
https://doi.org/10.1007/s11042-022-14231-x

Proximal policy optimization based hybrid
recommender systems for large scale
recommendations

Vaibhav Padhye1 ·Kailasam Lakshmanan1 ·Amrita Chaturvedi1

Received: 19 March 2022 / Revised: 20 June 2022 / Accepted: 4 November 2022 /

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Recommender systems have become increasingly popular due to the significant rise in
digital information over the internet in recent users. They help provide personalized recom-
mendations to the user by selecting a few items out of a large set of items. However, with the
growing size of item space and users, scalability remains a key issue for recommender sys-
tems. However, most existing policy gradient approaches in recommendations suffer from
high variance leading to an increase in instability during the learning process. Policy Gradi-
ent Algorithms such as PPO are proven to be effective in large action spaces (a large number
of items) as they learn the optimal policy directly from the samples. We use the PPO algo-
rithm to train our Reinforcement Learning agent modeling the collaborative filtering process
as a Markov Decision Process. PPO utilizes the actor-critic framework and thus mitigates
the high variance in Policy Gradient Algorithms. Further, we address the cold start issue in
Collaborative filtering with autoencoder-based content filtering. Proximal Policy Optimiza-
tion (PPO) methods are today considered among the most effective reinforcement learning
methods, achieving state-of-the-art performance and even outperforming Deep Q learning
methods. In this paper, we propose a switching hybrid recommender system using the two
different recommender system techniques. A switching hybrid system can switch between
recommendation techniques depending on some criterion and can tackle its constituent rec-
ommender system’s shortfall using the other counterpart in a particular situation. We show
that our method outperforms various baseline methods on the popular Movielens datasets
for different evaluation metrics. On Movielens 1m, our method outperforms the baseline by
9.19% in terms of R@10 and 3.86% and 6.58% in terms of P@10 and P@20, respectively.
For the Movielens 100k dataset, our method improves on the baseline methods by 4.10% in
terms of P@10 and 3.90% and 2.40% in terms of R@10 and R@20.
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1 Introduction

Recommender systems suggest items to users based on available information such as
previous usage patterns, user usage patterns, and features of the things themselves. Rec-
ommendation systems make it easier for the user to access the product according to his
preference. People look to find their most preferred options from an extensive collec-
tion of items in the internet age. Generally, recommender systems provide the results in a
specific domain: movies, books, e-commerce items, etc., to a user from a large database
corpus. We classify Recommender systems into collaborative filtering and content-based
systems. Hybrid systems are another type that combines the properties of two or more rec-
ommender systems in one. For example, it could be a combination of collaborative filtering
and content-based, knowledge-based and collaborative filtering or two types of collabora-
tive filtering systems to improve recommendation performance by usually dealing with the
cold-start problem. Further, Collaborative filtering techniques are generally Memory-based
or Model-based. Memory-based approaches typically include neighborhood-based methods
and use rating data to find the similarity between the users or items [6, 28]. Model-based
approaches learn a model from a collection of ratings and use it to make a prediction; exam-
ples include Singular Value Decomposition (SVD) based models [25]. However, with the
growing size of items and users, recommender systems also face the issue of scalability
[32]. With the ever-increasing space of users and items, finding a personalized search for the
users is an important characteristic of recommender systems. Other than that, collaborative
filtering systems also face the Cold Start issue. It is mainly due to insufficient ratings associ-
ated with items or users to make optimal recommendations. The cold start problem is further
divided into complete cold start, i.e., when there are no ratings associated with the item or
users, and incomplete cold start, when very few interaction data is available for the item
or user. Collabarative filtering techniques have been extensively applied in recommender
system, however they face challenges such as sparsity of interactive rating matrix, inte-
geral nature of data, scalability, etc. [2]. Content based filtering on the other hand requires
domain knowledge and need existing user interests profile to make recommendations and
thus suffer with diversity in recommendations [32, 49]. Deep Learning based approaches
have been used efficiently in recommender system [20, 39, 43, 48], but face challenges such
as scalability and cold start [49].

Recently, Reinforcement Learning based recommender systems have been proposed and
proven to be effective in modeling the recommendation process [14, 19, 31, 50, 51, 55].
Multi-Armed Bandits based approaches have been applied to recommender systems [16]
which learns the user’s preferences are learned with continuous interaction. However, MAB
approaches assume user preferences remain static and do not change over a period of
time during the recommendation process and thus fail to model the dynamic user prefer-
ences [55]. In [31], the authors proposed an MDP-based recommender system and used
Q-learning for the learning process. However, with a very large number of items Q-learning
becomes intractable as it limits its efficiency when action space becomes very large. RL
based approach are generally classified as :Model-based and Model-free. Later, model-free
approaches were applied to recommender systems and are classified as-value based [9, 51,
52, 55] and policy-based approaches [12, 19]. Value based approaches involves compu-
tation of Q values of all the actions for a state and then choose the maximum of all the
Q-values as the best action for that state. Thus, evaluating Q-values for all the actions for
each state, this approach can be inefficient if action space is very large, i.e millions of
items as in recommender systems [11]. Thus, policy based approaches are preferred the
most if the action space is large. Model-free approaches use either Monte Carlo or TD
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Learning approach for calculating estimates. Monte-carlo methods suffer from high vari-
ance in large scale tasks whereas TD methods provide better efficiency through bootstrap-
ping techniques but they do suffer from from a problem known as Deadly triad [38], that
arises due to combination of function approximation, bootstrapping and offline training and
leads to instability and inefficiency. Monte-Carlo based methods can lead to an very large
action space and an unbounded importance weight of training samples leading to instability
and convergence [54]. A Reinforcement Learning based recommender system has also been
applied to address the cold-start issue in recommender system [55], where the authors used
Q-leaning based approach for training the agent. However Q-learning suffers with curse of
dimensionality as computing an value function for each action in a state becomes intractable
as the state-action space becomes large, i.e., with very large number of items as in rec-
ommender systems. Deep Q Network(DQN) makes it possible to learn a high-dimensional
state space by using a neural network for functional approximation and to stabilize learning.
DQN based methods were proposed which combine the powerful approximation capabili-
ties of neural network with Reinforcement learning. Deep Q Network based recommender
system was proposed in [9, 50, 52]. However, DQN cannot be used when the action space is
continuous because it is necessary to obtain actions that maximize the current action value
in each state. Thus, DQN based methods are more suitable to small discrete action spaces
whereas recommender systems generally comprise of normally contains large and high-
dimensional action spaces [11]. Methods such as DQN, DDPG use maximization over the
set of all actions at each step for the selection of action also becomes intractable with large
action space size [3].

