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TRACK 3: BIOMETRICS AND HCI

A reliable and efficient machine learning pipeline
for american sign language gesture recognition using
EMG sensors

Shashank Kumar Singh1 ·Amrita Chaturvedi1

Abstract
Sign languages has extensive applications among differently-abled to communicate with
their surroundings. With the development of different sensing technologies, several new
human-computer interaction techniques (HCI) have been established to recognize hand ges-
tures. Computer vision-based methods have shown significant utility for such applications.
However, these methods are strongly dependent on the lighting conditions. The surface elec-
tromyography (sEMG) technique is invariant to lighting conditions and can easily reflect
human motion intention. In this work, sEMG based sign language recognition model was
developed using an efficient machine learning pipeline.

Two sEMG datasets were recorded for predefined hand gestures using wireless sen-
sors. These signals were mainly acquired against 24 manual alphabets (ASL-24) and ten
digits(ASL-10) of American Sign Language (ASL). The collected data sets were prepro-
cessed, and around 450 well-established feature was extracted from each sEMG channel.
We applied an ensemble feature selection approach combining four diverse filter-based fea-
ture selection methods (ANOVA, Chi-square, Mutual Info, ReliefF). A newly proposed
feature combiner that exploits feature–feature and feature–class correlation thresholds is
used to combine feature subsets formed across the ensemble. The resulting features com-
prise reduced & most representative feature subsets and are further used in the pipeline for
classifying ASL gestures.

Using the CatBoost algorithm, the pipeline presented excellent average classification
accuracy(99.91% on ASL-24) and other performance parameters for recognizing ASL ges-
tures. The pipeline was also applied and validated on a benchmark dataset (Ninapro database
5, exercise A) and achieved similar outcomes. The result highlights the feasibility of using
sEMG based approach as better options to computer-vision-based techniques to build an
accurate and robust Sign Language Recognition system (SLRS). Moreover, efforts were
made to find the optimal number of sensors and features for recognition task on (ASL-10
dataset) without impacting the overall reliability and accuracy of the system. The experi-
ments results can be used to enhance the performance of various wearable sEMG sensor
based HCI applications.
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1 Introduction

Sign languages are considered as visual and non-verbal form of communication used by
differently-abled people to express themselves or interact with their surroundings. These
languages are expressed using manual and non-manual features. These features mainly
include different hand movements, use of different number of fingers, palm orientation,
facial expression, head orientation, hand shape, eye gaze, etc. [19, 57]. American Sign Lan-
guage (ASL) is one of the most widely used sign languages that consists of various static
and dynamic gestures as a means of human expression [89]. Most of these gestures are gen-
erated by a single-hand [109]. ASL is similar to any other natural language, having syntax
and grammatical rules of its own [9]. However, there are a few physical disabilities in some
people due to which it becomes difficult for them to convey and/or understand the mean-
ing of sign language completely [74]. Also, in the absence of global standardization, there
are many different regional sign languages that widely differ in their nature, lexicon gram-
mar, and style [65]. So, it becomes a complicated task for individuals from diverse regions
with different sign languages to communicate with each other. A computer-assisted Sign
Language Recognition system (SLRS) can be quite helpful in solving such problems. The
computer-based recognition system can assist, automate, act as a translator, and facilitate
communication for differently-abled persons [90].

Advancements in modern wearable sensing technologies and novel human-computer
interaction techniques (HCI) assisted with machine learning have enhanced the reliability
and efficiency of these SLRS systems. In most of the research works ASL recognition is per-
formed using different sensing devices such as Kinetic sensors [76, 78], Hand Gloves [104],
Leap motion controller (LED Motion sensors and cameras) [18], Surface Electromyogra-
phy(sEMG) sensors [85, 86, 92], Inertial Sensors, Pressure sensors [56] and use of 2D/3D
cameras (image and video) [7, 32, 43, 79]. Based on data input mechanism, these approaches
are classified as Visual, Sensor-based, and Hybrid methods [95]. For Visual SLRS, the input
data consists of images or video streams. However, Sensor-based SLRS utilizes input data
from various sensors such as datagloves, sEMG sensors, accelerometers, etc. The hybrid
SLRS approach benefits from the combination of elements of both approaches.

