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Abstract

Recently, single-stage detection methods have made great progress, achieving comparable
accuracy to two-stage detection methods. However, they have poor performance over small
object detection. In this work, we improve the performance of the single-stage detector for
detecting objects of small sizes. The proposed method makes two major novel contributions.
The first is to devise an attention-based feature pyramid network (aFPN) by introducing a
learnable fusion factor for controlling feature information that deep layers deliver to shallow
layers. The design of a learnable fusion factor could adapt a feature pyramid network to small
object detection. The second contribution is to propose a soft-weighted loss function, which
reduces the false attention during network training. To be specify, we reweight the contribu-
tion of training samples to the network loss according to their distances with the boundaries
of the ground-truth box, leading to fewer false-positive detections. To verify the perfor-
mance of the proposed method, we conduct extensive experiments on different datasets by
comparing including RetinaNet, ATSS, FCOS, FreeAnchor, and et al. Experimental results
show that our method can achieve 44.2% AP on MS COCO dataset, 23.0% AP on VisDrone
dataset, which significantly gains improvements with nearly no computation overhead.

Keywords Object detection - Feature pyramid network - Feature fusion - Single-stage -
Small object
1 Introduction

Object detection is an important task in the vision computation community, and it is widely
applied in various real-world applications, for example medical diagnosis [26, 32, 33], face
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detection [19, 29], pedestrian detection [15, 37], and text detection [6, 46]. Object detection
methods have experienced a lot of progress. The current object detectors can be grouped into
two parts: (1) two-stage detectors, e.g. Fast RCNN [10], Faster RCNN [28], Mask RCNN
[12], Cascade RCNN [3], which produce a set of region proposals, and then classify and
regress these proposals; (2) single-stage detectors, e.g. SSD [25], YOLO [27], RetinaNet
[22], RefineDet [39]. The method mentioned above can directly regress the bounding box
and classify of an object. However, theanchor mechanism is inevitably used in the above
detection methods, which result in complex settings of hyperparameters of anchor boxes.
Anchor-free object detection methods (e.g. CornerNet [18], CenterNet [7], Fully Convolu-
tional One-Stage(FCOS) detector [30], FoveaBox [17], and so on) are proposed to overcome
the limitations of anchors.

Despite these improvements, existing detectors often underperform over small objects, as
shown in Fig. 1. It presents the detection accuracy of the small, medium, and large objects of
state-of-the-art detectors, showing that different from objects with medium and large sizes,
the detection precision of small objects is more challenging. Taking Microsoft Common
Objects in Context(MS COCO) dataset [23] as an example, we further explore the scale dis-
tribution of object instances, and observed that 41.43% of all the objects appearing in the
training set are small, while only 34.4% and 24.2% are medium and large objects respec-
tively. Therefore, the detection of small objects is a key step to improving performance. We
argue that due to the low resolution and lack of detailed information on small objects, the
small object detection (SOD) is more challenging than general object detection and it is
difficult to distinguish small objects from the background.

Feature fusion is the mainstream method to address SOD in the feature pyramid network
[21]. However, the information that deep layers delivering to shallow layers significantly
affects the performance of the object detector. Gong et al. [11] explored the working prin-
ciple of FPN and found that in FPN, supervised by losses from other layers indirectly, each
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Fig. 1 Detection accuracy of state-of-the-art methods, including FPN [21], Mask RCNN [12], Cascade
RCNN [3], RetinaNet [22], RefineDet [39], FCOS [30], and FoveaBox [17]. APs, APm, and API denote
mean average precision (mAP) of small, medium and large object, respectively
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layer nearly needs to learn all size objects, even the deep layers need to learn small objects.
Each layer not only needs to focus on its corresponding scale objects but also needs to get
help from other layers for more training samples. A natural question to ask is: how much
help does small object need from other layers? In this paper, we introduce a learnable fusion
factor that can evaluate the priorities of two fused feature maps and balanced them. In con-
ventional FPN, the fusion factor is 1.0, different from it, we apply the attention mechanism
in convolutional neural network(CNN) to learn the fusion factor, which can adjust according
to corresponding feature maps. Additionally, to reduce the false attention, we have designed
a new weight-soft loss function during the training network, which results in a large num-
ber of false-positive detection of small objects. Extensive experiments demonstrate that the
proposed learnable fusion factor in FPN can improve the baseline FCOS module [30] by a
large margin without inference slowdown. The main contributions of this paper include:

(1) We designed an attentional feature pyramid network (aFPN for short) that intro-
duced a learnable fusion factor into the FPN. The fusion factor can control adaptively
the feature information that high layers deliver to shallow layers, leading to good
performance for small object detection.