In [24], authors proposed Policy Gradient for Contextual Recommendation (PGCR),
utilising the contextual information and used REINFORCE algorithm to train the agent.
A policy gradient method based on REINFORCE was proposed in [10] for explainaible
recommmendation. Another natural policy gradient based recommender system was pro-
posed in [10] for top k recommender problem applying off policy learning, and performed
experiments over youtube datasets.

Policy gradient algorithms learn the optimal policy directly by learning the policy param-
eters instead through neural networks. Policy-based approaches are useful for dealing with
large action spaces, including continuous spaces with an infinite number of actions [11]. The
agent learns the policy directly and chooses an action from a probability distribution of the
action space in policy-based techniques. Further, policy-based methods can learn stochas-
tic policy, unlike value-based methods, and thus handle the explore/exploitation conflict
automatically. However, the traditional Policy Gradient approach have high variance due to
gradient estimation and a large state space and action space will cause sample inefficiency
issue [35, 47]. Proximal Policy Optimization, is an Actor-Critic method that combines the
advantages of both DQN and Policy Gradient based approach and has achieved state-of-the-
art performance in Reinforcement Learning, outperforming even Deep Q learning methods.
PPO ensures low variance during learning by making sure updated policy isn’t too much
different from the old policy with a clipped objective surrogate function. The reduction of
variance helps to increase the stability of the learning process. Further, the PPO agent limits
policy gradient step and reduces the variance of the estimation using an advantage function
so it does not move too much away from the original policy, causing overly large updates
that often makes the policy unstable. We address the issues above using the state-of-the-art
Proximal Policy Optimization, which uses on poilcy learning and thus avoid deadly triad.
We also use Probabilistic Matrix factorization approach to obtain our state from the user
and item matrix. This approach further helps with the sparsity issue as PMF approach per-
forms very well on large, sparse and imbalanced matrices [22]. In this paper, we propose a

20081Multimedia Tools and Applications (2023) 82:20079–20100



Reinforcement learning-based based approach to address these issues modeling the recom-
mendation process as a Markov Decision Process. We utilise the policy gradient approach
for recommendation in large action space. Further, we combine theMDP based collabarative
filtering with autoencoder-based content filtering to address the cold start problem.

We summarize our contributions as follows:

1. We propose a Reinforcement learning-based hybrid recommender system for large
action space, i.e., for a large set of items, utilizing the state-of-the-art PPO algorithm to
train our agent.

2. We use the Proximal Policy Optimization approach to train our agent and modeled rec-
ommender system as a Markov Decision Process. The PPO based algorithm mitigates
the high variance and leads to increase in stability as described above and further in
detail in Section 2.4.

3. In our approach, we addressed the cold start issue using a switching Hybrid recom-
mender setting. We divided users into cold users and hot users depending on the number
of ratings provided by them.

4. We demonstrate the effectiveness of the proposed framework on the two popular
datasets : Movielens 1m and Movielens-100k, for different evaluation metrics.

The rest of this paper is organized as follows. In Section 2, we describe the prelim-
inaries of the Hybrid Recommender system and Reinforcement Learning. We formally
describe the Markov Decision Process and the Policy Gradient algorithm. In the next
section, Section 3, we provide the literature survey and the related work. In Section 4, we
formally define our problem and provide the approach of our solution. We describe the
MDP Based Collaborative filtering in detail, outlining the MDP model with reward struc-
ture. Further, we also describe Autoencoder-based content filtering to address the cold start
issue. Section 5 carries out the experiments on the popular Movielens datasets. In Section 5,
we describe our algorithms in detail. Section 6 describes the experimental settings and eval-
uation metrics to carry out the experiments on the two datasets. In Section 7, we present the
results. Finally, Section 8, concludes this paper and provides future research scope for this
work.

2 Background

2.1 Hybrid recommender systems

Hybrid recommender systems [8] are generally composed of two or more recommender
systems. It can address issues in recommender systems such as data sparsity, cold start,
scalability, etc. Collaborative filtering is quite effective in dealing with personalized recom-
mendations, but they struggle with the cold start issue. Hybrid recommender systems try to
address the cold start issue by combining multiple recommender systems, generally collab-
orative filtering, along with some other types such as content-based, demographic-based,
knowledge-based, etc. There are different types of hybridization techniques such as switch-
ing, weighted, cascaded, mixed, etc. Switching hybrid systems use specific recommender
systems depending on some criteria and can switch to another type accordingly. Weighted
systems combine the scores of various types of recommenders involved. Cascade recom-
mender type performs staged recommendation where one recommender system generates a
candidate list of items that are further refined by the subsequent recommender.
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2.2 Reinforcement learning

In reinforcement learning, the agent learns the policy that can maximize long-term cumu-
lative reward through interacting with the environment [34]. MDP consists of a tuple
of five elements (S,A,P,R, γ ) , where S is the set of states, A is the set of action,
T (st+1|st , a) : S × A × S → R is the transition probability of reaching state st+1 after exe-
cuting action a on state st . , R(s, a) : S × A → R is the immediate reward after executing
action a from state st+1 , and γ is the discount factor.