Compared to other approaches, Visual sign language recognition systems have been
extensively used to build SLRS [95]. However, the efficiency of these methods depends on
environmental lighting conditions and requires specific infrastructure. These requirements
are hard to maintain in standard conditions in a real-world scenario. On the other hand,
Sensor-based SLRS are independent or less affected by lighting conditions and are cheaper
than vision-based SLRS. Of the entire research conducted for ASL recognition system, only
21% work has been done using wearable sensors or gloves [95]. This fact motivated us
to analyze, explore, and use the sEMG signals for sensor-based ASL recognition model.
EMG signals are bio-signals that represent the electrical activity of the muscles while a
person is active or is having rest [17]. Being non invasive in nature, sEMG signals have
wide applications in various fields including prosthetic control, gesture recognition, HCI,
and Rehabilitation [21, 83]. The availability of sEMG sensors as wearable wireless modules
and being invariant to lighting conditions, makes these sensors preferable candidates for
building efficient SLRS. However, to achieve higher recognition accuracy, the researchers
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applied multiple sEMG sensors and even fused them with additional inertial sensors. Savur
and Sahin [53, 85, 86].

Despite the developments, a cost-effective SLRS is not available commercially [5]. The
cost and efficiency of these SLRS depend on the number of sensors used. To build a cost-
effective SLRS, a trade-off between these factors must be maintained. We intend to fill this
gap by proposing a methodology to build a low cost SLRS that uses an optimal number of
sEMG sensors and minimum number of channels yet provides a better performance as com-
pared to existing works.This paper explores the feasibility of building a reliable and accurate
sign language recognition model using wearable sEMG sensors. For the same we proposed
a machine learning pipeline that composed of a new ensemble features selection method,
exhaustive set of extracted sEMG features, and an a efficient boosting algorithm for classi-
fying the ASL gestures. Other objective of this work is to provide an interpretable Machine
learning pipeline in terms of features used and with improved or comparable classification
accuracy with the state-of-art methods. Also, an effort is made to use optimal number of
sEMG sensors by reducing the number of sEMG channels.

We created two ASL gestures dataset(ASL-10 & ASL-24) by collecting raw sEMG
signals from various people(up-to 20 subjects).ASL-10 dataset consist of sEMG signals
collected for 10 ASL digit gestures. While the ASL-24 consists of sEMG signals col-
lected for 24 manual alphabet of the ASL dictionary. Around 450 time and frequency
domain features were extracted from each sEMG channel. We applied an ensemble feature
selection approach combining four diverse filter-based feature selection methods (ANOVA,
Chi-square, Mutual Info, ReliefF). Initially, k-best features are extracted from filter-based
methods using the feature ranking method. Then, a greedy search approach is used to
select subsets from these various filter-based approaches based on the ranking of fea-
tures and feature importance heuristic. Finally, a newly proposed feature combiner that
exploits feature–feature and feature–class correlation thresholds is used to combine feature
subsets formed across the ensemble. The resulting features comprised reduced and most
representative feature subsets for classifying ASL gestures.

The pipeline achieved excellent average classification accuracy of 99.99% (ASL-10) and
99.91% (ASL-24) on the two aggregated datasets, using two and eight SEMG channels,
respectively. Moreover, the machine learning pipeline and the feature set obtained from
ensemble feature selection from (ASL-10 datset) were validated on a subset of the bench-
mark dataset (Ninapro database 5), displaying similar results. The Fast Fourier Transform
coefficients dominated the selected features set as compared to other extracted features for
the classification task. The outline of our proposed pipeline is illustrated in Fig. 1. The major
contribution of our paper can be summarized as follows:

a) We collected two datasets (ASL-10) & ASL-24 by recording sEMG signals generated
corresponding to ASL sign gestures and proposed a reliable machine learning pipeline
for ASL gesture recognition using an optimal number of sEMG sensors.The pipeline
achieved excellent average classification accuracy of 99.99% (ASL-10) and 99.91%
(ASL-24), using two and eight SEMG channels, respectively on the two collected
dataset.

b) Evaluated around 450 features for each sEMG channels and applied a new ensemble
feature selection technique to list the most representative feature subsets to classify
ASL hand gestures.

c) Validated the proposed pipeline on the benchmark dataset (Ninapro data-set 5 exercise
A) having 12 similar gestures and achieved classification accuracy comparable to state-
of-the-art methods.
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Fig. 1 A schematic diagram showing the methodology used for the proposed machine learning pipeline for
ASL recogntion task

The rest of the paper is organized as follows: Section 2 describes related work published
from 2004 to 2021. Section 3 describes the internals of the Materials and Methods, dataset
description, data preprocessing, and the proposed ensemble feature selection method.
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Section 4 lists the experimental results. Whereas in Section 5, we provide a insightful dis-
cussion of the results obtained and the limitations of our proposed method. Finally, Section 6
concludes the article with significant findings and future scope.