(2) Inspired by visual mechanism, a soft-weighted loss function has been designed during
network training, which will lead to the decrease of false-positive detections.

(3) Several experiments on several datasets are presented, which show that our method
can achieve significant improvements with few additional computation burden.

The rest of this paper is organized as follows. In Section 2, we present representative works
related to our approach. Section 3 introduces the implementation details of our proposed
methods. Extensive experiments and corresponding analyses are reported in Section 4.
Finally, conclusions are given in Section 5.

2 Related works

In this section, we briefly review feature pyramid network approaches in Section 2.1, and
then in Section 2.2, we introduce the attention mechanism used in vision tasks.

2.1 Feature pyramid network

FPN is one of the representative model architectures to generate pyramidal feature rep-
resentation for object detection. Specifically, FPN has built a feature pyramid upon the
inherent feature hierarchy in convolutional network(ConvNet) by propagating the semanti-
cally strong features from high levels into features at lower levels [21]. Although FPN is a
simple and effective network that has been applied to one-stage and multi-stage detectors,
it may not be the optimal network design. PANet [24]improves feature representation for
lower resolution features by adding an extra bottom-up pathway on FPN. Recently, Zhao et
al. extends the idea to build stronger feature pyramid representations by employing multiple
U-shape modules after a backbone model [41]. Recently, Nas-FPN [9] attaches classifi-
cation and regression heads after all intermediate pyramid networks to achieve anytime
detection. Contrary to these works, we proposed a fusion factor during the feature fusion,
which could effectively propagate feature information from top to down level without
additional cost computations.
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2.2 Attention mechanism

Attention mechanism has been proved helpful in a variety of computer vision tasks, such as
classification,instance segmentation, and object detection. SENet squeezes each 2D feature
map to efficiently build interdependencies among channels [16]. CBAM further advances
this idea by introducing spatial information encoding via convolutions with large-size ker-
nels [36]. Inspired by CBAM, Gao et al. proposed global second-order pooling neural
network(GSoP) [8], which introduces a second-order pooling method to attracted increasing
attentions. Bello et al. developed an attention augmented convolutional network(AANet)
[1], which embed the attention map with position information into the feature. Selec-
tive Kernel Networks(SkNet) [20] introduces a selective channel aggregation and attention
mechanism. However, these methods dedicate to developing more sophisticated attention
modules for achieving better performance, which inevitably increase model complexity. To
improve the efficiency, a global context network(GCNet) [4] is proposed by using a simple
spatial attention module and replacing the original spatial down-sampling process, leading
to less computation cost. ECANet [34] introduces one-dimensional convolution layers to
reduce the redundancy of fully connected layers and obtains more efficient results, result-
ing in good balance between performance and complexity. Other works, like [43] and [42],
learned from the attention mechanism in the human visual system, which show promising
results.

3 Proposed method

In this section, we report the implementation details of our proposed detector, as shown in
Fig. 2. First, we revisit the network architecture of the FPN and analyse its working principle
(Section 3.1). Then, we introduce the aFPN in detail (Section 3.2) and a simple detection
head network(Section 3.3). Finally, we design a new soft-weighted loss function to solve
the false-positive prediction during training(Section 3.4).
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Fig.2 Overall framework of the proposed anchor-free single-shot detector
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3.1 Revisiting feature fusion in FPN

Two key elements, including the down-sampling factor and the fusion proportion between
adjacent layers, affect the performance of FPN. Previous works improve the performance by
decreasing the down-sampling factor, however, this will lead to increasing the computation
complexity.

In this section, we provide the background of the FPN. Let B denote the 1 x 1 con-
volutional operation for changing channels, and F,, denotes upsampling operation for
increasing solutions. Therefore, the aggregation of adjacent feature layers in the following
manner:

P; = Bi(Xi) + a * Fyp(Piy1) ey
where, o represents the fusion factor between two different adjacent layers, which is set to
1.0 in FPN.

