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An efficient swin transformer-basedmethod
for underwater image enhancement

RongWang1 ·Yonghui Zhang1 · Jian Zhang1

Abstract
Due to the complex imaging environment of the ocean, the underwater images obtained
by optical vision systems are usually severely degraded. Recently, methods for enhanc-
ing underwater images are mostly based on deep learning. However, the intrinsic locality
of convolution operation makes it difficult to model long-range dependency efficiently,
which may lead to the limited performance of these methods. This paper proposes an
efficient method for underwater image enhancement by utilizing Swin Transformer for
local feature learning and long-range dependency modeling. The network structure of
this method is mainly composed of encoder, decoder and skip connections, in which the
encoder and decoder take the Swin Transformer block as the basic unit. Specifically, the
encoder is used to learn multi-scale feature representations, and the decoder is utilized
to upsample the extracted contextual features progressively. Skip connections are used to
fuse multi-scale features from the encoder and decoder. Experimental results demonstrate
that the proposed method outperforms state-of-the-art methods on different datasets by up
to 1.09∼1.64dB (PSNR) and 1.9%∼2.3% (SSIM) in objective metrics, and achieves the
best visual effect in subjective comparisons, especially in terms of color cast removal and
sharpness enhancement.

Keywords Underwater imaging · Image enhancement · Swin transformer · Deep learning

1 Introduction

Since underwater images carry plenty of ocean information, the quality of underwater
images is of great significance to the exploration and utilization of the deep sea. However,
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due to the absorption and scattering of light by water bodies and the complex biological
environment, underwater images captured by the camera usually suffer from severe degra-
dation such as color cast, low sharpness and contrast. Underwater image enhancement
(UIE) technology [37, 51] aims to obtain higher quality, more realistic color, and sharper
underwater images, which is beneficial for several visual tasks such as object detection and
edge detection [4]. This technology has been widely used in underwater robots [20] and
underwater archaeology, etc.

The traditional UIE methods mainly include non-physical model-based methods [15, 41,
54, 57] and physical model-based methods [14, 42, 43, 52, 58]. Among them, Jyoti et al.
[41] proposed a non-physical model-based method, called Histogram Equalization (HE),
which uses pixel value transformation to transform the original image into roughly the same
number of pixels in most gray levels. This method is simple and fast, but it is difficult to
improve the local contrast of underwater images. On the basis of Dark Channel Prior (DCP)
[17], Drews et al. [14] proposed the Underwater Dark Channel Prior (UDCP) to solve the
problem that the underwater image is distorted and blue-green due to the serious attenuation
of red light in the water. Song et al. [42] proposed the Underwater Light Attenuation Prior
(ULAP), which trained a linear model of scene depth estimation based on the underwater
light attenuation prior and labeled scene depth data, and the underwater image restora-
tion is realized by estimating scene depth map, atmospheric light value, and transmission
image. However, the processed images still have severe color casts. The limitations of tra-
ditional methods are mainly in either ignoring the underwater imaging mechanism leading
to over/under enhancement, such as HE [41], or being time-consuming or sensitive to the
diversity of underwater scenes, such as UDCP [14], ULAP [42], etc. In contrast, our method
can produce visually satisfactory enhancement results for underwater images of multiple
scenes without being time-consuming.