2 Related work

Development in Visual sign language was started in the 1980s. Visual sign language recognition
techniques mainly depend on features derived using hand, face, and body poses. Initial work
in this domain applied neural networks along with various image processing techniques for
feature extraction in order to recognize the different sign language gestures [64, 105]. Later
inspired by the success of deep learning in image processing, researchers exploited Con-
volution Neural Networks (CNN) to build robust and accurate SLRS [35, 47, 96]. CNN’s
were very successful while dealing with static image frames but can hardly accommodate
the sequence information in continuous image frames [77]. For this purpose, researchers
proposed hybrid ML models where they combined CNN with deep learning models such as
LSTM and RNN to deal with the sequence information [38, 55, 59, 80, 82]

The efficiency of the visual-based SLRS was enhanced with the advent of depth cameras
and accurate motion trackers such as Kinetic sensors and Leap motion sensors [95]. These
vision-based gesture sensing devices are efficient in tracking body movements. The main
difference between the two is that Kinetic sensors can track the whole body while the Leap
Motion sensors are efficient in tracking just the hand gestures [29]. Leap motion sensors
use single/multiple cameras and optical motion sensors(usually LED-based), which enable
them to capture the gesture information precisely in millimeters. An ASL recognition sys-
tem based on Leap Motion sensor was developed by Chuan et al. [18]. Using Support Vector
Machine, their model achieved a maximum classification accuracy of 79.83%. Another
prominent work was proposed by Lee et al. [55], where the authors used Leap Motion sen-
sor and applied a deep learning model (Recurrent neural network) for ASL recognition.
They claimed that their model achieved a classification accuracy of 99.44%.

Kinetic sensors cover around 20% of the total research work performed for SLRS devel-
opment [95]. With the help of their cameras and skeleton stream, devices with kinetic
sensors are capable of capturing the motion and depth information of gestures for differ-
ent sign languages [108]. This information helps to extract even more refined features that
contribute in building a more robust, multi-modal SLRS as compared to one obtained after
using only vision-based features [13, 34, 91].

Despite wide use, visual and depth-based recognition systems have certain limitations.
For instance, their efficiency is dependent upon variables such as camera viewpoint, resolu-
tion, surrounding lighting conditions, and occlusion present [10, 52]. It is difficult to control
these variables in a real-time scenario. Meanwhile, the Leap Motion controller has vary-
ing sampling frequency and needs proper preprocessing in practical scenarios [55]. Another
limitation while dealing with these approaches is that a line of sight of the gesture with the
camera has to be maintained for the smooth functioning of the SLRS.

The sensory glove-based sign language recognition systems have been a popular choice
among sensors-based methods. Various sensors are placed over the hand-worn glove that can
monitor physical features associated with sign language gestures. Ahmed et al. [2]. Promi-
nent work using Sensory gloves is presented by Oz et al. [69], where the authors applied
sensory glove and motion sensors to develop an ASL recognition system. Using Artificial
Neural Network (ANN) and histogram of feature vectors achieves a classification accuracy
of 95%. While in a similar work by Oz et al. [70], authors used a noise reduction mechanism
in velocity network and extracted local and global features for improving the recognizing
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accuracy for ASL gestures. Fels et al. [28] uses a data glove with two optical sensors along
with a “Polhemus” sensor to efficiently recognize differnt hand movements . The model
was able to achieve an error rate of less than 1.7%. While Mehdi et al. [61] applied gloves
with seven sensors for ASL recognition and achieved 88% recognition accuracy. In another
work by ] Kuroda et al. [54], the authors applied 31 contact and Inductcoder sensors on a
custom-built Glove and achieved an accuracy of 85% for different gestures. Oz et al. [68]
applied CyberGlove with motion sensor and strain gauge to measure angle for ASL ges-
ture recognition and achieved 96% recognition accuracy. However, the limitation of sensory
motion gloves is that they may be difficult to use when deployed with a real-time SLRS
application. These gloves cover most of the users palm and fingers, restricting the user from
performing other tasks.