3.2 aFPN

We can observe that the fusion factor in FPN is the same no matter the layers of feature
maps. This will result in poor distinguish ability during feature fusion between different
layers. Therefore, in this study, we have added a learnable fusion factor to increase the
distinguish ability, which can benefit the recognition of different objects. Figure 3 shows
the network architecture of our attentional FPN. In this figure, we adopt feature maps from
4 residual blocks of ResNet [13] in the proposed aFPN module. Similar to FPN, all feature
maps generated by each residual block will be processed by 1 x 1 convolutional layer for
reducing the number of channels. Specifically, the feature map F3 was 2x up-sampled by
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Fig. 3 Architecture of the proposed aFPN. The weights generator is used to produce a set of attentional
weights, which is related to the upper layers
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nearest interpolation, and then it was fed into an attentional weight generator for producing
the weights used in feature fusion. Then, the feature map F3 with attentional weights was
fused with feature map F3. It is noted that similar to FPN, our aFPN has 5 outputs, and the
top features P5 and P6 can be obtained by twice subsampling. Finally, we append 3 x 3
convolutional layer to eliminate the aliasing effect.

The fusion process also can be represented as (1). Different from FPN, the « in our aFPN
is changeable. Feature maps from different levels have different «. Thus, there are different
o, in our aFPN module. In aFPN, the o, are developed by the attentional weights generator,
as shown in Fig. 3. The attentional weights generator consists of a convolutional layer with
a 1 x 1 kernel size, a ReLu activation function for no-linear transformation, a convolutional
layer with 3 x 3 kernel size, and a sigmoid function used for generating weight maps.

3.3 Detection head

Considering the advantages of anchor-free detection methods, e.g. 1) no manual tuning of
hyperparameters for the anchor setting; 2) simpler architecture of detection head; 3) less
training memory cost, we apply the anchor-free detection head in our single-stage detection
module.

As shown in Fig. 2, each detection head has three task-specific subnets, i.e., classifica-
tion branch, regression branch and centerness prediction branch. Here, regression subnet
predicts the 4-dimensional class-specific distances from each point to the boundaries of a
nearby instance, and centerness branch predicts the 1-dimensional outputs. The classifica-
tion subnet is used to predict the K-dimensional vector of classification labels. In our work,
regression and centerness subnets use the same feature maps to predict bounding box and
centerness, respectively.

3.4 Soft-weighted loss function

We argue that ineffective training of network is the major obstacle for low detection accu-
racy of one-stage point-based detector. To be specific, those point samples receiving false
attention will produce false detection during training, which suppresses the detection result
with accurate localization but a lower score. The detection with a high score has the prior-
ity to be kept in the step of post-processing(e.g., Non-Maximum Suppression), resulting in
poor performance of detector at higher Intersection-over-Union (IoU) thresholds.

In this paper, we introduce a novel objective function during training strategy, i.e., soft-
weighted loss function. For point samples, we reweight their contributions to the network
loss by their distances to the instance box. We think that the closer to the center of the
instance box, the more they should contribute to the network loss.

To implement the network training, we first define attention-based weights. We know
that the point is assigned a positive sample if it falls into any ground-truth bounding
box, and the class label ¢ of the point is the class label of bounding box B [30]. Fol-
lowing [31], an effective region of the ground-truth box centered at (cy, cy) is defined
as (cx —7rs, ¢y —7rS, Cx +r8,cy+ rs), where r is a hyper-parameter being 1.5 and s is
the stride of backbone network. If the location (x, y) falls into the effective region, it is
considered as the positive sample, otherwise a positive sample.

For positive point p;;, the weight w;; is decided by the distance between its image
location (i, j) and the corresponding instance boundaries B. For the negative sample,
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the received attention remains unchanged as the negative sample does not participate in
bounding box regression during training.The processing can be implemented as follows:

N (pij, B) , Dij 1S positive
Wij = { 1, otherwise )

Additionally, f is a function reacting how close p;; is to the boundaries of B. Closer dis-
tance yields less attention weight. We adopt the definition of centerness in[30] to simulate

this relation.
min (I, r)ymin (¢, b)
i B) = 3
f (pll] ) \/max (I, r)ymax (t, b) 3

here, [, r, t, and b can be calculated by:

l=x—x0,t =Yy — Yo, )
F=xp—x,f=y —y.

where (x,y) is the location of positive anchor point, (xg, yp) and (x1, y;) denote the
coordinates of the left-top and right-bottom corners of the bounding box B.