Compared with the traditional manual setting of spatial features, deep learning can auto-
matically extract spatial features hierarchically [5], which makes it develop rapidly. In
recent years, many researchers have begun to apply convolution neural network (CNN) and
generative adversarial network (GAN) to underwater image enhancement [11, 16, 19, 20,
25–29, 31, 33, 47, 49]. Among them, Li et al. [28] proposed Water-Net based on CNN,
which uses convolution operation to extract underwater image features and learn the map-
ping relationship between the original underwater image and enhanced underwater image,
so as to achieve underwater image enhancement. Islam et al. [20] proposed Fast Under-
water Image Enhancement Generative Adversarial Networks (FUnIE-GAN) for enhancing
underwater images at high speed, which can be applied to underwater vehicles. Li et al. [29]
proposed a multi-color space embedded underwater image enhancement network (Ucolor)
based on medium transmission guidance, which combines underwater imaging physical
model and deep learning, and uses multi-color space embedding to improve the visual qual-
ity of underwater images. Yan et al. [49] proposed a very simple network (MTUR) in which
one sub-network is used to predict the media transmission map and the predicted media
transmission map is used as guidance to assist another sub-network to enhance the underwa-
ter images. This method improves the performance and enables real-time image processing.
Compared with traditional methods, deep learning-based methods significantly improve
performance. However, the key limitation of CNN or GAN-based methods is that they strug-
gle to effectively model long-range dependency for learning explicit global information
interaction due to the use of convolution as the key component for extracting features. In
contrast, our method uses Swin Transformer block as the basic unit to efficiently learn local
features and model long-range dependency, which can enhance underwater images more
accurately.
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With the great success of Transformer [46] in the field of natural language processing
(NLP), researchers have tried to bring Transformer into the field of computer vision, and
have made good progress in several vision problems [7, 13, 45]. However, since vision
Transformers usually divide the input image into small patches with a fixed size and pro-
cess each patch independently, the image generated by vision Transformer may appear with
boundary artifacts around each small patch [6, 10]. Recently, Liu et al. [34] proposed Swin
Transformer, which integrates the advantages of CNN and Transformer, and has shown
great promise. Due to the local attention mechanism, Swin Transformer has the advantage
of CNN to learn local features of large-size images. Meanwhile, Swin Transformer can
effectively model long-range dependency with the shifted window scheme.

Motivated by the success of Swin Transformer, this paper proposes a novel method based
on Swin Transformer for UIE. This method aims to effectively enhance degraded underwa-
ter images by exploiting the advantages of Swin Transformer in learning local features on
large-size images and modeling long-range dependency. By downsampling in the encoder
and upsampling in the decoder, the obtained multi-scale feature maps are used for local
details attention and global information interaction via Swin Transformer blocks and fea-
ture fusion via skip connections, expecting to be more fully utilized. Figure 1 shows the
underwater image enhanced by our method and some comparison methods. As shown, the
color of the underwater image enhanced by our method is closest to the reference image and
achieves the best visual quality.

The main contributions of this paper can be summarized as follows:

• We introduce Swin Transformer into the underwater image enhancement task and pro-
pose an encoder-decoder network with the Swin Transformer block as the basic unit.
The Swin Transformer block enables the network to easily achieve local detail attention
and global information interaction for underwater images.

• We introduce the HSV color space loss function and use it together with the loss func-
tions in RGB color space for network training, which further improves the ability of the
proposed method to remove color casts.

Fig. 1 The underwater image enhanced by our method and several state-of-the-art UIE methods. Our method
achieves the best visual quality. (a) Raw image, (b) HE [41], (c) UDCP [14], (d) ULAP [42], (e) UWCNN
[27], (f) Water-Net [28], (g) FUnIE-GAN [20], (h) Ucolor [29], (i) Peng et al. [39], (j) MTUR [49], (k) Ours,
(l) Reference image
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• Extensive experiments on multiple datasets demonstrate that our method achieves
superior performance in both objective metrics and visual quality compared to sev-
eral state-of-the-art UIE methods, especially for color cast removal and sharpness
enhancement.

The rest of this paper is organized as follows: Section 2 describes the underwater imaging
model and introduces the Vision Transformer, Section 3 illustrates the network architecture
and associated inner structure of our proposed method, Section 4 presents the experi-
ment details, experimental results, discussion and ablation studies, and Section 5 gives the
conclusion of this work.

2 Related work

2.1 Underwater imagingmodel

According to the underwater optical imaging model Jaffe-McGlamery proposed by Jaffe
et al. [21], the light received by the underwater camera is mainly composed of the direct
transmission component Ed(x, y), the forward scattering component Ef (x, y) and the
background scattering component Eb(x, y). The underwater imaging model is shown in
Fig. 2. The formula for calculating the total light intensity received by the underwater
camera is:

Et(x, y) = Ed(x, y) + Ef (x, y) + Eb(x, y). (1)

Fig. 2 The underwater imaging model Jaffe-McGlamery
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The direct transmission component Ed(x, y) is obtained by the attenuation of the
reflected light on the target surface due to the scattering and absorption of water. The
calculation formula can be expressed as follows:

Ed(x, y) = J (x, y) · t (x, y). (2)

where J (x, y) represents the light intensity initially reflected by the imaging object, and
t (x, y) represents a transmittance of a medium.

