermore, dxi
and dyi

can now be obtained as follows :

dxi
= cosαi + η, dyj

= cos θj + η (7)

where η is a adjust parameter to prevent dxi
and dyi

from approaching infinity.

3.3 CAF-JSFS

We further extend the proposed four models to feature selection in this subsection. After
adding feature selection [13], the proposed D-CA model in (2) can now be written as:

argmin
∑

i,j

∥
∥
∥vT xidxi

− wT yjdyj

∥
∥
∥

2

2
+ λ1 ‖v‖2,1 + λ2 ‖w‖2,1 (8)

Taking the D-CCA model as an example, the derivation of our proposed feature selection
DQ-CCA model is as follows:

L = 2wT YDY DXXT v − λ1v
T Qxv − λ2w

T Qyw

−λ3v
T XD2

XXT v − λ4w
T YD2

Y Y T w (9)

where λ1, λ2, λ3 and λ4 are regularization parameters, and Qx ∈ Rd×d is a diagonal matrix

with (i, i) th element Qx
ii = (γ /2(‖vi‖22 + ε)1/2)(ε → 0) and v =

[
v...
vd

]

∈ Rd×m , so is

Qy . And ‖v‖2,1, ‖w‖2,1 are based on �2-norm and �1 -norm regularizations [35].
By incorporating the feature selection into the D-CA models and taking partial deriva-

tives w.r.t. v and w, according to Table 3 , we obtain the following eigenvector solutions of
the proposed four DQ-CA models, which are presented in Table 4. We further extend the
proposed four models to feature selection in this subsection. After adding feature selection
[13], the proposed D-CA model in (2) can now be written as:

argmin
∑

i,j

∥
∥
∥vT xidxi

− wT yjdyj

∥
∥
∥

2

2
+ λ1 ‖v‖2,1 + λ2 ‖w‖2,1 (10)

Taking the D-CCA model as an example, the derivation of our proposed feature selection
DQ-CCA model is as follows:

L = 2wT YDY DXXT v − λ1v
T Qxv − λ2w

T Qyw

−λ3v
T XD2

XXT v − λ4w
T YD2

Y Y T w (11)

where λ1, λ2, λ3 and λ4 are regularization parameters, and Qx ∈ Rd×d is a diagonal matrix

with (i, i) th element Qx
ii = (γ /2(‖vi‖22 + ε)1/2)(ε → 0) and v =

[
v...
vd

]

∈ Rd×m , so is

Qy . And ‖v‖2,1, ‖w‖2,1 are based on �2-norm and �1 -norm regularizations [35].
By incorporating the feature selection into the D-CA models and taking partial deriva-

tives w.r.t. v and w, according to Table 3 , we obtain the following eigenvector solutions of
the proposed four DQ-CA models, which are presented in Table 4.
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Table 4 Standard eigenvector solutions of the four proposed DQ-CA models

Method Derivation process

DQ-PCA (XD2XT − λ1Qx)v = λ2v

DQ-CCA
(XD2

XXT − γQx)−1(XDXDY YT )(YD2
Y Y T −σQy)−1(YDY DXXT )v = λv

(YD2
Y Y T − σQy)−1(YDY DXXT )(XD2

XXT −γQx)−1(XDXDY YT )w = λw

DQ-PLS
(γQx + I )−1(XDXDY YT )(σQy + I )−1(YDY DXXT )v = λv

(σQy + I )−1(YDY DXXT )(γQx + I )−1(XDXDY YT )w = λw

DQ-MLR
(γQx + XD2

XXT )−1(XDXDY YT )(σQy + I )−1(YDY DXXT )v = λv

(σQy + I )−1(YDY DXXT )(γQx + XD2
XXT )−1(XDXDY YT )w = λw

The algorithm for the proposed CAF-JSFS is shown in Algorithm 1 as follows:

Algorithm 1 CAF-JSFS.