Solving an MDP typically refers to finding a policy π : S → A such that from any given
state s, executing action π(s) and then acting optimally (following the optimal policy π∗ ).
The Reinforcement learning framework is shown in Fig. 1, depicting an RL agent receiving
the state from the environment and generates an action. The environment further provides
feedback on the action taken by the agent.

In Reinforcement Learning, the agent’s goal is to maximize the expected cumulative
reward. So, the agent needs to find an optimal policy that resembles the optimal strategy
for the agent to act in an environment. A policy is generally a function that outputs an
action to take, given the current state of the environment outputs an action .and can either
be stochastic or deterministic.

For example, consider the Cartpole game in which a pole is attached by a joint to a cart,
which moves along a frictionless track. The state consists of cart position, cart velocity, pole
angle, and pole velocity at the tip. The system is controlled by applying a force of +1 or
-1 to the cart (moving left or right). The pendulum starts upright, and the goal is to prevent
it from falling over. A reward of +1 is provided for every timestep that the pole remains
upright. The game is divided into terms of episodes, each containing a specific number of
steps. The episode ends when the pole is more than 15 degrees from vertical or the cart
moves more than 2.4 units from the center. The goal of the game is to have the cumulative
reward as high as possible.

Fig. 1 Reinforcement learning framework
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2.3 Policy gradient algorithms

Policy gradient methods [34] is a type of reinforcement learning technique that directly
optimize policy with respect to the expected return instead of evaluating optimal value func-
tions associated with the value-based methods. Let πθ denote a policy with parameters θ ,
and J (πθ ) denote the expected finite-horizon undiscounted return of the policy. The goal
in the Policy Gradient method is to find the optimal choice of θ that maximizes the objec-
tive J (πθ ). We have J (πθ ) = Eτ∼πθ [R(τ)] , where τ is a trajectory and R(τ) denotes the
reward over the trajectory.

The gradient of J (πθ ) is

∇θ J (πθ ) = Eπ

[
T∑

t=0

∇θ logπθ (at |st )Aπθ

]
, (1)

where Aπθ is the advantage function for the current policy, At = Q(st , at ) − V (st ). The
gradient of policy performance, ∇θ J (πθ ), is called the policy gradient, and algorithms that
optimize the policy this way are called policy gradient algorithms. Policy gradient imple-
mentations typically compute advantage function estimates based on the infinite-horizon
discounted return, denoting how much better or worse taking action a in the state is com-
pared to acting according to the policy. The policy gradient algorithm works by updating
policy parameters via stochastic gradient ascent on policy performance,

θk+1 = θk + α∇θ J (πθk
).

2.4 Proximal Policy Optimization

Proximal Policy Optimization (PPO) [29], is a recently proposed and effective policy gradi-
ent algorithm. TRPO uses a second-order derivative matrix which increases the complexity
for large-scale problems. Mostly policy gradient involves a second-order derivative which
makes it inefficient for large-scale problems as the computational complexity is too high for
real tasks.PPO instead uses a first-order optimizer like the Gradient Descent method, which
makes it more applicable for large-scale tasks and considerably efficient for computation
and can be used in both discrete and continuous environments.PPO tries to limit the differ-
ence from one policy to the next so as to regulate new policy not to be too different from the
current one. PPO uses the Minorize-Maximization MM algorithm by iteratively maximiz-
ing a lower bound function M approximating the expected reward η locally (See (2)). PPO
starts with an initial policy guess and finds a lower bound M for η at this policy. It optimizes
M and uses the optimal policy for M as the next guess. It approximates a new lower bound
again and repeats the iterations until the policy converges. There are two primary variants of
PPO: PPO-Penalty and PPO-Clip. PPO-Penalty uses KL-divergence to measure how much
policy changes in each iteration. KL-divergence measures the difference between two data
distributions, p, and q.

DKL(P || Q) = Ex log
P(x)

Q(x)
,M = L(θ) − C.KL (2)

Here M is a lower bound funcion as described above, approximating expected reward. L(θ)

equals Et [ πθ (at |st )
πθold

(at |st ) Ât , denoting the expected advantage function for the current policy

which is estimated by the new policy and then reordered using the probability ratio between
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the current and the old policy. The second term denotes the KL Divergence, which mea-
sures the difference between the two policies. The main objective in PPO-Penalty can be
summarized as :

max
θ

s.t. Et

[
πθ (at |st )

πθold
(at |st ) Ât

]
= Et [ rt (θ)Ât ] − βEt [KL[πθold

(.|st ), πθ (.|st )]] (3)

, here β controls the weight of the penalty. It penalizes the objective if the new policy is
different from the old policy and thus changes between iterations to ensure the KL Diver-
gence constraint is satisfied. Et [KL[πθold

(.|st ), πθ (.|st )]] is the KL-divergence between the
old and the new policy. If it is higher than a target value, we reduce β and vice versa. PPO-
Clip doesn’t have a KL-divergence term in the objective and doesn’t have a constraint at all.
Instead relies on specialized clipping in the objective function to remove incentives for the
new policy to get far from the old policy. It uses a clipping function to make sure the new
policy does not deviate much from the older policy. With clipped objective, we compute a
ratio between the new policy and the old policy, rt (θ) = πθ (at |st )

πθold
(at |st ) . This ratio measures

how difference between two policies. If the new policy is far away from the old policy ,
then we clip the estimated advantage function. The objective function in PPO Clip can be
summarized as:

LCLIP
θ = E[min(rt (θ)Ât , clip(rt (θ), 1 − ε, 1 + ε)Ât ] (4)

Thus, PPO maintains the low variance as the new policy obtained from the old policy does
not differ much, which is ensured through the clipped objective surrogate function. The
advantage function above reduces the variance of the estimation, so it does not move too
much away from the original policy, avoiding large up- dates which can lead to unstable
policy. Therefore, if the probability ratio between the new policy and the old policy falls
outside the range (1 − ε) and (1 + ε), the advantage function will be clipped. For eg, if ε

is .25, then the rt (θ) could vary between .75 to 1.25. And finally, it takes the minimum of
the two, i.e., clipped and unclipped objective, and so thus, the algorithm doesn’t become too
greedy and prohibits making too many updates at once.

