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A CNN-transformer hybrid approach for an intrusion
detection system in advancedmetering infrastructure
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Abstract
Bi-directional communication networks are the foundation of advanced metering infras-
tructure (AMI), but they also expose smart grids to serious intrusion risks. While previous
studies have proposed various intrusion detection systems (IDS) for AMI, most have not
comprehensively considered the impact of different factors on intrusions. To ensure the
security of the bi-directional communication network of AMI, this paper proposes an IDS
based on deep learning theory. First, the invalid features are eliminated according to the
feature screening strategy based on eXtreme Gradient Boosting (XGBoost), after which
the data distribution is balanced by the adaptive synthetic (ADASYN) sampling technique.
Next, multi-space feature subsets based on the convolutional neural network (CNN) are
constructed to enrich the spatial distribution of samples. Finally, the Transformer is used
to construct feature associations and extract crucial traits, such as the temporal and fine-
grained characteristics of features, to complete the identification of intrusion behaviors. The
proposed IDS is tested on the KDDCup99, NSL-KDD, and CICIDS-2017 datasets, and the
results show that it has high performance with accuracy of 97.85%, 91.04%, and 91.06%
respectively.
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1 Introduction

Among the key components of smart grids, advanced metering infrastructure (AMI) is an
important node that connects customers with the power system [5, 7, 14, 50]. It links key
equipment, such as smart household multimedia tools, smart meters, data concentrators, and
measurement data management centers of the smart distribution grid, with a bi-directional
communication network to collect electricity consumption information and provide opera-
tional references for real-time tariff strategies and power dispatch. However, bi-directional
communication networks also make AMI more vulnerable to intrusions and attacks; intru-
sions can leak private user information, while attacks can seriously affect the stable and
secure operation of the grid [34, 48].

In previous research, passive defense technologies, including encryption [24, 45],
authentication [10, 18], and privacy protection [6, 20], have been the main methods used to
ensure the security of AMI. However, as it is difficult to dynamically detect intrusion behav-
ior using these techniques, an active defense based on intrusion detection systems (IDSs)
is required to accurately assess the risks faced by AMI to reduce and avoid such scenarios.
IDSs can be categorized as either misuse or anomaly detection systems according to their
detection means. Misuse detection systems mainly identify attacks by building a knowl-
edge base and carrying out pattern matching, but their ability to recognize attacks is limited.
Anomaly detection systems identify attacks by comparing differences between actual and
normal behavior. As anomaly detection can detect unknown attacks and is more universal,
it is more suitable for the complex communication environment of AMI.

With the application of artificial intelligence (AI) technology, anomaly detection meth-
ods based on machine learning (ML) have become a popular research topic in the field of
IDSs. As a branch of AI, traditional ML has been pioneered in AMI intrusion detection due
to its low data requirements, high interpretability, and fast training [23, 29, 38]. However,
traditional ML is characterized by low detection accuracy, is prone to fall into the local
optimum, and struggles to fit high-dimensional attack scenarios. Therefore, it is difficult to
adapt ML to the complex and diverse communication environment of AMI. Deep learning
(DL) is an important branch of ML that can fit various complex situations via a deep neu-
ral network without feature engineering, and has strong representation ability. In addition,
it perfectly overcomes the shortcomings of traditional ML, such as its low accuracy, weak
fitting ability, and poor multi-classification effect, and is gradually being employed in AMI
intrusion detection research [1, 3, 4, 11, 28].

Nevertheless, most of the current research on AMI intrusion detection based on DL
focuses on local and temporal features [26], rather than deeper characteristics, such as cor-
relations and fine-grained features. In addition, datasets are the basis of DL, and the low
frequency of intrusion means that most datasets used in IDSs are unbalanced [35] and
may contain invalid features that are not conducive to classification [40]. Thus, a more
comprehensive and efficient IDS should be designed within the context of AMI.

Considering the problems with datasets and the correlation and fine-grained aspects of
AMI communication characteristics, this paper proposes a DL model that incorporates a
convolutional neural network (CNN) and Transformer to complete the intrusion detection
of AMI. In the proposed model, the impacts of unbalanced data distributions and invalid
features are first reduced by adaptive synthetic (ADASYN)-based data augmentation and
eXtreme gradient boosting (XGBoost)-based feature screening. The CNN component is
then used to map the original data to different subspaces and build multi-space feature sub-
sets to obtain a richer nonlinear representation. Subsequently, the Transformer component
is used to mine deeper characteristics, such as fine-grained features, and to complete the
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construction of feature associations. Finally, the mapping relationships between features and
labels are constructed by the softmax function. The proposed model combines the advan-
tages of the CNN and Transformer and has excellent intrusion detection performance. The
main contributions of this research are listed as follows.

(1) A CNN-Transformer hybrid network for an AMI IDS is proposed. Compared with
models proposed in related work, the proposed model achieves better performance by adopt-
ing a Transformer to extract temporal and fine-grained features and construct correlations
between arbitrary features in the AMI network. To the best of the authors’ knowledge, the
proposed model is the first application of the Transformer in the IDS field.

(2) To reduce the impacts caused by invalid features, unbalanced sample distributions,
and single feature expression, XGBoost and ADASYN sampling are employed to process
the dataset, and a CNN is used to construct multi-space feature subsets of the original data
to increase the diversity of samples.