The forward scattering component Ef (x, y) can be expressed as:

Ef (x, y) = J (x, y) ∗ h(x, y). (3)

where h(x, y) denotes the point spread function.
The background scattering component Eb(x, y) is generally expressed as:

Eb(x, y) = E∞(1 − t (x, y)). (4)

where E∞ represents the global background light.
Therefore, the underwater image captured by the underwater camera can be expressed as:

F(x, y) = J (x, y) · t (x, y) + J (x, y) ∗ h(x, y) + E∞(1 − t (x, y)). (5)

As shown in Fig. 2, when light travels underwater, different colors of light have different
degrees of attenuation in the water. In general, red light is most easily absorbed because of
its short wavelength, so it attenuates most rapidly in water. The attenuation of blue light and
green light is relatively slow due to their longer wavelengths. As a result, the captured under-
water images generally appear green or blue-green. Therefore, the original image taken by
the underwater camera needs to be enhanced.

2.2 Vision transformer

Transformer [46] shows an excellent performance in the field of natural language process-
ing (NLP). Many researchers in the field of computer vision have attempted to introduce
Transformer which learns to attend to important image regions by exploring the global
information interaction between different regions and solved several visual problems, such
as image classification [8, 24, 44], object detection [7, 9, 12, 35, 36, 45, 53], segmentation
[48, 56] and crowd counting [40], etc. As for underwater image enhancement tasks, Peng
et al. [39] introduced several Transformer layers to model global information of the feature
maps obtained by four levels of down-sampling, which reinforced the network’s attention
to seriously degraded parts and contributed to performance improvement. Although many
explorations in the field of vision have shown remarkable performance, compared with
CNN-based methods, the drawback of Transformer is that it requires pre-training on its own
large dataset, which increases the difficulty of training. Recently, Swin Transformer pro-
posed by Liu et al. [34] integrates the advantages of both CNN and Transformer. On the one
hand, due to the local attention mechanism, it can easily process images with large sizes, on
the other hand, it can effectively realize long-range dependency modeling with the shifted
window scheme. In this work, we attempt to use Swin Transformer blocks and skip con-
nections to build an encoder-decoder architecture for underwater image enhancement, thus
effectively enhancing degraded real-world underwater images and providing a benchmark
comparison for the exploration of Swin Transformer in the field of low-level vision.
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Fig. 3 The network architecture of our proposed method for underwater image enhancement. In the figure, n
represents the number of channels of the feature map, the kernel size (k) and stride (s) of each convolutional
layer in downsampling and upsampling are provided, and the filter size (f) and stride (s) of maxpool layer in
downsampling is also provided

3 Proposedmethod

We design a Swin Transformer-based encoder-decoder network with skip connections, and
the overall architecture of this network is shown in Fig. 3. The network takes the underwater
image as input x and learns shallow features of the image by Shallow Feature Extrac-
tion, then learns the deep feature representation by the encoder-decoder, and finally outputs
the enhanced result y through High Quality (HQ) Image Enhancement. Table 1 shows the
description of the proposed algorithm.

3.1 Network architecture

Firstly, a convolutional layer (kernel size 3×3, stride 1, number of channels 32) and a Max-
pool layer (filter size 2 × 2, stride 2) are used to perform the feature extraction process [2]

Table 1 The description of the
proposed algorithm Pseudocode description of the proposed algorithm

Input: degraded image x, Output: enhanced image y

Forward:

h = Shallow Feature Extraction(x)

h down = []
for i in range(3):

h down.append(h)

h = Swin T ransf ormer Blocks(h)

h = Downsampling(h)

for i in range(3):

h = Swin T ransf ormer Blocks(h)

h = Upsampling(h)

h = Skip Connection(h, h down[2 − i],−1)

h = Swin T ransf ormer Blocks(h)