Overall loss function of our network Our detection module includes three branches, clas-
sification layer, regression layer, and centerness layer. The classification network generates
a K-dimensional and the regression network outputs a 4-dimensional location. The center-
ness branch is used to predict the attention weight for each positive point sample. In this
paper, Focal loss [22] is adopted for training the classification network to overcome the
class imbalance between positive and negative samples. For training the localization subnet,
we apply IoU loss. Cross entropy loss is used for training the centerness network. Thus, the
loss L;;j of each point can be defined as follows:

S wig el (¢Foe) Fwig el @ d) + e (F. ), pept
Lij = (%)

ZFL(C*vc)'i_lCE(f*’f)’ pEpP

where, pT and p~ are the set of positive and negative samples, respectively.

4 Experimental results and analysis

In this part, we report our extensive experiments with the proposed detector. We first show
the experimental setting, and then comparisons between our method with other state-of-the-
art methods, finally components analysis of the proposed method and quantitative visualized
detection results.

4.1 Experimental setting

Following FCOS [30], we have initialized the detection head. We have selected ResNet50,
ResNet101 and ResNeXt101 as backbone, which are pre-trained on large-scale ImageNet
dataset. Specifically, stochastic gradient descent (SGD) optimizer [2] is used to train the
network, with a momentum of 0.9. The model is trained for 24 epochs ( 180k iterations) with
the initial learning rate being 0.0025 and a minibatch of 2 images. Note that the learning rate
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is divided by 10 at 16-th and 19-th epochs, respectively. All detection models are constructed
based on MMDetection [5].

Comparison methods We evaluate the performance of our method on the common
datasets, and compare it with other state-of-the-art detectors, including Retinanet [22],
ATSS [38], FSAF [44], FCOS [30], FreeAnchor [40], and FoveaBox [17]. The parameters
of comparison detectors have not been changed without specific notes, which is conducive
to ensure the credibility of experimental results. Additionally, all experiments are performed
on a single NVIDIA TITAN GPU with 24 G memory.

Datasets We use three different datasets to evaluate the proposed method, including MS
COCO [23], and VisDrone [45]. (1) The MS COCO dataset is a large-scale generic dataset
with 80 classes, including 118k images for training and 5k for validation. In this paper,
all detectors are evaluated by using 5k images for testing. (2) The VisDrone dataset con-
sists of 10209 images (6471 images for training, 548 images for validation, 3190 images
for testing) with 10 categories (pedestrian, person, bicycle, car, van, truck, tricycle, awning
tricycle, bus, motor). Because the evaluation server is shut down now, we cannot test our
method on the test set. Therefore, we evaluate our method on the validation dataset. (3) The
AgriPest21 dataset is a large-scale small pest dataset with 21 categories, which continues
24k images in total. It consists of 15378 images for training, 6592 images for validation,
and 2442 images for testing. The sizes of objects in AgriPest21 dataset tend to small and
dense distribution [35].

Evaluation metrics To verify the detectors better and more fairly, the following metrics
used in [23] are employed: mean Average Precision (mAP) and average recall (AR). Specif-
ically, mAP was calculated textcolorredbythe average AP across IoU thresholds from 0.5 to
0.95 with an interval of 0.05. AP0.5, AP0.75 denote AP at IoU ratios 0.5 and 0.75, respec-
tively. APs, APm and AP denote the AP for small, medium, and large objects, respectively.
Finally, we evaluate the detection speed using the frame per second (FPS) metric and the
number of parameters of the model.

4.2 Overall performance
4.2.1 Performance on MS COCO benchmark

We compare the proposed approach with state-of-the-art detectors on MS COCO dataset
by using ResNet 50, ResNet 101, and ResNeXt101 as backbone, respectively. The compar-
ison results in terms of AP are reported in Table 1. The proposed method with ResNet101
backbone achieves 41.0% AP, outperforming state-of-the-art one-stage detectors. When
changing the backbone, our method consistently outperforms other detectors. To be spec-
ify, using ResNeXt101 as the backbone, our proposed detector obtains 44.2% AP, which
is higher than other detection methods. Particularly, the performance on the small object
scale is 27.8% AP, obtaining a large improvement compared with other methods. These
comparison results indicate the effectiveness of our proposed method for small object
detection.