(3) The proposed model is extensively evaluated on the KDDCup99, NSL-KDD, and
CICIDS2017 datasets. These three datasets have similar characteristics and attack types as
AMI, and the samples are well distributed and abundant. The experimental results demon-
strate that the proposed model achieved better performance than models proposed in related
work.

The remainder of this paper is arranged as follows. Section 2 provides an overview of the
related work. Section 3 presents the components of the CNN-Transformer hybrid network.
Section 4 describes feature screening, dataset balancing, and data preprocessing. Finally, the
results of experiments are analyzed in Section 5, and conclusions are provided in Section 6.

2 Related work

Since the initial development by Anderson [8], IDSs have been widely used in power
systems. Traditional intrusion detection in AMI is achieved via methods such as pat-
tern matching. However, with the application of AI technology, traditional ML and DL
algorithms provide new solutions for IDSs.

2.1 IDS in AMI based on traditional ML

Traditional ML methods have a mostly shallow structure, and are widely used in IDSs due
to their simplicity, fast training, high interpretability, and generalization ability.

An IDS based on a deep belief network (DBN) was proposed by He et al. [22], and
determines the mapping between the input and label via a probability generation model;
while this method has strong scalability, it is prone to fall into overfitting. In view of the
slow detection speed of traditional methods, an IDS based on an extreme learning machine
(ELM) was proposed by Shen et al. [42]; while the detection efficiency of this method is
greatly improved, it faces issues with choosing the optimal parameters. To solve this prob-
lem, Zhang et al. [54] introduced a genetic algorithm (GA) to obtain the optimal parameters,
and the results of experiments showed that the resulting GA-ELM has powerful intrusion
detection capabilities. Tian et al. [44] designed an IDS for AMI based on k-means clustering;
this model is driven by data and behavioral characteristics to complete the rapid cluster-
ing of abnormal electricity users, but its detection precision remains very limited. An IDS
model with a two-layer structure was presented by Punmiya et al. [37]. The model first uses
a gradient boosting theft detector (GBTD) to complete feature screening, after which the
processed data are classified using gradient boosting classifiers (GBCs); this combination
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has a strong feature processing ability. In view of the low precision and over-fitting of the
methods noted previously, Yan et al. [49] proposed an electricity theft detection model based
on XGBoost. This model is not only characterized by improved generalization ability, but
could also be used in the case of an unbalanced sample distribution. Salman et al. [41]
designed an IDS based on a boosted C5.0 decision tree (DT); the proposed model includes
the introduction of an adaptive synthetic algorithm, which improves the efficiency of the
IDS to ultimately improve the traditional DT. Engelbrecht et al. [17] introduced support
vector machines (SVMs) to the study of AMI intrusion detection; in the proposed method,
an SVM is used to locate the optimal hyperplane between normal and abnormal users and
complete binary classification. To address the shortcomings of the use of a single ML algo-
rithm, Kong et al. [32] proposed a hybrid IDS that incorporates multiple ML algorithms; the
IDS integrates the advantages of the K-nearest neighbors (KNN), DT, and SVM methods,
and is characterized by a stronger detection capability.

In summary, it is clear that traditional DL relies too heavily on feature engineering, mak-
ing it difficult for it to complete multi-classification. Therefore, it is challenging to apply
traditional DL models to AMI intrusion detection on a large scale.

2.2 IDS in AMI based on DL

DL models are mostly deep structures that extract features via feature extraction compo-
nents, after which they construct the mapping relationship between features and labels via a
deep neural network. DL is characterized by high accuracy, multi-classification ability, and
no requirements for manual feature design, meaning its performance is better than that of
traditional ML in most IDS scenarios.

Yin et al. [53] exploited the sensitivity of recurrent neural networks (RNNs) to sequence
data and applied an RNN to the field of IDS with good results; however, this method still
suffers from long-term dependence. To address this issue, an IDS based on long and short-
term memory (LSTM) was proposed by Kim et al. [31]; the resulting LSTM-IDS model
overcomes the problem of gradient explosion while inheriting the advantages of the RNN-
IDS model. Gupta et al. [19] designed an IDS based on LSTM and an improved one-vs-one
model. In the proposed two-layer architecture, LSTM is used to classify normal and abnor-
mal situations, and the improved one-vs-one model is used to complete multi-classification.
The results of experiments on different datasets showed that this scheme had higher accu-
racy than traditional methods. Liu et al. [33] proposed an IDS based on a CNN that has a
strong ability to extract local features; while it was successfully applied to intrusion detec-
tion, a very limited generalization capability and risk of falling into overfitting were found
to remain. In response to this problem, Yang et al. [51] presented an improved CNN-IDS
model by extracting features through a parallel 1D-CNN architecture, which was found
to achieve better performance in a shorter amount of time. To address the problem of the
limited feature extraction capabilities of a single DL model, a wide and deep CNN was
proposed by Zheng et al. [56] for the detection of AMI intrusions. In this model, the wide
component consists of a deep neural network (DNN) for the detection of the periodic fea-
tures of the data and a deep component consisting of a CNN for the extraction of the
local features of the data; together, these two features guide intrusion classification. Hasan
et al. [21] proposed a CNN-LSTM-based IDS for electricity theft. The model was found to
achieve improved detection ability and a stronger periodic representation of features via the
serial combination of the CNN and LSTM. Javaid et al. [27] solved the problem of unbal-
anced sample distributions faced by the method proposed by [21] via the introduction of
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ADASYN to process few-shot samples, and achieved good results. However, this type of
serial combination approach is susceptible to feature loss. To address the problems faced
by previous methods [21, 27], a cross-layer aggregated CNN-LSTM model was presented
by Yao et al. [52]. This model fuses features extracted by CNN and LSTM into a compre-
hensive feature that contains multi-domain characteristics, which solves the deficiency of
the serial CNN-LSTM model; however, the structure of LSTM is complicated and less effi-
cient. To deal with this problem, Ayub et al. [9] introduced gated recurrent units (GRUs) to
replace the LSTM component, and proposed a CNN-GRU-based IDS for use in AMI. Com-
pared with LSTM, GRUs have a simpler structure and faster convergence, and require less
data. While all these methods extract features directly from the original data, the invalid fea-
tures are not conducive to better performance implementation. To address this issue, Cosimo
et al. [25] proposed an auto-encoder (AE)-based IDS in which the features extracted by the
AE replace the raw data as the input to the IDS, and the results of experiments demonstrated
that this approach effectively reduces false alarms. Shone et al. [43] combined the advan-
tages of ML and DL and proposed an NDAE-RF-based IDS, which retains the advantages
of ML and reduces the training time.