y = HQ Image Enhancement (h)
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on the input image (size is W × H ). Feature extraction of a given image is a critical step in
many image analysis and computer vision tasks [3]. For the encoder, the patch tokens trans-
formed from the feature maps output by shallow feature extraction generate hierarchical
feature representations via several pairs of two Swin Transformer blocks and downsam-
pling. Where the Swin Transformer blocks are used to capture the local context and model
long-range dependency, and downsampling is used to reduce the feature resolution by half
and increase the feature dimension by 2 times. For the decoder, upsampling is responsible
for increasing the feature resolution by 2 times and reducing the feature dimension by half,
and the obtained feature maps are fused with the feature maps of the same size from the
encoder through skip connections to complement the loss of spatial information caused by
downsampling. The Swin Transformer blocks are used to learn the feature representation
of the fused feature maps. Finally, before the convolutional layer (kernel size is 3 × 3 and
the stride is 1) which is used to output the enhanced underwater image, a transposed con-
volutional layer (kernel size is 4 × 4, the stride is 2 and channel number is 32) is used for
restoring the size of feature maps to the input.

3.2 Swin transformer block

Different from the standard multi-headed self-attention (MSA) module in Transformer, the
Swin Transformer block is built based on shifted windows. The internal structure of two
consecutive Swin Transformer blocks is shown in Fig. 3. The window-based multi-head
self-attention (W-MSA) module and the shifted window-based MSA (SW-MSA) module
are applied in two consecutive Swin Transformer blocks, respectively. Each Swin Trans-
former module also contains a 2-layer MLP with GELU non-linearity and two LayerNorm
(LN) layers, one of which is applied before the (S)W-MSA module, the other before the
MLP, and the residual connection is applied after each (S)W-MSA module and MLP.

Based on the shifted window partitioning mechanism, the formula for calculating
contiguous Swin Transformer blocks can be expressed as follows:

ẑl = W − MSA(LN(zl−1)) + zl−1,

zl = MLP(LN(ẑl)) + ẑl ,

ẑl+1 = SW − MSA(LN(zl)) + zl,

zl+1 = MLP(LN(ẑl+1)) + ẑl+1. (6)

where ẑl and ẑl+1 represent the outputs of W-MSA and SW-MSA modules respectively, zl

represents the outputs of the MLP module of the lth block. Similar to works in [30], the
attention matrix calculated by the self-attention mechanism is:

Attention(Q, K, V ) = Sof tMax
(
QKT

/√
d + B

)
V . (7)

where the values in B are taken from the bias matrix B̂ ∈ R
(2M−1)×(2M+1). Generally,

Q, K,V ∈ R
M2×d and respectively denote the query, key and value matrices. M2 rep-

resents the number of patches in a window and d denotes the dimension of the query or
key.

3.3 Encoder-decoder

In the encoder, the patch tokens transformed from the feature maps with the size of W/2 ×
H/2 are fed into two Swin Transformer blocks for representation learning. Meanwhile, the
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feature resolution will be down-sampled by half due to the Maxpool layer in downsampling,
and the feature dimension will be increased to 2 times the original dimension due to a
convolutional layer with a kernel size of 1×1 in downsampling. This will be repeated three
times to obtain feature maps with a size of W/16 × H/16.

In the decoder, the feature resolution of the adjacent dimensions will be up-sampled by
2 times via a bilinear interpolate layer in the upsampling, and the feature dimension will be
reduced to half of the original dimension by the convolutional layer with a kernel size of
1 × 1 in upsampling. Then the up-sampled feature maps will be fused with the multi-scale
feature maps from the encoder by skip connections, and two Swin Transformer blocks will
be used to learn the feature representation of the fused feature maps. This procedure will
also be repeated three times until the resolution of feature maps is W/2 × H/2.

3.4 Loss functions

To take advantage of the HSV color space’s more intuitive representation of hue, color
saturation, and intensity, we introduce the HSV color space loss function together with loss
functions in the RGB color space for our network training. The images from RGB space are
firstly converted to HSV color space, as follows:

HN(x), SN(x), V N(x) = RGB2HSV (N(x)),

Hy, Sy, V y = RGB2HSV (y). (8)

where x, y and N(x) represent the original input underwater images, the reference under-
water images and the enhanced underwater images output by the network, respectively.

The loss function in HSV color space can be expressed as follows:

Losshsv = Ex,y

[
−

n∑
i=1

Q(H
y
i ) log

(
Q

(
H

N(x)
i

))

+
(
Sy − SN(x)

)2 +
(
V y − V N(x)

)2]
. (9)

where Q stands for the quantization operator.
Mean square error (MSE) loss (Lossmse) is the RGB color space loss function to

calculate the distance between the predicted images N(x) and the groundtruth images y.