3 Related work

Recommender systems today have been extensively applied in diverse fields such as e-
commerce items [17, 20, 37, 39, 44], healthcare [4, 5], news [16, 53], travel [33], Internet
of Things (IoT) [18], etc. Collaborative filtering systems [28] are the most popular recom-
mender system technique. In the CF algorithm, the core idea is that the past preference
behaviors of users have a significant influence on their future behaviors, and their previous
behaviors are consistent with future behaviors. Generally speaking, we estimate the simi-
larity between users according to the user’s historical behavior. And then, according to the
evaluation of high similarity neighbors to the target users, the target users are predicted
to be interested in the item. CF techniques are generally memory-based or model-based.
Memory-based CF the recommendation uses the user’s historical rating data to find the
similarity between the items or users, i.e., item-based or user-based types. They gener-
ally use neighborhood-based methods [28] to calculate the similarity between two users
or items. Model-based techniques [21] use machine learning techniques such as clustering
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methods, SVD, PCA, Bayesian models, Matrix factorization, etc., to calculate the user’s rat-
ing on required items. These methods generally assume that latent vectors determine user
preferences in a low dimensional space that reflects users’ interests. Probabilistic matrix fac-
torization [22] model scales linearly and perform well on large and sparse data sets, while
[23] presented Bayesian probabilistic matrix factorization (BPMF) model, extending PMF
to the Bayesian model, which increased the accuracy.

Knowledge-based systems [1] recommend items based on specific domain knowledge
about how certain item features meet the user’s needs and preferences and how the item
is useful for the user. Demographic recommender systems [41] categorize users or items
based on their personal attributes and make a recommendation based on demographic cat-
egorizations. Hybrid systems [8] typically combine two or more approaches to provide
better recommendations; usually, content-based and collaborative filtering approaches or
variations of collaborative filtering approaches [15]. The works [41, 42] employ a hybrid
recommender system utilizing demographic and feature information of users and items.
In [41], the authors used demographic information about users and items to provide more
accurate predictions for user-based and item-based CF. Deep learning-based recommender
systems have also been applied recently and use different neural network techniques such
as Autoencoder, RBM, CNNRNN deep belief networks, etc., to perform recommendations.
Autoencoders have been used for CF problems [30]. Zheng et al. [46] proposed the Col-
laborative De-noising AutoEncoder (CDAE), which utilizes a Denoising AutoEncoder [40]
to perform collaborative filtering. They learn hidden structures that can reconstruct a user’s
ratings given previous ratings as inputs. A deep hybrid recommender system was pro-
posed in [20] using neural networks to obtain user and item features from side information
to perform collaborative filtering. In [39], deep belief networks are used in music rec-
ommendations while [27] proposed a restricted Boltzmann machine-based recommender.
Collaborative Deep Learning (CDL) [43] is a hierarchical Bayesian model which integrates
stacked denoising autoencoder (SDAE) into probabilistic matrix factorization.

Reinforcement learning has been used to recommend web pages, travel information,
books, news, etc. Policy-based approaches [12, 14, 50] are preferred over value-based
approaches in large state-action space as they directly evaluate the policy instead of calcu-
lating the value over all the actions. Deep RL-based algorithms [50, 53] are also applied
recently in Recommender Systems, which combine deep learning techniques with rein-
forcement learning. A Deep Deterministic Policy Gradient (DDPG) based algorithm was
proposed in [19] to tackle the large action space issue prevalent in RL-based recommender
systems.

WebWatcher [36], exploits Q-Learning to assist users to their desired pages in World
WideWeb. It represented pages as states, hyperlinks as actions, and computed rewards based
on the similarity of the pages and user profiles. A travel recommender system based on the
Q learning approach was proposed in [33] which used a linear function to rank the differ-
ent trips based on various attributes like trip price, location duration, etc. An MDP-based
recommender system [31] was proposed, which made the recommendation as a sequential
optimization problem.

An interactive recommender system was proposed in [50], and a similar page-wise rec-
ommender using deep reinforcement learning utilizing real-time feedback from the users to
display the set of recommended items on a page with a proper display. Zhang et al. [51]
proposed another deep reinforcement learning based recommender system by capturing
both positive and negative feedback. Multi-armed bandits based solutions have also been
applied to recommender systems. LinUCB [16] modeled news article recommendations as
a contextual bandit problem where the algorithm recommends articles to users based on the
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contextual information related to the users and articles. It represented news feature vectors,
and the click-through rates of news were taken as the payoffs.

4 A reinforcement learning based hybrid recommender system

In RL, an agent should decide the best action to select based on his current state. When this
step is repeated, the problem is known as a Markov Decision Process. The recommender
system can be modeled as an MDP. An agent interacts with the environment and, in return,
receives feedback. As a result, the agent moves to the next state. We used probabilistic
matrix factorization to obtain the latent vector representing the state.