In addition, the DL methods noted previously are also characterized by disadvantages
including slow training, weak correlations between features, and poor long-term memory
capability. To solve these problems, Vaswani et al. [46] proposed the Transformer struc-
ture; this structure uses a parallel approach to process the data, which achieves improved
real-time performance. It also allocates limited resources to important areas through a
self-attention mechanism, which reinforces the position association of different features.
Moreover, its residual architecture alleviates the gradient disappearance problem. The effec-
tiveness of the Transformer has been demonstrated in a variety of tasks in fields including
graph matching [16], natural language processing [15], and behavior prediction [47].

Considering the advantages of the transformer, this paper proposes a CNN-Transformer
hybrid approach for an IDS in AMI. The approach uses a CNN to construct multi-space
feature subsets of the original data, after which the Transformer is used to extract temporal
and fine-grained features and learn the correlations between different features to achieve
better detection performance.

3 System components

In AMI communication networks, power consumption data have obvious temporal and fine-
grained characteristics under normal conditions. Some features are also strongly correlated
with each other [56], and those properties will be corrupted when an intrusion occurs. As
such, this paper proposes a CNN-Transformer hybrid network-based IDS. The proposed
IDS is presented in Fig. 1, and mainly consists of a feature extraction component-based
CNN and an intrusion detection component-based Transformer. The CNN is primarily com-
posed of a convolution layer, pooling layer, and a fully connected (FC) layer, and is mainly
used to extract local features and build multi-space feature subsets. The Transformer is pri-
marily composed of input and position embedding, multi-head self-attention, a feed-forward
neural network, and a residual network. The Transformer is predominantly used for the
extraction of temporal and fine-grained features, and as it can establish the associations
between different features, it is able to detect small changes in AMI communication net-
works. Finally, the extracted features are input into the FC layer and the softmax function
to complete intrusion classification.
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Fig. 1 The architecture of CNN-Transformer hybrid network

3.1 Feature extraction based CNN

The basic CNN is composed of three parts, namely a convolution layer, activation function,
and pooling layer. When processing the classification task, an FC layer is also introduced to
complete the mapping of the input to the label. The structure of the CNN used in this study
mainly consists of two convolutional layers, two pooling layers, and an FC layer.

The convolutional layer is the core of the CNN. It can extract local features via a con-
volution operation and consists of several convolutional kernels stacked together. Via the
convolution operation, the convolution kernels can learn different features in the input data
and retain the spatial correspondence of different features. The most important features are
then retained by maximum pooling. Compared with other pooling tools, maximum pooling
can effectively alleviate the offset of the estimated value caused by the parameter error of the
convolution layer. Finally, the features are input to the FC layer with the softmax function to
complete the mapping of features to labels. The expression of the CNN is defined as follows.

⎧
⎨

⎩

Xi = f (wi ⊗ Xi−1 + bi)

Qj = Max(P 0
j , P 1

j , P 2
j ...P

t
j )

Yj = f (wj ⊗ yj−1 + bj )

(1)
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where wi and bi represent the weight and bias of the i-th convolutional kernel, ⊗ stands for
the convolution operation, f (x) refers to the activation function, Qj represents the pooling
result of the j-th region, Max stands for the maximum pooling operation, and P t

j expresses
the t-th element of the j-th pooling region, wj and bj represent the weights and biases of
j-th neurons in the FC layer, Xi , Xi−1 and yj−1, Yj indicate the input and output of the
convolution kernel and FC respectively.

To enrich the feature space and ensure diversity, the convolutional kernel of the first con-
volutional layer is selected as the feature extractor, and the original data are re-entered after
completing the pre-training of the CNN. The feature map is then flattened and concatenated
to obtain a multi-space representation of the original data. This operation allows the original
data to be mapped in different spaces, which increases the diversity of samples while avoid-
ing the feature loss problem caused by maximum pooling. Feature extraction-based CNN is
defined by (2).

xi = Hconcat (Gf latten(X1, X2, ...Xk)) (2)

Where X is the feature map extracted by the k-th convolution kernel, k is the num-
ber of convolution kernel, Gf latten(x) represents the flatten process, Hconcat (x) means the
concatenate operation, and xi refers to the extracted multi-space feature.