Lossmse = E
[‖N(x) − y‖2

]
. (10)

We also use structure similarity (SSIM) loss (Lossssim) [55] in the RGB color space to
impose the structure and texture similarity on the predicted image. We compute the SSIM
score for gray images converted from images in the RGB space. For each pixel x, the SSIM
value is calculated within an 11× 11 image patch around the pixel. The specific calculation
formula is as follows:

SSIM(x) = 2μI (x)μ
Î
(x) + c1

μ2
I (x) + μ2

Î
(x) + c1

· 2σ
I Î

(x) + c2

σ 2
I (x) + σ 2

Î
(x) + c2

. (11)

where μI (x) and μ
Î
(x) represent the mean of the image patch from groundtruth image

and predicted image, respectively. σI (x) and σ
Î
(x) represent the standard deviation of the

corresponding image patch, respectively. σ
I Î

(x) denotes cross-covariance. Here we set c1 =
0.02 and c2 = 0.03.
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The calculation formula of SSIM loss can be expressed as:

Lossssim = 1 − 1

N

N∑
i=1

SSIM(xi). (12)

In addition, we use the perceptual loss (Lossperc) [22] to compute the distance between
the feature representation of the predicted image and the ground-truth image.

Our total loss function can be expressed as follows:

L = αLosshsv + βLossmse + γLossssim + μLossperc. (13)

where α, β, γ and μ are hyperparameters and represent the weight of each loss term. We
set α = 50.0, β = 0.001, γ = 100.0, and μ = 100.0.

4 Experiments

In order to verify our performance superiority, we compare our method with other 9 different
UIE methods qualitatively and quantitatively. These methods include traditional methods
based on non-physical model (HE [41]) and physical models (UDCP [14] and ULAP [42]),
as well as the recent state-of-the-art methods based on deep learning (UWCNN [27], Water-
Net [28], FUnIE-GAN [20], Ucolor [29], Peng et al. [39] and MTUR [49]). We will first
supplement the implementation details of the experiment, then introduce the experimental
datasets and experimental evaluation metrics, and finally analyze the experimental results.

4.1 Datasets and implementation details

In our experiments, we use five real-world underwater image datasets: LSUI [39] (which
contains 5004 pairs of underwater images), UIEBD [28] (which contains 890 pairs of
underwater images and 60 challenging unpaired degraded underwater images), EUVP [20],
SQUID [1] and RUIE [32]. For training, we randomly extract 4600 pairs of underwater
images from the LSUI as the training set to train our network. All images are resized to a
fixed size before being input into the network. For testing, the remaining 404 pairs of under-
water images in the LSUI are used as the first testing dataset (Test-L404). A random set
of 90 pairs of real-world images extracted from the UIEBD is used as the second testing
dataset (Test-U90). A random set of 70 pairs of real-world images extracted from the EUVP
is used as the third testing dataset (Test-E70). A set of 60 challenging unpaired degraded
underwater images in the UIEBD is used as the fourth testing dataset (Test-U60). We use
the 16 representative examples presented on the project page of SQUID1 as the fifth testing
dataset (SQUID). A random set of 45 real-world images extracted from the RUIE is used as
the sixth testing dataset (Test-R45).

We implement the proposed method by using Pytorch with an NVIDIA RTX 2080TI
GPU on Ubuntu 18. During the training period, the initial learning rate is set as 0.0005, and
the learning rate decreased 20% every 40 epochs. We set the batch size to 12 and utilize the
Adam optimization algorithm for a total of 300 epochs of training. The training time for the
model is about three days.

1http://csms.haifa.ac.il/profiles/tTreibitz/datasets/ambient forwardlooking/index.html
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4.2 Evaluationmetrics

Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR) [23] and Structural
SIM-ilarity index (SSIM) [18] are used as full-reference evaluation metrics to assess the
proximity to the reference, where a higher PSNR (lower MSE) value and a higher SSIM
score represent closer image content and a more similar structure and texture, respectively.