4.2.2 Performance on VisDrone benchmark

The detection results of the proposed method and excellent detectors, i.e., RetinaNet [22],
ATSS [38], FSAF [44], FCOS [30], FreeAnchor [40]. Table 2 reports the AP of each
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Table 1 Comparison results with state-of-the-art detectors on MS COCO validation set

Methods Backbone AP APO> APOTS AP; AP, AP
RetinaNet [22] ResNet50 36.6 55.4 39.0 20.5 40.1 47.5
ResNet101 38.5 57.6 41.0 21.7 42.8 50.4
ATSS [38] ResNet50 39.4 57.6 42.8 23.5 429 50.3
ResNet101 415 59.8 45.1 24.1 45.9 533
FCOS [30] ResNet50 36.5 55.2 38.8 20.2 40.1 47.7
ResNet101 39.2 58.6 42.0 22.8 42.8 51.5
FreeAnchor [40] ResNet50 38.7 573 41.5 21.0 42.0 51.3
ResNet101 403 59.0 43.1 21.8 44.0 54.2
FoveaBox [17] ResNet50 37.9 58.2 40.0 21.3 41.8 49.3
ResNet101 39.1 58.5 41.6 21.0 43.1 523
Ours ResNet50 39.5 58.7 425 22.9 433 51.0
ResNet101 41.0 60.1 44.1 242 45.0 52.6
ResNeXt101 44.2 64.0 474 27.8 48.0 56.8

category and mean AP of all types of objects on VisDrone benchmark.The proposed method
achieves an mAP of 38.3% , 13.8, 4.9, 9.8, 7.1, and 14.0 points higher than RetinaNet,
ATSS, FSAF, FCOS, and FreeAnchor, respectively. Furthermore, we also observe that
the detection results of these objects (“bicycle”, “tricycle” and “awn”) underperforme for
all detection algorithm, however, our proposed method still outperforms other methods.
For example, for the detetcion of “bicycle”, our method can obtain 15.6% AP, achieving
significant improvement compared with others.

The task of car detection is more challenging in VisDrone dataset. Following [14], we
diagnose errors in object detectors to illustrate the effectiveness of our proposed method,
as shown in Fig. 4. C75 and C50 represent the areas under Precision-Recall curve when
ToU ratio is set to 0.75 and 0.5, respectively. Loc denotes the area under Precision-Recall
curve when IoU ratio is set to 0.1. Sim, Oth, and BG denote the area under Precision-
Recall curve after removing false positive due to confusion with similar categories, others,
and background, respectively. FN denotes the area under the Precision-Recall curve after
removing all false positives, that is when AP is 1.0. Figure 4(a)-(f) show the precision-
recall (P-R) curves of our method and other methods, including RetinaNet [22], ATSS [38],
FSAF [44], FCOS [30], and FreeAnchor [40]. We can see that our method can achieve
the best performance. Our method has less localization error, indicating that the proposed

Table2 The AP values on VisDrone validation set of each object category

Methods mAP ped. people bicycle car van truck tricycle awn bus  motor
RetinaNet [22] 245 252 154 5.4 679 312 248 132 56 31.1 249
ATSS [38] 334 377 179 13.8 752 39.0 333 229 11.5 458 369
FSAF [44] 285 392 298 6.1 748 322 261 113 53 289 316
FCOS [30] 312 368 247 8.0 74.1 379 320 17.0 11.9 456 240
FreeAnchor [40] 243 345 189 35 712 29.1 234 92 44 221 268
Our method 383 443 30.0 15.6 779 448 386 254 13.8 573 352
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Fig.4 Results of error analysis of the proposed method and SOTA detectors on VisDrone dataset

approach can localize objects better because the soft loss function decreases the false posi-
tive during training. For example, the proposed method can get 0.254 C75, which is higher
than the best anchor-based method, ATSS detector [38]. Additionally, the detection accu-
racy can be raised from 0.278 to 0.475 after removing false positives due to confusion
with backgrounds, demonstrating that the detection error is mainly because of background
confusion.

4.2.3 Performance on AgriPest21 dataset

To further verify the performance of our proposed method on small objects, we conduct sev-
eral experiments on a tiny pest dataset. Table 3 reports the comparison results on AgriPest21
dataset using ResNet50 as the backbone. We can observe that our method achieves the best
performance among all methods and its AP is 2.3% higher than the second-best [38]. These
results demonstrate that the proposed method is more competitive for tiny object detection.