3.2 Transformer-based feature identification

The Transformer mainly consists of stacked encoders and decoders. As encoders predomi-
nantly complete the feature extraction function, only the encoder components are employed
in the proposed model. The main components of the Transformer encoder are input and posi-
tion embedding, multi-head self-attention, layer normalization, the forward neural network,
and the residual network.

The embedding component consists of both input and position embedding. Input embed-
ding reflects the relationship of discrete inputs mapped to the same space, position
embedding is used to explain the sequential relationship of different features, and the sum
of the two forms is the final input of the Transformer encoder, as expressed by the following
equation.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Xi
input−emb = W × G(Xi)

Xi
pos−emb = sin(pos/1000k/dmodel ) (k = 2i)

Xi
pos−emb = cos(pos/1000k/dmodel ) (k = 2i + 1)

Xi
input = Xi

input−emb + Xi
pos−emb

(3)

where Xi represent i-th feature of the input, W represents the weight matrix, G(x) stands
for the one-hot function, pos denotes the position of the feature, dmodel stands for the input
dimension, k represents the position of the input, Xi

input−emb and Xi
pos−emb means the input

and position embedding result.
The multihead self-attention mechanism, which is an extension of the attention mech-

anism, is the basis of Transformer. In this paper, we adopt the multi-headed self-attention
mechanism with a scaled dot product.

Compared with the scaled dot-product attention mechanism, the multi-head scaled dot-
product attention mechanism allows the model to focus on the information of different
features mapped to various subspaces to obtain diverse attention values. The attention
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values of each head are calculated independently, which effectively prevents overfitting, and
its specific expression is as follows:

⎧
⎨

⎩

Attention(Q, K, V ) = sof tmax((Q · KT )/
√

dk)V

headi = Attention(QW
Q
i , KWK

i , V WV
i )

Multihead(Q, K, V ) = concat (head1, head2...headh)W
O

(4)

Where Q, K and V represents the query matrix, key matrix and value matrix respec-
tively, · represents the dot product operation, dk represents the dimension of k, h is the
number of attention heads, and dv and dmodel represent the dimension of v and model. In
addition,WQ

i ∈ R
dmodel×dk , WK

i ∈ R
dmodel×dk , WV

i ∈ R
dmodel×dk , WO ∈ R

dmodel×hdv .
The unique structure of the Transformer solves the limitation of traditional RNN that

cannot be computed in parallel. Compared with CNN, the spatial distance between different
features in Transformer is equal, so it requires fewer operations to compute the association
between two features. Other structures like multihead self-attention mechanism and residual
network also allow the model to achieve deep architecture while focusing on the temporal
and fine-grained features of different subspaces.

3.3 Training process of proposed CNN-transformer hybrid network

Considering the various advantages of the CNN and Transformer, this paper proposes a
CNN-Transformer hybrid approach for the detection of intrusions in AMI. ADASYN and
XGBoost are also introduced to reduce the interference of an unbalanced data distribution

Fig. 2 IDS based on CNN-Transformer hybrid approach
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and invalid features. As shown in Fig. 2, the proposed CNN-Transformer hybrid approach
mainly consists of the following three steps.

Step 1: Processing of datasets and features. First, XGBoost is selected as the feature
screening tool to remove invalid features, and ADASYN is used to balance the dataset
distribution. Numerical and one-hot encoding are then adopted to facilitate model
processing. Finally, normalization is carried out to eliminate the scale effect.

Step 2: The CNN is pre-trained with the processed dataset, which is then re-input into the
CNN, and the convolution kernel is used to complete the mapping of the original data
in multiple feature subspaces. The results of each feature map are then extracted and
constructed into multi-space feature subsets.

Step 3: Feature extraction and classification-based Transformer. The extracted multi-
space feature subsets are processed by input and position embedding to form the final
input of the Transformer. The unique structure of the Transformer is used to extract fea-
tures, and the mapping relationship between features and labels is constructed by the FC
layers and softmax function.

4 Dataset selection and data preprocessing

4.1 Datasets selection

The KDDCup99, NSL-KDD, and CICIDS-2017 datasets are selected as the experimental
benchmark datasets, and are described as follows.

The KDDCup99 dataset is derived from connectivity and system audit data collected
by the Lincoln Laboratory, and simulates the U.S. Air Force LAN system. It contains five
major categories and 40 minor categories, with a total of 4,898,431 pieces of data. Each
piece of data contains 32 continuous feature attributes and nine discrete feature attributes
[13]. The KDDCup99 dataset has a rich sample size, and the attack types are similar to those
experienced by AMI [30]. As the original KDDCup99 dataset is large, 10% of the original
dataset was selected as the training set. After excluding the data that do not appear in the
training set, the sample distribution of the KDDCup99 dataset is shown in Table 1.