The underwater color image quality evaluation (UCIQE) [50] and the underwater image
quality measure (UIQM) [38] are used as non-reference evaluation metrics to compre-
hensively evaluate underwater image quality by color density, saturation, sharpness and
contrast, where the higher UCIQE or UIQM score, the better human visual perception.
UIQM is the weighted sum of UICM (colorfulness measure), UISM (sharpness measure)
and UIConM (contrast measure), as follows:

UIQM = c1UICM + c2UISM + c3UIConM . (14)

where c1, c2 and c3 are weight parameters. We set c1 = 0.0282, c2 = 0.2953 and c3 =
3.5753 according to [38].

For full-reference image quality evaluation, we use MSE, PSNR and SSIM metrics to
compare the methods on Test-L404, Test-U90 and Test-E70 datasets. For non-reference
image quality assessment, we use UCIQE and UIQM metrics to compare the methods on
Test-U60, SQUID and Test-R45 datasets.

4.3 Performance evaluation

4.3.1 Full-reference evaluation

The quantitative evaluation results of different methods on Test-L404, Test-U90 and Test-
E70 datasets are shown in Tables 2, 3 and 4, respectively. Visual comparisons of different
methods are shown in Fig. 4. For the 6 UIE methods based on deep learning, we use the
source codes and pretrained model parameters provided by the corresponding authors.

As shown in Tables 2, 3 and 4, our method achieves the best performance on Test-
L404 and Test-E70, and the second-best results on Test-U90. For the PSNR metric, our
method outperforms the second-best performer by up to 1.64dB on the Test-L404 dataset
and 1.09dB on the Test-E70 dataset. Meanwhile, our SSIM is higher than the compared

Table 2 The full-reference
evaluation results of different
methods on Test-L404 dataset

Method MSE(×103) ↓ PSNR(dB) ↑ SSIM ↑

HE [41] 2.6933 14.6054 0.6524

UDCP [14] 3.9568 13.3376 0.5513

ULAP [42] 1.7729 17.4179 0.7053

UWCNN [27] 1.5799 16.9803 0.6730

Water-Net [28] 1.4377 17.7641 0.7405

FUnIE-GAN [20] 1.0225 19.6370 0.7363

Ucolor [29] 0.6618 20.8115 0.8008

Peng et al. [39] 0.3758 23.4847 0.8154

MTUR [49] 0.6705 21.0606 0.7902

Ours 0.2417 25.1285 0.8388
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Table 3 The full-reference
evaluation results of different
methods on Test-U90 dataset

Method MSE(×103) ↓ PSNR(dB) ↑ SSIM ↑

HE [41] 2.0908 15.5063 0.7007

UDCP [14] 4.7928 11.8497 0.5112

ULAP [42] 2.5496 15.4050 0.6741

UWCNN [27] 2.6461 14.5801 0.6011

Water-Net [28] 2.1040 15.7125 0.7005

FUnIE-GAN [20] 1.6437 16.9642 0.6778

Ucolor [29] 0.5536 21.5755 0.8094

Peng et al. [39] 0.5609 21.6873 0.7994

MTUR [49] 0.3278 23.7699 0.8285

Ours 0.3999 23.0965 0.8224

Table 4 The full-reference
evaluation results of different
methods on Test-E70 dataset

Method MSE(×103) ↓ PSNR(dB) ↑ SSIM ↑

HE [41] 2.8499 14.1618 0.6270

UDCP [14] 3.6967 13.2795 0.5506

ULAP [42] 1.0532 18.8865 0.7196

UWCNN [27] 1.5361 17.2613 0.6683

Water-Net [28] 1.4375 17.6695 0.7265

FUnIE-GAN [20] 0.3669 23.1878 0.7756

Ucolor [29] 0.6897 20.2822 0.7744

Peng et al. [39] 0.4216 23.4952 0.7952

MTUR [49] 0.8433 19.4164 0.7615

Ours 0.3086 24.5821 0.8138

Fig. 4 Visual comparisons of different UIE methods on full-reference images. (a) Raw image, (b) ULAP
[42], (c) FUnIE-GAN [20], (d) Ucolor [29], (e) Peng et al. [39], (f) MTUR [49], (g) Ours, (h) Reference
image
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Table 5 The non-reference evaluation results of different methods