The recommender provides an item to the user, then receives a rating on the item given
by him/her. After considering the observed rating, the recommender updates its knowledge
about the user and provides a new item at the next time step. Suppose such a recommender–
user interactive process will last for T time steps. The goal of the recommender is to provide
user u with the most interesting items that maximize the reward received over T steps. In
our approach, we addressed the cold start issue using a switching Hybrid recommender set-
ting. We divided users into cold users and hot users depending on the number of ratings
provided by them. Further, for users who have given very few ratings, i.e., cold set users,
we applied autoencoder-based content filtering, whereas, for the other set of hot users, we
applied MDP-based collaborative filtering. For users with no ratings at all, we used demo-
graphic information to recommend items to the user(Section 4.2). Below we describe the
two techniques.

4.1 MDP based collaborative filtering

Here we modeled the collaborative filtering system as a Markov Decision Process.

• State Space S: a state s1t , ....sn
t ∈ S is represented as a latent feature vector of the item

with meta information. The state is obtained from the Matrix factorization method.
Matrix factorization is a collaborative filtering technique used in recommender systems
that work by decomposing the user-item interaction matrix into the product of two
lower dimensionality rectangular matrices. We used Probabilistic Matrix factorization
as described below to obtain our MDP states.

4.1.1 Probabilistic matrix factorization

Probabilistic matrix factorization proposed in [22] follows probabilistic approximation on
the Matrix factorization and factors the base interaction matrix into two lower rank matrices.
PMF performs effectively on sparse datasets as, generally, the real-world datasets scale well
with the input. In our problem, PMF factorizes the rating feedback interaction matrix into
user and movie matrices. Let the feedback rating matrix be X. In MF, X is factorized into
the product of two low-rank matrices U , V . Both U , V are d–dimensional matrix where d

corresponding to feature dimension with vectors ui and vj describing the behavior of the
i-th user and j -th item respectively.

The aim of the PMF is to obtain the matrix U and V , which are the parameters of the
model. PMF uses Bayesian learning to estimate parameters to find the posterior distribution
of the model parameters by applying the Bayes rule. The main idea in the Bayesian learning
process is to iteratively use the knowledge about the data distribution to adjust the model
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parameters fitting to the data. The posterior distribution parameters are plugged into the
prior distribution in the next iteration of the learning process, and the process is continued
till the posterior attains the convergence.

The PMF algorithm uses interaction matrix X as the dataset with U and V as its parame-
ters. Using the Bayes inference, PMF obtains the posterior distribution of model parameters
as,

p(U, V |X, σ 2) = p(X|U,V, σ 2)p(U, V |σ 2
U , σ 2

V ) (5)

We obtain the user and item latent factors from the rows and columns associated in matrix
U and V, respectively. The prior for feature vectors is determined by the user’s ratings in
PMF, with assumption that users who provide similar ratings to the items have identical
prior distributions over the feature vectors.

Xij = UT
i Vj =

∑
k

UT
ikVjk

In PMF, the ratings X are modeled as draws from a Gaussian distribution.

X ∼ N (μ, σ 2),

with μ = UT
i Vj and σ denoting variance .

• Let Ui and Vj denote the user and movie feature vectors, the probability distribution of
the corresponding rating can be obtained as:

p(Xij |Ui, Vj , σ
2) = N (Xij |UT

i , Vj , σ
2)Ii,j ,

where Iij is an indicator function having value 1 if rating at row i, column j is present,
and zero otherwise.

PMF places zero-mean Gaussian priors on the user and movie feature vectors and
obtains the prior distributions for U and V as,

p(U |σ 2
U) =

b∏
i=a

N (Ui |0, σ 2
UI), p(V |σ 2

V ) =
b∏

i=a

N (Vi |0, σ 2
V I) (6)

It can be observed that maximizing the posterior above is same as maximizing log
posterior and can be obtained as minimising the sum of squared errors over features
with regularisation.

1

2

∞∑
j=1

∞∑
k=1

Iij (Xij − Ui, Vj )
2 + λU

2
‖Ui‖2Fro + λV

2
‖Vj‖2Fro (7)

where , λU = σ 2

σ 2
U

, λV = σ 2

σ 2
V

, and ‖.‖ represents Frobenius norm .

By minimising the preceding equation and performing gradient descent until
convergence, we obtain the revised update equations for Ui and Vj .

U∗
i ← Ui − λU

∂L(U, V )

∂Ui

, V ∗
j ← Vj − λV

∂L(U, V )

∂Vj

(8)

with , λU
∂L(U,V )

∂Ui
= − ∑

j Iij (Xij −Ui, Vj )Vj + σ
σu

Ui , λV
∂L(U,V )

∂Ui
= − ∑

i Iij (Xij −
Ui, Vj )Ui + σ

σu
Vj .

• Action space A: An action a1t , ....a
n
t ∈ A, is to recommend items to a user at time t

based on the current state st . We recommend a single item at a time. The selection of
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the particular action depends on the current policy Action determines the next item to
recommend. We use an actor policy network that predicts the rating.
A policy π : S → A, is a function that indicates for each state s ∈ S, the action
a taken by the Agent in that state. In a standard actor–critic approach, the policy is
explicitly defined by a parameterized actor function π(θ) : S → A. We implement
our policy using the actor–critic approach. We use the actor policy network to generate
actions and utilize the critic to refine the actor’s choices. We use a policy network
to predict the ratings of a particular item, and if the predicted rating is 3 or above,
then we recommend the item most similar to the item corresponding to the current
state. We used the nearest neighbor technique employing cosine similarity for finding
similar items. Otherwise, we recommend a random item, thus increasing exploration.
As a result, the Agent moves to the next state (item). Both actor and critic methods are
implemented with multi-layer perceptron networks. We used the PPO algorithm here
to train our policy.