The attack and feature types of the NSL-KDD dataset are similar to those of the KDD-
Cup99 dataset. However, the redundant data are eliminated in the NSL-KDD dataset to
make the distribution more balanced [12], and the duplicate data in the test set are removed
to enable more accurate detection results. In addition, the dataset has a reasonable num-
ber of records in the training and test sets, thereby making the results of different studies

Table 1 Distribution of
KDDCup 99 Algorithms Training data Testing data

amount ratio(%) amount ratio(%)

Normal 97277 16.96 60581 20.73

Dos 391458 79.24 223298 76.40

Probe 4107 0.83 2377 0.81

R2L 1126 0.23 5993 2.05

U2R 52 0.01 38 0.01

Total 494020 100 292287 100
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Table 2 Distribution of
NSL-KDD Algorithms Training data Testing data

amount ratio(%) amount ratio(%)

Normal 67343 53.46 9711 51.68

Dos 11656 9.25 5741 30.55

Probe 45927 36.46 1106 5.89

R2L 995 0.79 2198 11.70

U2R 52 0.04 36 0.19

Total 125973 100 18792 100

more comparable. After excluding the data that do not appear in the training set, the sample
distribution of the NSL-KDD dataset is shown in Table 2.

The CICIDS-2017 dataset is derived from data collected by the Canadian Institute for
Cybersecurity (CIC). It contains the 12 latest common attacks, making the dataset more
similar to the real communication environment of AMI [55]. In addition, the CICIDS-2017
dataset overcomes the shortcomings of other datasets, such as a lack of traffic diver-
sity, limited coverage of attack types, and the anonymization of packet payload data. The
CICIDS-2017 dataset contains a total of 2,830,744 pieces of data, and its subset is chosen
as the benchmark for the experiment. According to previous analyses, the DoS GoldenEye,
DoS Hulk, DoS Slow HTTP, DoS Slow Loris, and DDoS attacks can be integrated as DoS
attacks. Additionally, brute force, SQL injection, and cross-site scripting (XSS) attacks can
be integrated as web attacks. The sample distribution of the integrated CICIDS-2017 dataset
is presented in Table 3.

4.2 Data preprocessing

The raw KDDCup99, NSL-KDD, and CICIDS-2017 datasets consist of numerical and
characteristic features, and labels, yet some of the features are not helpful for the final
classification. Moreover, there are some degree of sample distribution imbalance in these
datasets, and the characteristic features cannot be directly processed by the DL model, the
high values of some numerical features can also interfere with the final intrusion detection
results. Therefore, preprocessing is required to reduce the impacts of such factors.

Table 3 Distribution of
CICIDS-2017 Algorithms Training data Testing data

amount ratio(%) amount ratio(%)

Normal 71834 53.68 58166 53.11

Patator 7041 5.26 5959 5.46

DoS 40077 29.95 32923 30.17

Web Attack 1114 0.83 886 0.81

Infilitration 16 0.01 14 0.01

Bot 1031 0.77 869 0.80

PortScan 12710 9.50 10290 9.43

Total 133823 100 109107 100
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4.2.1 Feature Screening

Not all features in the KDDCup99, NSL-KDD, and CICIDS-2017 datasets are useful for the
final intrusion detection. For example, the nineteenth feature (num outbound cmds) is zero
in both the training and test sets of KDDCup99; moreover, in the training set of NSL-KDD,
the ninth feature (urgent) only has significant meaning in nine data items, and the percentage
of valid values is only 0.07‰. In CICIDS2017, features containing the IP addresses and
port numbers of source and target hosts are not helpful for the final classification [36], and
it is important to remove these invalid features.

To reduce overtraining caused by invalid features [2], XGBoost is introduced to respec-
tively rank the importance values of features in different datasets, and the ranking results
are respectively presented in Figs. 3 and 4. Figure 3 illustrates that the importance values of
feature 19 (num outbound cmds) and feature 8 (urgent) in the NSL-KDD dataset are 0 and
6, respectively, so these features are of little help for the final classification. This finding is
consistent with the authors’ previous speculation.

Accuracy is chosen as the evaluation metric, and feature screening experiments based
on XGBoost are conducted depending on the ranking results of the importance values. The
screening results of different datasets are reported in Tables 4, 5 and 6. It can be seen from
Table 4 that the accuracy first increases and then decreases when features are eliminated
one by one according to their importance values, and the highest accuracy is achieved when
features with an importance value greater than 25 are retained; thus, features with an impor-
tance value greater than 25 are screened. Similarly, to reduce the impact of invalid features,
the features in the KDDCup99 and CICIDS-2017 datasets with respective importance values
of greater than 29 and 41 are screened.

Fig. 3 The importance value of KDDCup99 and NSL-KDD
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Fig. 4 The importance value of CICIDS-2017

4.2.2 Balanced datasets

Tables 1, 2 and 3 reveal that there are different degrees of distribution imbalance in all
three datasets. For example, there are only 52 U2R samples in the KDDCup99 training set,
accounting for only 0.01%; this phenomenon is very likely to lead to the underfitting of
the model to U2R during the training process. By combining the distributions of samples
in these datasets, ADASYN is used to eliminate distribution imbalances. Compared with
other techniques, ADASYN can automatically determine the optimal number of samples to
be generated, and its generation process incorporates noise, which improves the robustness
of the generated data.