Wearable sEMG sensors, that are cheaper than visual and sensory gloves, have evolved
as an alternative to develop SLRS. To achieve better recognition accuracy these sensors are
often fused with inertial sensors. Some of the prominent work of ASL recognition using
sEMG sensors includes the work of Savur et al. [86] where they extracted various time
and frequency domains features from the raw sEMG signals. Their experiment used Myo
armband with eight sEMG channels and achieved a classification accuracy of 61.04%. In
thesis work of Jackson Taylor [92], three different sensors viz. accelerometer, gyroscope,
and sEMG sensors (total 15 different channels), were applied for classifying different ASL
gestures. Using k-NN and dynamic time windowing, the author achieved an accuracy in the
range of 94%-98%. Similarly, Paudyal et al. [71] applied two wrist-worn devices consisting
of sEMG and inertial sensors to recognize the ASL signs using Dynamic Time Wrapping, an
energy-based approach. By using the combination of all the sensors (34 different channels),
Paudyal et al. achieved an accuracy of 97.72%. Wu et al. [101] proposed an ASL recogni-
tion system using the sEMG and wrist-worn inertial sensors. They obtained the recognition
accuracy of 95.94% Using three different sensors with a total of ten different channels (6
inertial sensor channels with four sEMG channels). An information gain-based filter method
was applied for selecting the 30 best features set from 268 features. With the extension of
the previous work, the authors applied an auto segmentation technique to identify the occur-
rence of ASL gesture [99]. Using additional gyroscope channels to the feature vector the
proposed method achieved the classification accuracy of 96.16%. In [53], while performing
sEMG based ASL gestures recognition, Kosmidou et al. applied Discriminant analysis to
find the best features subset from the total number of features extracted. The authors claim
to achieve a classification accuracy of 97.7%. In [85], several Time domain features were
extracted for the sEMG channels corresponding to different ASL gestures. Using a Support
vector machine, their model achieved an offline accuracy of 91.1%. No feature selection
method was applied to reduce the feature vector. Their proposed model uses eight sEMG
channels, and its performance was evaluated on 2080 samples. Fatmi et al. [27], applied
two Myo Armbands and, using their sEMG & inertial sensors (total 26 different channels),
proposed another ASL recognition model. In their work, they compared the performance
of ANN and SVM with the Hidden Markov Model and claimed to achieve a classifica-
tion accuracy of 93.79% and 89.05% with these two approaches. With an intent to achieve
higher recognition accuracy, most of the sEMG based ASL recognition models applied mul-
tiple sEMG sensors; however, increasing the sensors would increase the cost of building an
SLRS based on that model. In our proposed work, we have tried to find the optimal number
of sEMG sensors for the recognition task without compromising efficiency.
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3 Materials andmethods

In this section, the proposed machine learning pipeline is systematically introduced along
with an introduction to SEMG signals, experimental protocol for data collection, dataset
description used for ASL recogntion task .The figure shows the schematic diagram of the
proposed method. Initially, a number of data preprocessing measures are taken to deal with
data inconsistency, noise or artifacts from the raw sEMG signals.Then appropiate digital fil-
ter and data segmentation is performed. A exhaustive feature set containing relevant sEMG
features listed in literature are extracted for each window segments. An ensemble feature
selection approach combining four diverse filter-based feature selection methods is used
to reduce the high dimensional feature vector. Initially, k-best features are extracted from
filter-based methods using the feature ranking method. Then, a greedy search approach is
used to select subsets from these various filter-based approaches based on the feature rank-
ing and feature importance heuristic. Later, a newly proposed feature combiner that exploits
feature–feature and feature–class correlation thresholds is used to combine feature subsets
formed across the ensemble. Finally, Catboost algorithm, which perform gradient boosting
on decision tree, is trained on the reduced feature subset obtained from ensemble feature
selection and validated using 10 fold cross validation.

3.1 Surface electromyography (sEMG)

EMG is a technique to register the electrical activity of muscles during contraction. EMG
has the capability to represent human motion activities by generating distinct signal patterns.
EMG signal patterns for different hand actions can be easily classified to recognize numer-
ous hand gestures for either prosthesis application or sign-language recognition. EMG can
be performed through invasive or non-invasive methods. Invasive technique requires the
insertion of needles within the skin surface which is quite painful. sEMG is preferred as it
the non-invasive practice which employs electrodes on the skin surface to record the muscle
activity. Therefore, in this work sEMG signals for different hand gestures were utilized to
classify different digits of ASL.