• Transition between the states is deterministic as our agent moves to a specific state. The
selection of the particular action depends on the Agent’s current policy and determined
through the actor-critic framework.

• Reward R: After the recommender agent takes action at at the state st , i.e., recommend-
ing an item to a user, the user provides his feedback. Our reward r(st , at ), is in the
range [-1 , 0 ,+1] , depending on the user feedback. We provide a -1 reward in the case
user has given a rating below or equal to 2. We provide reward 0 in case the user has
not rated the particular item or rated 3. Similarly, reward +1 is given in the case user
has given a rating of 4 or 5.

• Discount factor γ : γ ∈ [0, 1] defines the discount factor when we measure the present
value of the future reward. In particular, when γ = 0, RA only considers the immediate
reward. In other words, when γ = 1, all future rewards can be counted fully into that of
the current action.

4.2 Autoencoder based content recommender system

Autoencoders are neural networks used in unsupervised learning methods, including gen-
erative modeling, dimensionality reduction, etc. They encode the data into a reduced
lower-dimensional form and reconstruct the data back from the reduced representation.

Content-based filtering use product features to generate recommendations such as tags,
text description, reviews, and other meta information. Content-based recommender systems
are more robust against the cold start problem than collaborative systems as they can utilize
product information.

Embeddings in natural language processing are a kind of word representation that allows
words with similar meanings to have a similar representation by mapping them to a latent
vector space and are often obtained via neural networks. Word embeddings are better than
one hot encoding because they can retain the similarity information between different
words, which is lost due to the orthogonal nature of the one-hot encodings.

We use neural network-based embeddings for the cold users, which are learned from
textual information describing the items and demographic data associated with users. We
utilized cosine similarity to find the similarity between the movies. It ranges between -1 to
1 and is determined by the dot product between two vectors divided by their magnitudes.
Embedding vectors receive a high cosine similarity score if they point in the same direction
and vice versa. Item embeddings thus can be obtained from the content-related information
associated with the data.
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Movielens dataset contains movie tag information generated by the users. The tags are
generally a single word or a phrase. The corpus of documents is created composed of movies
and the tags related to them. Each document, in particular, is the movie, along with all the
tags for the particular movie. We created the Term Frequency-Inverse Document Frequency
(TF-IDF) representation from the tag documents in the corpus.

TF-IDF is a technique that measures how relevant a word is to a document in a corpus
of documents. It is obtained by the product of two metrics: how many times a word appears
in a document (TF) and the inverse document frequency of the word across a set of doc-
uments(IDF). The higher the TF*IDF score, the rarer the term and thus more relevant and
vice versa. However, TF-IDF representations can be high dimensional, so to compress the
data high-dimension TF-IDF vector into low-dimension embeddings, we use autoencoders
to learn the representation of higher dimensional data into a corresponding lower form by
reducing the noise. We further reduced the dimensions to 50 and 100 in the ML 100K and
Movielens 1m dataset, respectively. We find the similar TF-IDF vectors, i.e., movies, corre-
sponding to the movies rated highest by the current user using the cosine similarity metric
to calculate the similarity between the movies. It calculates the cosine angle between the
two vectors in a high dimensional space and varies between -1 to 1.

sim(A, B) = cos(θ) = A.B

||A||||B||

5 MDP based PPO Algorithm

Collaborative filtering systems generally do not perform well with cold users due to less
user interaction history associated with the items. We, therefore, perform hybrid recommen-
dation by using the autoencoder-based content recommender systems for the set of cold set
users and Reinforcement learning-based collaborative filtering for the other user set. In our
solution, we divide the user sets into two. We employed content-based filtering for the users
in cold set and employ an MDP-based recommender for the rest of the users. The flowchart
for the complete process is depicted in Fig. 2. If the user is classified as a hot user based
on his rating profile in the interaction matrix, we perform MDP-based collaborative filter-
ing, as depicted in the Figure. First, it obtains the state from PMF using the user and item
matrix. The state is then fed to the RL policy, i.e., the PPO agent, which outputs an action.
The action corresponds to recommending an item. After, the agent receives a reward from
the environment and proceeds to the next state. If a user has not provided any rating, i.e.,
complete cold start, we used user embedding to find similar users and recommend the items
corresponding to them. We used the demographic information included in the dataset to
obtain user embeddings. The demographic data consists of user gender, age, occupation, zip
code, etc. If the user has provided few ratings, i.e., incomplete cold start problem, we use
the technique mentioned above using autoencoders to give recommendations to the user.
The two algorithms for the MDP-based collaborative filtering are depicted in Algorithms 1
and 2. Algorithm 1 shows the process of generating MDP transitions. First, it uses PMF to
obtain the state and then select the action according to the policy. Then it obtains the rating
from the policy network and recommends the item. Finally, it receives the reward and pro-
ceeds to the next state. Algorithm 2 shows training the PPO agent. First, we obtain the set
of partial trajectories from Algorithm 1. We then utilize the advantage function to obtain the
advantage estimate. Further, we update the policy by maximizing the PPO clip objective(see
equation 4) and then compute the policy objective using gradient descent.
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Algorithm 1 Generating Transitions.

Algorithm 2 MDP Based PPO Algorithm.

6 Experiments

6.1 Experimental settings

We used the Movielens datasets ML 1m and ML 100k datasets for our experiments. ML 1m
contains contains 1,000,209 anonymous ratings of 3,952 movies made by 6,040 MovieLens
users, in which ratings are on the scale 1-5, while ML 100k contains 100000 ratings of 943
users and 1682 movies on the same rating scale.