4.2.3 Numerical and one-hot

The purpose of numerical and one-hot encoding is to convert the character features into
numerical features that can be processed by the DL model. This paper mainly employs
numerical and one-hot encoding for features and labels.

Table 4 The feature screening results of KDDCup99

Importance value >0 >25 >173 >404 >664

Accuracy(%) 75.95 77.16 74.73 66.82 68.13
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Table 5 The feature screening results of NSL-KDD

Importance value >0 >29 >116 >287 >369

Accuracy(%) 92.15 92.69 92.31 90.14 81.03

In KDDCup99 and NSL-KDD, the features that require numerical and one-hot include
Protocol type, Service and Flag. Protocol type consists of three kinds of attributes: TCP,
UDP, and ICMP, so its numerical and one-hot results can be represented by 1∗3 dimension
vectors (0, 0, 1), (0, 1, 0), and (1, 0, 0). Similarly, Service and Flag contain 70 and 11
attributes, so they can be represented by 1∗70 and 1∗11 dimension vectors separately. In
addition, the character labels in these three datasets must also be numerical and one-hot.

4.2.4 Normalization

The main purpose of normalization is to reduce the impact caused by too-strong differences
in the same feature. In this study, the max-min normalization method was used to map all
features to the interval [0,1], and the specific process is shown in (5):

x′ = x − xmin

xmax − xmin

(5)

where x is the original value, xmax and xmin represent the maximum and minimum val-
ues of the feature, respectively, and x′ is the result after normalization. After completing
normalization, the original data is mapped to a two-dimensional form for subsequent
processing.

5 Experiments and results analysis

5.1 Experimental environment and hyper-parameters setting

This study is developed on an Intel i7-10700 with Windows 10, and the DL library
TensorFlow 2.3-GPU of Python is used to construct the CNN-Transformer hybrid network.

In this paper, the initial interval range of hyper-parameters is first determined according
to the characteristics of the datasets, after which the Grid Search method is used to deter-
mine the optimal values of different hyper-parameters. For the learning rate as instance,
different samples have different categories, but their data characteristics are very similar,
if the learning rate is too large, the model will oscillate around the global optimum and
converge poorly. Specifically, we used 0.01 as the initial learning rate and step length, and
explored the loss variation of the proposed scheme at different learning rates. The experi-
mental results are shown in Fig. 5, the loss value is difficult to decrease and converge to a
stable value when the learning rate reaches 0.03 on the KDDCup99 and NSL-KDD datasets,
so it can be known that 0.03 is the critical value of the learning rate on these two datasets.
Likewise, the critical value is 0.04 on the CICIDS-2017. The reason for having different

Table 6 The feature screening results of CICIDS-2017

Importance value >0 >16 >41 >82 >151 >252 >539

Accuracy(%) 82.01 84.82 85.11 79.86 73.43 59.39 50.91
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Fig. 5 The correlation curve between learning rate and loss

critical values may be that the number of features and the distribution characteristics of these
datasets are different. In addition, the AMI intrusion detection system has higher require-
ments for detection effectiveness, and the smaller learning rate is also beneficial to obtain
better detection performance, so a smaller learning rate is appropriate. In this paper, the ini-
tial learning rate search range is set from 0.001 to 0.01, and the step length is 0.001. The
settings of different hyper-parameters are shown specifically in Table 7.

5.2 Evaluationmetrics

Accuracy (ACC), precision (P), the detection rate (DR), the F1-score (F), and other indi-
cators are usually employed as evaluation metrics for IDSs [39]. Their definitions are
respectively provided by following equations.

ACC = T P + T N

T P + FP + T N + FN
(6)

P = T P

T P + FN
(7)
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Table 7 Setting of
hyper-parameters Project Setting

Conv 4/8

Conv activation function ReLU

Dense 512

n of Transformer encoder 4

dmodel 500

Head number 2

Dropout 0.5

Softmax 5/8

Cost function Cross entropy

Batch size 512

Learning rate 0.001

Optimizer Adam

Epoch 100

DR = T P

T P + FP
(8)

F = 2 ∗ P ∗ DR

P + DR
(9)

Where TP (True Positive) represents the number of normal samples identified correctly, FP
(False Positive) represents the number of normal samples identified incorrectly, TN (True
Negative) represents the number of abnormal samples identified correctly, and FN (False
Negative) represents the number of abnormal samples identified incorrectly.

Among these metrics, ACC is the ratio of correctly classified samples to the total sam-
ple. While it is the most intuitive evaluation metric, it is not applicable to scenarios with
extremely unbalanced sample distributions. P is the percentage of true normal samples
among the normal samples predicted by the model, and represents the model’s detection
ability. DR is defined as the proportion of actual normal samples that are determined to be
normal. P and DR are mutually inverse, so the model performance can also be determined
by F, which takes both into account.

To comprehensively evaluate the performance of the proposed IDS, P,DR, F are selected
as the main evaluation metrics, and ACC is adopted as an auxiliary evaluation metric to
judge the behavior of the model in different experiments.

5.3 Experimental design and results

To evaluate the model’s performance, four experiments are conducted in KDDCup99, NSL-
KDD, and CICIDS-2017.

Experiment 1: Using the above datasets to train the proposed IDS, and its detection
ability in different aspect are tested.