Table 3 Detection results on AgriPest21 dataset

Methods AP APO.5 APO0.75 APs APm API
RetinaNet 41.2 64.7 484 25.7 473 45.0
ATSS 46.6 72.6 55.4 31.7 51.0 40.0
FSAF 452 71.3 52.7 30.5 49.5 35.1
FCOS 45.7 71.9 53.5 32.8 50.9 45.0
FreeAnchor 43.6 68.1 51.6 27.1 48.7 40.1
Our method 48.9 75.8 57.2 36.1 53.1 60.0
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Table 4 The influence of aFPN and soft-weighted loss function (AgriPest21 dataset)

Baseline aFPN Soft-weighted loss AP APO.5 APO0.75 APs APm AP1

45.6 71.4 53.2 325 50.4 45.0
FCOS v 475 74.3 56.0 339 52.7 60.1
V4 Vv 48.9 75.8 572 36.1 53.1 60.0

4.3 Ablation experiments

We carry out a series of experiments to explore the effect of the aFPN and soft loss function.
The detection results on AgriPest dataset are reported in Table 4. Here, we take FCOS detec-
tor with ResNet50 backbone as the baseline. When we adopt the proposed aFPN instead
of conventional FPN, the AP raises to 47.5%, implying that the attentional fusion factor
has contributed to object detection. Additionally, when the soft loss function is applied
to the train network, the performance surges to 48.9%, showing the importance of the
soft-weighted loss function during training.

4.4 Efficiency analysis

As we know, the parameters of the network will affect the inference time of detectors.
To evaluate the detection efficiency of our proposed network, we calculate the number of
parameters of the model with/without the proposed aFPN. Table 5 reports the results. From
this Table, we can observe that the computation burden increases slightly using aFPN. For
example, for FCOS detector [30] with ResNeXt101 as backbone, the parameter of the pro-
posed model is 90.45M, which increases 0.66M. And the method with aFPN can achieve
10.1 FPS from the view of detection speed. Therefore, the performance gain of the proposed
model has been achieved with negligible computation cost (Table 5).

4.5 Quantitive examples

Quantitive examples on generic object detection For visualization purposes, several
examples of detection results on MS COCO dataset are given in Fig. 5. We can observe that
our proposed method can detect objects with a wide range of scales, including large objects
and extremely small ones.

Table 5 Efficiency analysis of the proposed model on MS COCO dataset using a single Nvidia GPU. The
width and height of the input image are set to 1333 and 800, respectively, when calculating the parameters

Backbone AFPN Parameter (M) Detection speed(FPS) AP50(%)
FCOS ResNet50 32.02 24.1 552
Vv 32.7 23.8 56.4
ResNeXt101 89.79 10.2 62.1
v 90.45 10.1 64.0
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Fig.5 Some detection results on MS COCO dataset

Quantitive examples on Visdrone dataset Scales of instances in VisDrone datatset tend to
be small, bringing great challenges for precise detection. To further verify the performance
of our method, we visualize some detection results, as shown in Fig. 6. We found that the
proposed detector can accurately recognize and localize the objects. However, some tiny
and vague objects are missed during testing. For example, in the last row of Fig. 6, very
small car and person instances marked with yellow circles are undetected.

Quantitive examples on Visdrone dataset AgriPest21 dataset is a large-scale small pest
dataset facing a specific domain. The relative scales of pest instance tend to be very small,
which bring great challenges to the precise detection of pests. The proposed method has
good performance for the detection of pests with tiny size and dense distribution. Figure 7
visualize some detection results on AgriPest21 dataset.

5 Conclusion

To address small object detection, in this paper, we design an attention-based feature pyra-
mid network by introducing a learnable feature fusion factor. It can adaptively propell
shallow layers to focus on small objects, which result in the improvement of small object
detection. We also propose a novel training method by reweighting the loss of each sample
to address the false attention during network training, which leads to the reduction of false-
positive detections of small objects. Numerous comprehensive experiments on large-scale
MS COCO, VisDrone, and AgriPest21 datasets demonstrate that our proposed approach
achieves accurate and high-speed results and outperforms state-of-the-art detection methods
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Fig.6 Some detection results on VisDrone dataset
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in terms of accuracy and efficiency. Moreover, ablation studies also show the effective-
ness of each proposed component. However, as experimental results indicate, our proposed
method still has some limitations. For instance, as we mentioned in visualization results on
VisDrone dataset, some very tiny and blurry person instances are missed using our method;
that is to say, when the size of objects is very small, our proposed aFPN can not extract
enough classification features information, leading to missed detection of these objects. In
the future, we will focus on the detection of tiny objects by using the data augmentation
methods, expending receptive field and other technologies.

Data Availability The datasets generated during and/or analysed during the current study are available from
the corresponding author on reasonable request.
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