3.2 Subjects and experimental protocol

The experimental dataset was collected from different subjects(upto 20) of the age of 22-28
years, comprising fifteen males and five females. An ethical approval was taken from the
ethical committee, Institute of Medical Science, Banaras Hindu University, Varanasi before
taking surface EMG signals from the subjects. A Myo Armband from thalmic lab having an
eight-channel wireless sEMG sensor was used to register different gestures for American
Sign Language (ASL). Different hand activities for ASL (for ten different digits from 0 to
9) and 24 ASL manual alphabets have been provided in Figs. 2 and 3. The subjects were
instructed to wear the armband in the lower forearm near the elbow region. The muscles (i.e.
flexor, extensor as well asbrachiradialis) towards the lower forearm are directly responsible
for the movement of wrist and fingers. Subject’s hair were removed from the target portion
of the forearm and also the skin surface was cleaned with alcohol. During placement of the
sensors, efforts were made to maintain a fixed distance from the elbow of different subjects.
The experimental setup for acquiring EMG data is described in Fig. 4
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Fig. 2 Different hand gestures for digits 0 to 9 in ASL

3.3 Data acquisition and sensor placement

For each ASL gesture, 5 sec continuous EMG data were collected from all the participants.
All the data were acquired at a sampling frequency of 200 Hz. Myo data capture software
interface was employed to acquire the EMG data on the PC and Myo web based interface
was used to monitor the sEMG signals. To minimize the effect of muscle fatigue during data
collection a fixed protocol depicted in Fig. 5 was followed. The data collection was done in

Aa Ba Cc Dd Ee Ff

Gg Hh Ii Jj Ll Mn

Nn Oo Pp Qq Rr Ss

Tt Uu Vv Ww Xx Yy

Fig. 3 Figure illustrating the different ASL manual alphabets used in ASL-24 dataset
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various trials and sessions. In each session, different trials of 5 sec were performed for each
ASL sign. Moreover, an appropriate gap was maintained between successive sessions.

EMG signals are dependent upon the placement of the sensors used for data acquisition.
Initially, the all the Eight sensors of the Myo Armband were provided with identification
marks from 1-8 and effort was made to place the sensors marked with 1 (with blue light) on
Extensor carpi ulnaris muscles. Further, care was taken to put an sEMG sensor on Exten-
sor carpi radialis longus by adjusting the armband length. These two muscles were initially
identified and then marked. The sensors corresponding to these specific muscles were iden-
tified and accordingly the respective sEMG channels were annotated in the dataset. The
placement of the two specific sensors was inspired from the work performed by Pizzolato
et al. [100].

3.3.1 ASL digit dataset (ASL-10)

The dataset consist of sEMG signals collected from 20 healthy subjects of age 22-28 years,
comprising fifteen males and five females. Each of the subjects were made aware of ASL
digits gestures through videos and proper illustrations. Using the data acquisition and sensor
placement protocol, each of the subjects are made to generate gesture for each of the ten
ASL digits. For ASL-10 dataset, the data was collected and processed for only two sEMG
sensors. Though the sampling frequency for the device was lower, still total 53000 samples
were collected and analyzed. For, two sEMG signals around 900 features were extracted.
The raw sEMG signal pattern for a subject posing hand gesture digit 9 of ASL has been
shown in (Fig. 6).
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3.3.2 Ninapro reference dataset

The Ninapro DB5 dataset has been used as a reference dataset to evaluate the performance of
classification algorithms applied over sEMG signals [6, 73]. This dataset consists of sEMG
signals collected from 10 healthy subjects over 53 different movements including a neutral
hand position. These 53 different movements were divided into three different exercises,
collected using Myo Armband. We compared our results with the exercise A of this dataset
that consists of 12 different gestures including finger movements.

The dataset is collected by using two Myo Armbands containing 16 sEMG channels.
However, our proposed pipeline was analyzed using 2 sEMG channels placed at specific
muscles. To compare our results with the reference dataset, we selected the two most
significant sEMG channels from the Ninapro dataset. For this selection, we applied our pro-
posed feature selection approach on 16 channels and chose the two most significant sEMG
channels.