4 Experimental results

In this section, we first evaluate the performance of the proposed correlation analysis and
feature selection methods against classical methods such as CCA, PCA, PLS and MLR. We
further evaluate the performance of the proposed methods against state-of-the-art methods
ALPCCA and SPCA.

4.1 Parameter settings and datasets description

For each dataset, we randomly sampled 60% and 40% for training and testing respectively
in our experiments. We set the k-nearest-neighbors parameter K to 5 in the proposed D-
CA and DQ-CA methods and all other comparative methods, in order to make a very fair
comparison. Also, the parameters of ALPCCA, SPCA and LDA were set according to their
literature. We finally make use of the K-nearest neighbor (KNN) classifier for classifi-
cations. The experiments are repeated 20 times and we record the average classification
accuracies and standard deviations for the various methods. In our experiments, in order to
fairly compare the performance among the KNN-graph models, graphs were constructed
with the same neighbors N in CAF-JSFS correspondings to (10)

min
v

n
∑

i=1

⎛

⎝vT xi −
n

∑

j=1

Nij v
T xj

⎞

⎠

2

(12)
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As unsupervised constructions, v in CAF-JSFS corresponds to Table 4. In order to evaluate
the performance of CAF-JSFS, we carry out a series of experiments on face and handwritten
datasets.

4.2 Experiments on image datasets

Aside from the seven UCI datasets, we use several image datasets to test the proposed
method’s performance in this subsection. The image datasets include:

– ORL1 face dataset contains 400 face image samples taken from 40 subjects, each with
10 face images. The face images per subject were taken by varying the lighting, facial
expressions, and facial details at different times [28].

– AR2 face database was created by Aleix Martinez and Robert Benavente in the
Computer Vision Center (CVC) at the U.A.B. It contains over 4,000 color images
corresponding to 126 people’s faces (70 men and 56 women).

– Extended YaleB3 dataset contains 165 face images from 15 subjects, each of which has
11 face images. The face images were taken by varying lighting conditions and facial
expressions. In our experiment, each image is cropped and resized to 32 × 32, and the
gray level values of each image are rescaled to (0, 1). That is, the dimensionality of
each image sample is 1024 [28].

– CMU-PIE4 face database contains more than 750,000 images of 337 people recorded
in up to four sessions over the span of five months. Subjects were imaged under 15 view
points and 19 illumination conditions while displaying a range of facial expressions.
In addition, high resolution frontal images were acquired as well. In total, the database
contains more than 305 GB of face data. The Content page describes the database in
more detail.

– USPS5 dataset contains a total of 9298 digit images of 0 through 9, each of which is
of size 16 × 16 pixels, with 256 gray levels per pixel. In the experiment, each image is
represented by a 256-dimensional vector [16].

– MNIST6 dataset is constructed from the larger NISTs Special Database 3 and 1, which
consist of binary images of handwritten digits. The images of each class (digit) are of
size 28 × 28. Thus, each digit image is represented by a 784-dimensional vector [16].

The further detailed descriptions of the ORL, Extended YaleB, MINIST, USPS, COIL20,
and CIFAR-10 datasets are presented in Table 5

4.3 Experimental analysis in no-noise scene

In this section we analyse and discuss the results obtained by each method on the different
datasets used in our experiments.

1http://cam-orl.co.uk/facedatabase.html
2http://www2.ece.ohio-state.edu/∼aleix/ARdatabase.html
3http://vision.ucsd.edu/∼leekc/ExtYaleDatabase/ExtYaleB.html
4http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html
5https://www.kaggle.com/bistaumanga/usps-dataset
6http://yann.lecun.com/exdb/mnist/
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Table 5 Summary of the six
datasets Dataset Type Samples Features

ORL Face 400 1024

AR Face 793 1400

Extended YaleB Face 1024 2414

CMU-PIE Face 1360 4096

USPS Handwritten 9298 256

MNIST Handwritten 4000 784

4.3.1 Face recognition

In this section, we first demonstrate our proposed DQ-CCA, DQ-PCA, DQ-PLS and DQ-
MLR have superior performances than the traditional CCA, PCA, PLS and MLR on face
recognition. We further undertake experimental comparison with two state-of-the-art algo-
rithms, ALPCCA and SPCA.We present results for each method on the ORL, AR, Extended
YaleB and CMU-PIE datasets as shown in Table 6 with best results in bold in each case.