Method Test-U60 SQUID Test-R45

UCIQE ↑ UIQM ↑ UCIQE ↑ UIQM ↑ UCIQE ↑ UIQM ↑
HE [41] 0.5742 2.1561 0.5560 1.3410 0.5534 2.1582

UDCP [14] 0.5375 1.4508 0.5589 0.9860 0.5509 2.0744

ULAP [42] 0.5424 1.6691 0.4594 0.8914 0.4928 2.4529

UWCNN [27] 0.4668 2.4243 0.4436 2.0590 0.4633 3.0221

Water-Net [28] 0.5305 2.4900 0.5456 2.4047 0.5245 3.0950

FUnIE-GAN [20] 0.5299 2.6497 0.4945 2.1357 0.5035 3.0800

Ucolor [29] 0.5323 2.6159 0.5138 2.1557 0.5226 3.1116

Peng et al. [39] 0.5359 2.5869 0.5278 2.1367 0.5311 3.0797

MTUR [49] 0.5844 2.7538 0.5763 2.3360 0.5558 3.1360

Ours 0.5749 2.7249 0.5774 2.3596 0.5555 3.1403

methods on both Test-L404 and Test-E70 datasets. As shown in Fig. 4, the color of underwa-
ter images enhanced by our method is closest to the reference images, and the image visual
quality is the best. Some of the underwater images enhanced by ULAP [42] and FUnIE-
GAN [20] are yellowish. The underwater images enhanced by Ucolor [29], Peng et al. [39]
and MTUR [49] show a relatively good visual effect, but there are still some color casts.

4.3.2 Non-reference evaluation

The quantitative evaluation results of different methods on Test-U60, SQUID and Test-
R45 datasets are shown in Table 5. We extract four categories of underwater images (low-
illuminated, yellowish, greenish and bluish underwater images) from Test-U60, SQUID and
Test-R45 datasets, and subjectively compare the visual quality of the images enhanced by
different methods, as shown in Fig. 5.

Fig. 5 Subjective comparisons of different UIE methods on greenish, bluish, yellowish and low-illuminated
underwater images. (a) Raw image, (b) ULAP [42], (c) Water-Net [28], (d) FUnIE-GAN [20], (e) Ucolor
[29], (f) Peng et al. [39], (g) MTUR [49], (h) Ours
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Fig. 6 The generated image equality evaluation results of different methods on SQUID

As in Table 5, our method achieves the highest UCIQE and UIQM score on SQUID,
the highest UIQM score on Test-R45, and the second-best results on Test-U60. As shown
in Fig. 5, the visual perception of underwater images is greatly affected by color deviation.
ULAP [42] enhanced the sharpness of the greenish underwater image, but over-enhanced
the yellowish image and under-enhanced the low-illumination and bluish underwater image.
Water-Net [28] corrected the color deviation of the underwater image well, but the enhanced
image were darker overall. FUnIE-GAN [20] improved the sharpness of the underwater
images, but there was an obvious color cast in the enhanced greenish and yellowish under-
water images. Ucolor [29], Peng et al. [39] and MTUR [49] improved the visual quality of
underwater images, but there were still some color casts. By contrast, our method effectively
removed the color cast of greenish, bluish, and yellowish underwater images and improved
the brightness of low-illumination underwater images. This demonstrates that our method
has good performance in color cast removal and sharpness enhancement.

To further verify the effect of our method and avoid the influence of our subjective judg-
ment on the visualization results, we prepared 160 pictures generated by 10 methods (HE,
UDCP, ULAP, UWCNN, WaterNet, FunieGAN, Ucolor, Peng et al., MTUR, and Ours) on
SQUID, and then invited 20 volunteers to compare the image in terms of chromatic aberra-
tion, sharpness, contrast, etc., and select the best image without knowing the corresponding
method. The statistical results are shown in Fig. 6. As shown in this graph, we can observe
that our method received the highest number of best ratings.