We used time 80% of the dataset for training purposes, whereas the remaining 20% is
used for testing the recommendations. We used grid search for tuning the hyperparameters.
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Fig. 2 Flowchart depicting the modeling of recommendation process

We used batch size of 128, and the learning rate for actor-critic networks as 0.001. We ran
the PPO based agent for over 1000 episodes. We varied the percent of the cold user, i.e.,
the least n percentage of users who have given a minimum number of ratings to the movies.
The different values for clipping ratio, cold user threshold, and discount factor for the hyper-
parameters are also shown in Table 1. We also used different embedding sizes obtained
from the PMF for finding the optimal ones on the two datasets. We used the Open AI Gym
Environment to create a Markov Decision Process agent [7]. Further, we used the PPO
stable-baselines framework for training the agent [26]. We ran the tests 5 times for the agent
and reported the average results in the tables and figures below.

Table 1 Hyperparameters
Cold user percent 3% 5% 7% 10%

Discount Rate 0.85 0.90 0.95 0.99

Clipping Ratio 0.05 0.10 0.15 0.20
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6.2 Evaluation baselines and criterion

We included the following popular metrics for evaluating the recommender system.

Precision: For a recommender system, it measures the fraction of recommended items
that are relevant to the user.

Precision@k = (# of recommended items @k that are relevant) / (# of recommended
items @k)

Recall : recall represents the fraction of relevant documents that have been selected.
Recall@k = (# of recommended items @k that are relevant) / (total # of relevant items).
F1 score combines precision and recall and is obtained by computing the harmonic mean

of the precision and recall.

We used the following baselines for comaprisons:

Random: A method that randomly recommends the items to a user.
PopRank: A popularity based methood which recommends the most popular items.
Content Based Filtering : A content-based method that recommends items that are

similar to those that the individual user has liked in the past.
LinUCB: It’s multi armed bandit approach which recommends items to the user based on

the contextual information about the user and items [16].
SVD: It is a popular algorithm utilizing Singular Value Decomposition for the process of

recommendation [25].
Deep-MF: A state-of-the-art neural network architecture based Matrix Factorization

Method for recommendation [48].
Neural-MF: A state-of-the-art method using deep neural network structure for Collabo-

rative Filtering [13].

For SVD, we used a learning rate of 10−4, regularization rate of 0.02 and a factor-size of
50 for ML-100K and 100 for ML-1M, same as that of our algorithm. In LinUCB, the only
hyperparameter is α, which determines the trade-off between exploration and exploitation.
We varied α for different values [0.1, 0.5, 1, 2] for selecting the optimum value. For con-
tent based filtering, we use tf-idf and cosine similarity for finding K Most similar movies
from the dataset. For K , we varied 20, 50 and 100. For Neural-MF(NMF), we randomly
initialized model parameters with a Gaussian distribution, with mean = 0 and standard devi-
ation = 0.01, and optimizing the model with mini batch Adam. We used a batch size of 512
and varied the learning rate as [0.0001, 0.0005, 0.001, 0.005] for testing. Further, for neural
network, we employed 3 hidden layers for MLP. For Deep CF, we set the depth of hidden
layers to 3, the batch size to 256 and the varied the learning rate as for NMF. We conducted
the experiments on Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz processor with 264 GB
RAM. The machine has x86 64 architecture with 40 CPUs and multiple level cache. We ran
the experiment on Python 3.6 framework on Ubuntu 16.04 LTS.

7 Results

This section compares our approach to the baseline methods mentioned earlier for the
evaluation metrics described above. Our approach is specified as MDP, and we tuned the
hyperparameters with The results of comparing our proposed approach with the baselines
are presented in Tables 2 and 3 in terms of Precision@k Recall@k and F1@K on the two
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Table 2 Results for different metrics on Movielens 100k

Method P@10 R@10 F1@10 P@20 R@20 F1@20

Random 0.1641 0.0782 0.1057 0.1124 0.1271 0.1190

PopRank 0.2163 0.1002 0.1368 0.1572 0.1714 0.1639

CB 0.2458 0.1072 0.1491 0.1788 0.1702 0.1743

LinUCB 0.3210 0.1354 0.1921 0.2860 0.2035 0.2380

SVD 0.3432 0.1613 0.2218 0.2824 0.2453 0.2715

DeepMF 0.3224 0.1428 0.1979 0.3077 0.2283 0.2621

NMF 0.3441 0.1601 0.2185 0.3142 0.2438 0.2745

MDP 0.3573 0.1676 0.2282 0.3130 0.2512 0.2787

datasets. Our approach, MDP, outperformed the different baseline methods for most met-
rics. For the Movielens 100k dataset, our model outperformed the different baselines on all
metrics except for P@20 and R@20 for the Movielens 1m dataset. For both of these metrics,
Neural MF gave the best performance.

Among baselines, Neural MF performs the best, followed by the Deep CF method and
SVD, whereas PopRank performs significantly better on Movielens 1m dataset compared
to Movielens 100k. LinUCB outperforms SVD on the ML-1M dataset for the recall@20
metric and on the P@20 on the Movielens-100k Dataset. Further, On Movielens 1m, our
method outperforms the baseline by 3.86% and 6.58% in terms of P@10 and P@20, respec-
tively, and 9.19% in terms of R@10. For the Movielens 100k dataset, our method improves
on the baseline methods by 4.10% in terms of P@10 and 3.90% and 2.40% in terms of
R@10 and R@20. In Fig. 3, we show the reward distribution of our algorithm over the two
datasets, Movielens 100k and Movielens 1m. We can observe that algorithm converges bet-
ter on the Movielens 1m as compared to the Movielens 100k dataset. For the Movielens
1m dataset, we can observe the stability in reward distribution after 700 episodes, which
again we can speculate due to the Policy gradient method achieving stability in convergence
due to more sample data associated with the dataset as compared to Movielens 100k. Fur-
ther, as the number of episode increase, the agent achieves more stable learning on both the
datasets, implying gradual convergence of gradient descent. Thus we can observe stability
of our algorithm, MDP from the figure. The effect of varying the parameters such as dis-
count factor and clipping ratio on the Ml-100k dataset is further shown in Figs. 4 and 5,
respectively. In Fig. 6, we showed the effect of different embedding sizes obtained from the