We explore the relationship between loss value and epoch firstly, and Fig. 6 shows
the experimental results. This figure shows that the CNN-Transformer hybrid network can
be stable after at most 10 epochs on different datasets, so the proposed model has good
convergence performance.
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Fig. 6 The relationship of loss and epochs

The confusion matrices obtained from different test sets under optimal conditions of
parameters are shown in Fig. 7(a), (b), and (c) respectively. It can be seen that the ACC of
the proposed IDS reaches 97.85%, 91.54% and 91.06% for KDDCup99, NSL-KDD and
CICIDS-2017 respectively, and the P is greater than 95% for Normal, Dos, Port scan and
other types of label. In addition, the P of the proposed IDS reaches 85.78% and 71.43%
for few-shot attacks, such as Web attack and Infiltration in CICIDS-2017. In KDDCup99
and NSL-KDD, the P of few-shot samples, such as U2R, also reaches 55.56% and 65.79%
respectively.

To demonstrate the validity of the experimental results, a 10-fold cross-validation experi-
ment is also conducted on the proposed IDS. The confusion matrices obtained from different
datasets are shown in Fig. 8(a), (b), and (c) respectively. It can be seen that the ACC of
the proposed IDS reaches 99.90%, 99.42% and 92.15% separately, and the P for Normal,
Dos, Probe, and Port Sacn is greater than 99%. In addition, the DR and F are also generally
consistent with the test sets results.

The results of Experiment 1 show that the proposed IDS is more general and has excellent
ACC, P and DR performance in different datasets. Moreover, it can focus on subtle feature
differences to obtain a better intrusion detection capability in few-shot sample scenes and
performs better in convergence.

Experiment 2: The CNN, Transformer, CNN-LSTM, and CNN-Transformer are trained
and tested, and the necessity of multi-space feature subsets constructed by CNN and the
fine-grained and association constructed by Transformer are verified.

Tables 8, 9 and 10 show the P and DR of different models in different datasets, respec-
tively. As can be seen from Tables 8 and 9, the single Transformer has deficiencies on both
P and DR when not using CNN to construct multi-feature subsets compared with the pro-
posed CNN-Transformer. For instance, the Transformer has a 41% difference in P for U2R
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(a) KDDCup99 (b) NSL-KDD

(c) CICIDS-2017

Fig. 7 The confusion matrix for test sets

attacks, compared to the proposed IDS in the KDDCup99 datasets, and this finding demon-
strates the necessity of CNN to sufficiently construct multiple feature subsets. On the other
hand, it has a maximum 66%(U2R of KDDCup99) and 95%(U2R of NSL-KDD) gap in P
and DR, respectively, compared with the proposed IDS when there is no Transformer. In
addition, we replace Transformer with LSTM, which also has a memory function but can-
not extract fine-grained features or construct feature association. It also has a difference
inP and DR from 1% to 95% compared to the proposed IDS. All these results prove that
the Transformer’s ability to conduct fine-grained feature extraction and feature association
construction is very helpful for intrusion detection.

The results of Experiment 2, which is an ablation experiment, show that compared with a
single Transformer, the proposed scheme effectively enriches the feature space, ensures the
diversity of features, and enlarges the feature boundaries through the ability of constructing
multiple spatial feature subsets of CNN. Compared with single CNN and CNN-LSTM, the
proposed scheme enhances the capability of temporal feature and fine-grained feature ex-
traction by introducing Transformer, and effectively enhances the global association of fea-
tures by input and position embedding mechanism. The effective improvement and combina-
tion of different components make the proposed scheme have better P and DR capabilities.

Experiment 3: Traditional models, including CNN, LSTM, GRU, Bayes Network, RF,
and KNN are trained and tested in different datasets, and the performance of the proposed
IDS is compared with the above models.
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(a) KDDCup99 (b) NSL-KDD

(c) CICIDS-2017

Fig. 8 The confusion matrix for 10-fold cross-validation

Table 8 The P and DR of different model in KDDCup99

Metrics P/DR

Attack type Normal DoS Probe R2L U2R

CNN 0.99/0.72 0.97/0.99 0.71/0.78 0/0.07 0/0

Trans 0.99/0.81 0.96/0.99 0.78/0.70 0.12 /0.79 0.25/0.34

CNN-LSTM 0.99/0.72 0.97/0.99 0.69/0.81 0.01/0.03 0/0

CNN-Trans 0.99/0.94 1.00/1.00 0.91/ 0.62 0.21/0.90 0.66/0.54

Table 9 The P and DR of different model in NSL-KDD

Metrics P/DR

Attack type Normal DoS Probe R2L U2R

CNN 0.95/0.79 0.91/0.94 0.86/0.74 0/0 0/0

Trans 0.96/0.82 0.93/0.95 0.77/0.57 0.18 /0.91 0.29/0.41

CNN-LSTM 0.95/0.81 0.96/0.95 0.89/0.70 0/0.13 0/0

CNN-Trans 0.97/0.90 0.99/0.95 0.80/ 0.81 0.54/0.93 0.56/0.95
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Table 10 The P and DR of different model in CICIDS-2017