From Table 6, we can see that DQ-CCA, DQ-PCA, DQ-PLS and DQ-MLR all have
superior performances than all the comparative methods on the ORL, AR, Extended YaleB
and COMU-PIE face datasets. For the ORL face dataset, with an impressive recognition
accuracy of 95.01%, DQ-CCA outperforms the traditional CCA by a significant margin of
3.01% and D-CCA by a small margin of 0.82%. The results show our proposed D-CCA
and DQ-CCA both have improved results than the traditional CCA because they are able
to significantly suppress the effect of corrupt data samples better than the traditional CCA.
Also, the recognition accuracy of DQ-PCA is 87.70% in excess of 1.93% to the traditional
PCA and 0.08% to D-PCA. Again, the proposed DQ-PCA and D-PCA show significant
improvement in face recognition as compared to the traditional PCA due to their abilities
to distinguish between authentic and corrupt data samples. DQ-PLS also performs 2.56%

Table 6 Mean Classification Accuracies ± standard deviations (%) of the various methods on the ORL, AR
and extended YaleB data sets

CA methods ORL AR Extended YaleB CMU-PIE

CCA 92.00(± 0.0030) 86.66(± 0.0050) 71.42(± 0.0056) 89.00 (± 0.0041)

D-CCA 94.19(± 0.0025) 91.80(±0.0020) 72.05(± 0.0024) 91.87 (± 0.0022)

DQ-CCA 95.01(± 0.0020) 92.50 (± 0.0012) 73.01(± 0.0010) 92.75(± 0.0017)

PCA 85.77(± 0.0040) 81.74(± 0.0044) 79.04(± 0.0050) 93.35 (± 0.0044)

D-PCA 87.62(± 0.0020) 83.19(± 0.0023) 81.02(± 0.0023) 95.08(± 0.0032)

DQ-PCA 87.70(± 0.0020) 84.00 (± 0.0005) 82.05(± 0.0010) 96.04(± 0.0020)

PLS 86.74(± 0.0036) 74.84(± 0.0050) 79.05(± 0.0040) 87.60 (± 0.0050)

D-PLS 88.33(± 0.0020) 76.32(± 0.0030) 80.19(± 0.0030) 89.03 (± 0.0037)

DQ-PLS 89.30(± 0.0020) 77.32 (± 0.0010) 81.90(± 0.0011) 90.05(± 0.0012)

MLR 85.77(± 0.0040) 76.73(± 0.0064) 85.77(± 0.0064) 84.39 (± 0.0055)

D-MLR 91.65(± 0.0017) 78.40(± 0.0020) 87.75(± 0.0033) 87.06(± 0.0033)

DQ-MLR 92.00(± 0.0017) 79.15 (± 0.0013) 88.97(± 0.0013) 87.98 (± 0.0020)

ALPCCA 86.51(± 0.0090) 83.07(± 0.0070) 79.05(± 0.0070) 69.05(± 0.0040)

SPCA 87.09(± 0.0045) 82.05(± 0.0060) 80.07(± 0.0045) 81.12(± 0.0065)
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more than the traditional PLS and 0.97% more than D-PLS. DQ-MLR also has a superior
performance of 6.23% over the traditional MLR and 0.35% over D-MLR.

Also, for the AR dataset, DQ-CCA outperforms D-CCA by 0.70% and the traditional
CCA by a significant margin of 8.54%. DQ-PLS also has a superior performance of 1.00%
over D-PLS and 2.48%more than the traditional PLS. DQ-PCA also proves to be 1.03% bet-
ter than D-PCA and 3.01% better than the traditional PCA for the Extended YaleB dataset.
Still on the Extended YaleB data set, DQ-MLR also outperforms D-MLR by 1.22% and the
traditional MLR by 3.20%. For CMU-PIE dataset, the accuracies of ALPCCA and SPCA
are not as good as all the CA algorithms proposed in this paper.