3.3.3 ASL manual alphabet dataset (ASL-24)

To analyze the scalability of our machine learning pipeline, we created a separate dataset
containing an increased number of gestures (24 ASL manual alphabet). New ASL signers
use these ASL manual alphabets in fingerspellings words, where each alphabet of the word
is generated by making different hand shapes. There are twenty-six ASL manual alpha-
bets corresponding to 26 letters (A-Z). Most of these ASL alphabets are made using a
single hand. However, out of 26, We have only considered 24 letters (static signs of ASL),
excluding letters ‘j’ and ‘z,’ as these two letters involve dynamic hand movement during
fingerspelling generation. Figure 3 illustrates the 24 ASL manual alphabet used for the
datatset

The dataset was collected from 10 subjects consisting of eight men and 2 female of age
(22-28 years). Effort was made to keep the experimental protocol, data acquisition, and
dataset preparation steps similar to the ASL-10 data-set. However, considering the increased
number of gesture we deployed eight sEMG sensors for collecting sEMG signals corre-
sponding to 24 ASL manual alphabet gestures. These eight sensors were placed on the right
hand of each subjects such that two of the sensors are placed at Extensor Carpi Ulnaris and
Extensor Carpi Radialis Longus muscles. Total 83000 samples for 24 ASL gestures were
collected and processed. For eight sEMG signals around 3600 features were extracted.

3.4 Data set preparation

For the experiment, two new datasets consisting of raw sEMG signals corresponding to
ASL gestures was collected. Signals corresponding to various sEMG sensors were collected
simultaneously and stored in CSV file format. These sEMG signals can be represented as
a multivariate time series, with each of the sEMG channel acting as a separate variable.
Suppose Ts(u)={u1, u2, u3, u4...um} be a time series corresponding to each sEMG sensor
with m data points, s be the total number of sEMG sensors, Ws(p, s) be the window seg-
ment of length p (p data-points of s sEMG channel), z be the total number of samples,
and li be the annotation; 0 ≤ li ≤ 9. Raw sEMG signals collected can be depicted as
Draw = {(Ts(u1), Ts(u2), Ts(u3) · · · Ts(us), li} ; Ts(u) ∈ R

1∗n, li ∈ R. For each window
size Ws(p, q), various relevant features were calculated and stored. For classification, we
framed 10 and 24 classes (Ci), one corresponding to each gesture for both the datasets
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(ASL-10 and ASL-24). Classes Ci can be defined as:

Ci = {
f(j,1), f(j,2), f(j,3), f(j,4) · · · f(j,h), li

} ; Ci ∈ R
N∗(h+1), 1 ≤ j ≤ N

Where, fj,k is feature extracted for window segment Ws(p, q), h being total number of
features, Ci represents different classes each mapped with a unique ASL gesture; 1 ≤ Ci ≤
Z.Z being 10 and 24 for ASL-10 and ASL-24 datasets, respectively.

3.5 Data preprocessing

The different sensors present in the armband were responsible for capturing separate EMG
signals from distinct muscle locations of the lower forearm. Raw sEMG signals from all
the channels were recorded in CSV format where each column corresponds to an individ-
ual channel. Initially, the basic data processing techniques such as identifying & handling
missing values were applied on the raw signal collected for the ASL gestures. After feature
extraction, the features values were transformed in the range of 0 - 1 using Normalization.

3.5.1 Filters

To deal with the noise that occurred during data acquisition, a digital third-order Butterworth
bandpass filter of bandwidth 5-500 Hz was applied on the sEMG signals. Moreover, as
suggested in article [85], a configurable Butterworth filter was used to eliminate 50Hz power
line noise.

3.6 Data segmentation

Data segmentation is used to divide the sEMG data stream into fixed sizes, also referred
to as window size, to evaluate the features over the data points contained in windows. This
window acts as a unit size for which the features are collected in time series. Choosing the
size of window plays a vital role as considering a smaller window may not represent a com-
plete gesture and a larger window size may lead to computational overhead and unnecessary
delay in real time applications.