4.4 Discussion

HE [41] crudely modified the pixel values of underwater images using pixel value trans-
formations, which improved the contrast but caused color casts due to the introduction of
excessive red components, resulting in high UCIQE and UIQM scores, while the quality of
the enhanced images was quite poor. UDCP [14] and ULAP [42] can improve the sharpness
of greenish and bluish underwater images, while over-enhancing yellowish images as well
as under-enhancing low-illumination images, probably because they rely on a fixed under-
water imaging model and cannot be applied well in various scenarios. The results produced
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by Water-Net [28] are visually darker overall, probably due to the introduction of a white
balance channel in the enhancement process, which is not always dependable for under-
water images. FUnIE-GAN [20] is a lightweight model that can process images quickly.
However, the fewer parameters of the model make it easy to reach the bottleneck during
learning features from complex underwater images, which may lead to color deviation in
the enhanced results. The enhanced results of Ucolor [29] present a relatively high quality
visually, but there are still some color casts, which may be due to the introduction of multi-
color space in the network without full utilization. Peng et al. [39] achieved high results for
both full-reference and non-reference evaluations, but the enhanced results are still visually
slightly color biased, probably because the method uses multi-scale features but does not
simultaneously implement local context capture and global information interaction. MTUR
[49] achieved good performance on UIEBD, but the results on EUVP and LSUI were not as
good, probably because the lightweight model design makes the method unable to handle
multiple types of underwater images efficiently. By comparing the full-reference evalua-
tion results on Test-L404, we can observe that our method improves 7.0% and 2.9% in
PSNR and SSIM metrics compared to the second-best method. The non-reference evalua-
tion results on SQUID and Test-R45 show a slight advantage of our method compared to
the second-best method. From the subjective comparison shown in Fig. 5, we can observe
that the enhanced results of our method have the best visual quality and the least color devi-
ation. These demonstrate the superiority of our method compared to other state-of-the-art
methods. Furthermore, in terms of computational complexity, our model costs about 3.3M
parameters which are 78% of the FUnIE-GAN. The testing time of 71 FPS for the images
(size of 256 × 256) indicates that our method outperforms several state-of-the-art deep
learning-based methods in processing efficiency while maintaining superior performance.

4.5 Ablation study

To demonstrate the effect of skip connections in our model and the effectiveness of the loss
function for joint RGB and HSV color spaces, we conduct ablation studies with Test-L404
and Test-U90 datasets.

4.5.1 Effect of skip connections

By removing or retaining skip connections, we explore the influence of skip connections
on the performance of the proposed model. As in Table 6, the performance of the model
without skip connections is degraded. It can also be seen from Fig. 7 that the quality of the
image enhanced by the model without skip connections is poor.

Table 6 Image quality assessment of different ablation models

Model Test-L404 Test-U90

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

Without skip connections 22.6201 0.5632 21.2869 0.5407

Without Losshsv for training 24.7371 0.8352 22.8459 0.8186

Our full model 25.1285 0.8388 23.0965 0.8224
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Fig. 7 Visual comparisons of model without skip connections or loss function in HSV color space for train-
ing. (a) Raw image, (b) Without skip connections, (c) Without loss function in HSV color space for training,
(d) Our full model

4.5.2 Effect of loss function for joint RGB and HSV color spaces

By training model with/without loss function in HSV color space Losshsv , we explore the
impact of loss function for joint RGB and HSV color spaces on the performance of the
proposed model. As in Table 6, training with loss function for joint RGB and HSV color
spaces further improves the quality of the underwater images. As shown in Fig. 7, the image
enhanced by model training without loss function in HSV color space shows relatively good
visual quality, but still suffers from a slight color cast.

5 Conclusion

In this paper, we propose an efficient Swin Transformer-based method for underwater image
enhancement. The network of the proposed method is mainly composed of encoder, decoder
and skip connections, where the encoder and decoder take Swin Transformer blocks as the
basic unit, and skip connections are used to fuse multi-scale features from the encoder and
decoder. The local attention mechanism of the Swin Transformer makes it easier to learn the
local details of underwater images. Long-range dependency modeling with the shifted win-
dow scheme by Swin Transformer enables efficient explicit global information interaction.
Extensive experiments on two real-world underwater image datasets demonstrate the supe-
riority of our method for underwater image enhancement, especially in color cast removal
and sharpness enhancement. There are also some limitations of our model. First, since the
number of heads and some other parameters in the Swin Transformer block need to be set
according to the image size before training, the trained model can only satisfy the input
with a specific size and cannot process images with arbitrary size. Second, it is difficult to
enhance underwater images in real-time because of the relatively large number of param-
eters and complicated computation of the model. Therefore, we will aim to transform the
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standard Swin Transformer block and appropriately reduce the redundant parameters of the
model for further improvement.
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