4.3.2 Handwriting recognition

To further evaluate the effectiveness of the proposed methods on handwritten digits recog-
nition, we run experiments on the USPS and MNIST datasets. The results for the various
methods for these datasets are presented in Table 7.

It is apparent from Table 7 that, the proposed methods once again demonstrate their
superiority over the traditional techniques in handwritten digit recognition. For the USPS
dataset, with a digit recognition accuracy of 72.56%, DQ-CCA outperforms D-CCA by
1.54% and the traditional CCA by 3.56%. DQ-PCA also has superior digit recognition of
1.69% over D-PCA and 3.58% over the standard PCA. DQ-PLS also outperforms D-PLS
and the traditional PLS by 0.96% and 3.00%, respectively. The proposed methods have
superior performances than the traditional methods because they are able to discover the
intrinsic data structure and also suppress the impact of corrupt data samples. On the MNIST
dataset, our method is superior to the traditional CA methods, ALPCCA and SPCA.

4.4 Experimental analysis in noisy scenarios

In this section, we add different degrees of salt and pepper noise to the ORL and USPS
datasets to verify whether the performances of the proposed algorithms are better than the
traditional CA methods in noisy scenarios so as to prove their superior noise suppression

Table 7 Mean Classification
Accuracies ± standard deviations
(%) of the various methods on
USPS and MNIST data sets

methods USPS MNIST

CCA 69.00 (± 0.0052) 81.98 (± 0.0041)

D-CCA 71.02 (± 0.0023) 84.70 (± 0.0035)

DQ-CCA 72.56(± 0.0012) 85.71 (± 0.0018)

PCA 72.15 (± 0.0034) 83.03 (± 0.0050)

D-PCA 74.04(± 0.0023) 85.98 (± 0.0041)

DQ-PCA 75.73(± 0.0015) 87.08 (± 0.0017)

PLS 67.01 (± 0.0070) 86.25 (± 0.0045)

D-PLS 69.05 (± 0.0030) 88.03 (± 0.0037)

DQ-PLS 70.01(± 0.0010) 88.97 (± 0.0011)

MLR 68.05 (± 0.0053) 85.58 (± 0.0043)

D-MLR 70.08 (± 0.0027) 87.88 (± 0.0024)

DQ-MLR 71.35(± 0.0013) 87.93 (± 0.0012)

ALPCCA 71.10(± 0.0017) 72.25(± 0.0005)

SPCA 70.55(± 0.0028) 73.01(± 0.0016)
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Table 8 Mean Classification Accuracies (%) of the various methods on noisy ORL dataset

Level PCA D-PCA DQ-PCA CCA D-CCA DQ-CCA PLS D-PLS DQ-PLS MLR D-MLR DQ-MLR

0% 91.98 94.70 95.50 93.03 95.98 96.04 87.25 88.03 88.06 85.59 87.03 88.25

5% 78.50 80.06 80.16 80.75 82.20 83.25 75.59 77.01 78.96 80.94 80.75 81.75

15% 69.50 72.75 73.50 75.67 78.75 79.75 72.00 75.40 76.00 75.20 76.12 77.03

abilities. The noise added to the experimental datasets in this section is divided into three
levels: 0%, 5%, and 15%. Best results are bolded in each case.

4.4.1 Face image denoising analysis

The average classification accuracies of the various methods on a noisy ORL dataset are
recorded in Table 8.