Table 3 Results for different metrics on Movielens 1m

Method P@10 R@10 F1@10 P@20 R@20 F1@20

Random 0.1380 0.0723 0.0946 0.0950 0.1134 0.1033

PopRank 0.2841 0.1121 0.1607 0.2108 0.1823 0.1955

CB 0.2712 0.1128 0.1593 0.2047 0.1774 0.1900

LinUCB 0.2988 0.1167 0.1678 0.2213 0.2385 0.2295

SVD 0.3167 0.1318 0.1853 0.2762 0.2308 0.2514

DeepMF 0.3043 0.1286 0.1806 0.2551 0.2391 0.2468

NMF 0.3180 0.1348 0.1893 0.2714 0.2612 0.2662

MDP 0.3314 0.1472 0.2039 0.2944 0.2576 0.2748
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Fig. 3 Reward Distribution of MDP over 2 datasets

PMF on the two datasets. In Fig. 7, we further display the change in precision metric for the
two datasets with respect to the threshold of cold user percentage. We can observe that our
algorithm performs better on the Movielens 1m dataset as compared to Movielens 1ook. We
can speculate as the Movielens 1m data has much more interactive rating data available as
compared to Movielens-100k, our model is able to learn a better model as the policy gra-
dient algorithm has relatively more samples and can learn a better model through gradient
descent. Another observation we can make from the result is the two deep learning method
also perform relatively better on ML 1M dataset as compared to ML 100K, as deep neural
network is able to learn a more complex model on ML 1M due to more rating data. From
Fig. 6, we can observe the effect of varying embedding sizes on the precision metric. For
the Movielens 100k dataset, we get the highest precision at an embedding size of 50 and for
Movielens 1m, we get the best result at an embedding size of 100. For the Movielens 100k
dataset, the drop becomes steeper once we increase the size after 50, whereas for Movielens
1m dataset, the changes in precision are more stable for different embedding sizes.

Fig. 4 Parameter Sensitivity by varying Clipping ratio
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Fig. 5 Result of Varying Discount factor

We can see that for the Movielens 100k dataset, the optimum threshold is 5%, whereas,
for the Movielens 1m dataset, the optimal threshold is 7% as depicted in Fig. 7. Specifi-
cally, precision decreases significantly for both datasets as the percent of cold users starts
increasing. We achieve the highest precision at a clipping ratio of 0.9 and discount factor of
95%, depicted in Figs. 4 and 5, respectively.

For checking the statistical significance of the results, we used Wilcoxon-Signed test
[45]. It is a non-parametric test and does not assume the normal distribution over the input
like the student t-test. The null hypothesis is the two distributions are not statistically dif-
ferent. The test was performed using the results of the MDP algorithm against each of the
baselines at a 5% significance level. We can observe that Tables 4 and 5 list the p-values
obtained by the test, where p-values less than 0.05 indicate the rejection of the null hypoth-
esis, implying there is a significant difference at a level of 5%. The p-values in the tables

Fig. 6 Effect of different embedding sizes on Precision
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Fig. 7 Cold User Threshold

Table 4 Wilcoxon Signed P value against different baselines on Movielens 100k

MDP vs P@10 R@10

Random 0.0008 0.0078

PopRank 0.0585 0.0100

LinUCB 0.0158 0.0089

CB 0.0093 0.0411

SVD 0.0002 0.0178

Deep MF 0.0067 0.0010

Neural CF 0.0312 0.0076

Table 5 Wilcoxon Signed P value against different baselines on Movielens 1M

MDP vs P@10 R@10

Random 0.0014 0.0066

PopRank 0.0158 0.0074

LinUCB 0.0365 0.0289

CB 0.0027 0.0088

SVD 0.0721 0.0218

Deep MF 0.0011 0.0006

Neural CF 0.0043 0.0198
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confirm that the improvement achieved by MDP based algorithm is statistically signifi-
cant over the majority of the baseline methods(apart from P@10 metric on PopRank on
ML-100K and SVD on ML-1M, respectively).

8 Conclusion and FutureWork

In this paper, we used the Hybrid recommender system based on Reinforcement learning
over the Movielens datasets. We combined the features of two popular recommender sys-
tems techniques to address the cold start issue. We modeled the recommender system in
the Reinforcement Learning framework. We incorporated the Collaborative filtering tech-
nique in it by modeling the states of the MDP using Matrix factorization and using the
neighborhood technique inside the MDP process for calculating the next item. We utilized
a Content-based filtering approach further for the cold user set, thereby further improving
the recommendation process. We used the Policy gradient approach for training our algo-
rithm as they are more suited for large state spaces compared to the value-based approach.
We performed the experiments on two Movielens datasets and outperformed different
state-of-the-art baseline methods.

For future work, we are interested in extending our work to more domains in rec-
ommender systems such as e-commerce items and deploying multi-agent reinforcement
learning based recommender system frameworks to model the recommender system pro-
cess. Further research directions could be the techniques that can lead to including more
diversity in the recommendation process. We can modify the action in our MDP architecture
from the proposed solution to have more than one item recommended at a time, utilizing
the correlation between the items. Further, with a multi-agent approach, we can consider
multiple scenarios of the recommendation process, each modeled by a particular agent. We
also think our method can be extended to a Deep Reinforcement Learning framework using
different architecture for Actor-Critic networks.
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