Metrics P/DR

Attack type Normal DoS Port Scan Patator Web Attack Bot Infilitration

CNN 0.91/0.88 0.83/0.79 1.00/0.99 0.85/0.99 0/0 0/0 0/0

Trans 0.88/0.81 0.76/0.81 1.00/0.99 0.28/0.52 0.81/0.73 0.61/0.84 0.69/0.02

CNN-LSTM 0.92/0.90 0.81/0.72 1.00/0.99 0.89/0.99 0.02/0 0/0 0/0

CNN-Trans 0.94/ 0.95 0.96/ 0.83 1.00/ 1.00 0.28/ 0.99 0.86/ 0.74 0.62/ 0.95 0.71/ 0.43

Considering the contradictory nature of P and DR, we select F as the performance eval-
uation metric. Figure 9(a), (b) and (c) show the F of different models, respectively, where
it can be seen that the performance of the proposed IDS is mostly optimal across different
datasets. The benefits of the proposed IDS is still evident in few-shot attack detection; for
example, the F of Infiltration, Bot, and Web attack is improved by 18%, 38%, and 13% in
the CICIDS-2017, seperately.

(a) KDDCup99 (b) NSL-KDD

(c) CICIDS-2017

Fig. 9 The F of different model

19481Multimedia Tools and Applications (2023) 82:19463–19486



Table 11 The ACC of related work in Test set

Dataset Literature ACC

KDDCup99 Kim et al. [31](LSTM) 96.93%

Shone et al. [43](NDAE) 97.85%

Kim et al. [31](KNN) 90.74%

Kim et al. [31](SVM) 90.40%

Kim et al. [31](Bayesain) 88.46%

NSL-KDD Ieracitano et al. [25](AE-DNN) 87.00%

Shone et al. [43](NDAE) 85.42%

Zhang et al. [53](RNN) 81.29%

Ieracitano et al. [25](Q-SVM) 83.65%

Ieracitano et al. [25](LDA) 83.17%

CICIDS-2017 Gupta et al. [19](CNN) 85.00%

Gupta et al. [19](DNN) 88.00%

Gupta et al. [19](LSTM) 86.00%

Gupta et al. [19](XGBoost) 76.00%

All Proposed 97.85%/91.54%/91.06%

The experimental results of Experiment 3 show that the proposed scheme effectively
reduces the interference of non-technical factors on the intrusion results through feature
engineering and data pre-processing, The proposed scheme enriches the feature space and
obtains the representation of intrusion samples in different feature spaces through the multi-
space feature subset construction capability of CNN. With the Transformer component,
the proposed scheme extracts the temporal and fine-grained features more efficiently and
constructs the global association of features by input and position embedding. Therefore,
the proposed scheme has better performance than other DL and ML models in terms of F.

Table 12 The ACC of related work in 10-fold cross-validation

Dataset Literature ACC

KDDCup99 Liu et al. [33](CNN) 98.02%

Shen et al. [42](ELM) 98.94%

Zhang et al. [54](GA-ELM) 98.90%

NSL-KDD Liu et al. [33](CNN) 97.07%

Shen et al. [42](ELM) 97.58%

CICIDS-2017 Gupta et al. [19](CNN) (89.68%)

Gupta et al. [19](DNN) (90.71%)

Gupta et al. [19](LSTM) (91.36%)

Gupta et al. [19](XGBoost) (84.56%)

All Proposed 99.90%/99.42%/92.15%
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Experiment 4: TheACC of the proposed IDS is compared with related work in different
datasets.

The comparison of the testsets is shown in Table 11. Taking the NSL-KDD dataset as
an example, as shown in Table 11, the proposed IDS still has at least 4.54% improvement
in ACC while retaining noisy data, so the proposed CNN-Transformer hybrid network not
only has better ACC performance but also is more robust. The comparison of 10-fold cross-
validation is shown in Table 12. Since there is a lack of studies on 10-fold cross-validation
on the CICIDS-2017 dataset in related work, we replicated part of the models based on
the hyper-parameter settings in related work and used the CICIDS-2017 dataset for 10-
fold cross-validation. In Table 12, the values in parentheses are the ACC of the replicated
model, and it can be seen that the ACC of the proposed scheme is still optimal, so the same
conclusion as the testsets can be drawn.

The results of Experiment 4 show that the proposed IDS achieves better ACC perfor-
mance and is more robust than related work in different datasets, and this result is confirmed
in both the testsets and the 10-fold cross-validation.

6 Conclusion

A CNN-Transformer hybrid deep neural network model to detect intrusions in AMI is pro-
posed in this paper. The model consist of a cascaded combination of CNN and Transformer,
which can focus on the multi-space characteristics of AMI while paying attention to the
association and fine-grained characteristics of features. XGBoost-based feature screening
and ADASYN-based sample enhancement strategies are also included to reduce the impact
of invalid features and sample distribution imbalance. The experimental results on KDD-
Cup99, NSL-KDD, and CICIDS-2017 show that the proposed IDS enriches the feature
subset by CNN and effectively extracts fine-grained and temporal features by Transformer,
and the accuracy of the proposed IDS is 97.85%, 91.04%, and 91.06% respectively. Sub-
sequent research should focus on IDS research in zero-day attack scenarios, which is a
typical few-shot classification problem. Although the detection capability of the proposed
IDS is significantly improved in this work compared with other research, further improve-
ment is still required. In addition, AMI intrusion detection based on a real communication
environment is also a key issue for subsequent research.
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the corresponding author on reasonable request.
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