It can be seen from Table 8 that, the proposed correlation methods have higher classifica-
tion accuracies than the traditional methods in the absence of noise. When the noise level is
5%, the classification accuracy of DQ-PCA is 1 to 2% higher than DQ-CCA, DQ-PLS, and
DQ-MLR. With an increase in the noise level, the proposed CAF-JSFS framework shows
good robustness in classification performance. Thus, when the noise level is 15%, DQ-PCA
has the best classification accuracy among all the correlation analysis methods. In addition,

(a) CCAmodel (b) PCA model

(c) PLSmodel (d) MLR model

Fig. 2 Box diagram of four correlation analysis models in noisy ORL dataset (80% training)
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Table 9 Mean Classification Accuracies (%) of the various methods on noisy USPS dataset

Level PCA D-PCA DQ-PCA CCA D-CCA DQ-CCA PLS D-PLS DQ-PLS MLR D-MLR DQ-MLR

0% 69.00 71.02 72.56 72.15 74.04 75.73 67.01 69.05 70.01 68.05 70.08 71.35

5% 65.86 66.26 67.47 68.69 70.25 71.20 61.83 62.25 63.88 63.49 64.75 65.03

15% 60.75 61.75 62.17 60.05 61.43 62.65 57.71 57.99 59.03 60.01 60.89 61.58

it can be seen that, with increasing noise levels, CCA model has the worst performance.
Unlike the other methods, the accuracies of the proposed methods decrease at a slower rate
with increasing noise levels. Generally, the proposed methods show significant improve-
ments in face recognition as compared to the traditional techniques due to the abilities of the
proposed methods to distinguish between authentic and corrupt data samples. The proposed
methods also prove their consistency in performances due to the lower variances they obtain
in all cases as compared to the traditional techniques. Figure 2 shows the experimental box
diagrams.

(a) CCA model (b) PCA model

(c)PLS model (d) MLR model

Fig. 3 Box diagram of four correlation analysis models in noisy USPS dataset (80% training)
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(a) CCA model (b) PCA model

(c) PLS model (d) MLR model

Fig. 4 Classification results of the four CA models under the COIL20 dataset (70% training)

4.4.2 Experiments on noisy USPS dataset

Table 9 shows the classification results on a noisy USPS dataset. Similar to the results in
Table 8, the proposed CAF-JSFS framework has the best facial recognition accuracy among
all methods.

Also, from Fig. 3, it is evident that, the proposed methods have been stable in
performance since they obtain lower variances in digit recognition.

4.5 Dimensionality analysis

In this subsection, we test our proposed method on object recognition using Columbia
Object Image (COIL-20) dataset. We use 70% training and 30% testing samples in this
section. To intuitively see whether the proposed method is effective in expressing data
features in low dimensional spaces, we draw graphs showing classification accuracies in
varying dimensions in Fig. 4. It can be seen that, the proposed CAF-JSFS framework has
better classification accuracy and stability of low dimensional subspace representation data
characteristics. From Fig. 4, it can also be observed that, the DQ-CA models have leading
performances and their classification performances seem to stabilize in lower-dimension.
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5 Conclusion

In this paper, a correlation analysis framework via joint sample and feature selection (CAF-
JSFS) is proposed. Different from other variants of correlation analysis, sample factors that
impose penalties on the sample spaces are introduced to suppress the impact of noise in
pursuing projections. Two strategies, cosine similarity and total distance metrics are used
geometrically to iteratively learn the relationships between each sample and the principal
projections. This enables our framework to discriminate between authentic and corrupt data
samples in order to suppress the impact of the latter. We further combined our sample selec-
tion idea with feature selection to obtain a joint sample and feature selection methods. With
these ideas combined in our models, better correlation projections are achievable by sam-
ple and feature selection jointly. Our CAF-JSFS can learn better correlation projections in
a noisy scenario, with the effect of noisy data points being suppressed. Extensive experi-
ments on ORL, AR, extended YaleB and USPS datasets demonstrate CAF-JSFS achieves
superior classification performance over state-of-the-art correlation analysis methods. This
is because the proposed methods are able to effectively distinguish between authentic and
corrupt data samples, thereby minimizing the impact of the latter. In the future, we will
extend our proposed framework to low-rank representation and graph embedding.
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