To find the optimum window size, classification was performed on various lengths of
data segments. We applied classification algorithm on 400, 300, 200 and 60 number of data
samples per window size. Separate analyses was done using the same window size with a
50 percent overlap. Considering the tradeoff between computational delay and accuracy, we
found an optimal solution at window size of 60. Data was collected on 200 Hz sampling
rate and keeping the window size 60, enable us to maintain delay comparable to permissible
limit for real-time gesture recognition. Hudgins et al. [42]

3.7 Feature extraction

For the sEMG channels, large number of features from the frequency, time, and frequency-
time domain were extracted to accommodate the relevant features used in biomedical signal
analysis [50]. Statistical features such as Kurtosis, Mean, Variance, Absolute energy, Auto-
correlation, and Standard derivation were also calculated. Time domain sEMG signals
were transformed into the frequency domain using Fast Fourier Transform (FFT). Because
various ASL gestures would produce different frequency distributions, we chose 95 FFT
coefficients from 5 to 100 as features [49, 86, 106]. Apart from these other features such
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as Entropy, Benford Correlation, c3 non linearity statistics [87], Complexity-invariant dis-
tance (complexity information) [8], Mexican hat wavelet [93], Spectral centroid (absolute),
skewness, and the kurtosis of the Fourier transform, Power spectral density based on Welch
Method [45], Lempel-Ziv based complexity [1], One dimensional Matrix profile [102],
Partial auto correlation, Root Mean square, Sample entropy, Friedrich coefficients [31],
Absolute sum of changes (consecutive time series value changes, Langevin fixed point
(Largest point of deterministic dynamics) and Quantiles were extracted for each of the
sEMG signals. A resultant feature set was formed by combining the features of all sEMG
channels.

3.8 Features selection: using proposed ensemblemethod

We extracted a sufficiently large amount of features from the raw signals collected to find
the best representative feature subset for classifying the ASL gesture registered using sEMG
signals. However, the extracted features resulted in a higher dimensional feature vector
for the classification task. So to avoid the effect of the curse of dimensionality [44] and
redundancy, a new ensemble feature selection technique was applied to find the most repre-
sentative feature subset from the larger feature space. Filter-based feature selection methods
such as ANOVA, Chi-Square, Mutual Info, and ReliefF were chosen for the ensemble
approach. These methods are independent of the use of machine learning algorithms and
computationally efficient compared to wrapper-based methods [12, 39].

Ensemble feature selection has been applied to various problems in the field of network
traffic analysis, Biomedical signal processing, pattern recognition, etc., involving the opti-
mization of larger feature spaces [15, 81, 84]. The use of ensemble feature selection can be
justified by the fact that the applying single feature selection method may result in providing
a local optimal feature subset or can have baisness on selected feature subset. Hoque et al.
[41]. Integrating diverse feature selection models to form ensemble models helps to over-
come individual feature selection model biases and achieve improved performance while
classifying a wide range of applications .However, arbitrarily increasing the number of indi-
vidual feature section model for creating ensemble may not necessarily produce improved
results. One such observation was made by Wang et al. [97], in their work they performed
an empirical study consisting 17 different feature ensembles made form combining multiple
feature ranking techniques. The authors claims that ensembles of few rankers perform com-
parable or better than ensemble made form multiple or higher number of feature ranking
techniques.

Olsson and Oard [67] applied the ensemble selection method on text classification and
achieved improved Precision and F1. A similar observation was reported by Yu et al. [103],
in which the author reported an increase in performance by using the Genetic algorithm-
based ensemble method.

Zang et al. [107] proposed a cost-sensitive feature selection model which applied multi-
objective particle swarm optimization for maximizing classification performance using
minimum costs associated with features. Miften et al. [62] proposed an ensemble feature
selection technique to identify the most influential features for classifying six different EMG
signal-based hand-grasp. The authors combined three popular feature selection methods
(Chi-squared, Mutual info, and RFE) to create an ensemble and uses a ranking combina-
tion approach to obtain an integrated feature set. Further, the Fisher discriminant ratio was
applied to determine the threshold value, which eventually helped attain the most signif-
icant features subset for the classification task. The proposed ensemble method achieved
a classification rate of 98.5% (average for five subjects) and exhibits better results than
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many previous research works. In addition, the authors claimed to achieve about 7% higher
classification result than using the classification model with the single feature selection
model.

Our proposed work of ensemble feature selection is inspired by the ensemble technique used
in Miften et al. [62] described earlier in this section. The authors applied a ranking-based
combinatorial approach to the overall feature set of three different feature selection tech-
niques (Chi-Square, Mutual Info, and RFE) used in their work. However, feature ranking
methods are not considered efficient in managing redundant variable [14, 33, 40].

We proposed a new approach to combine the feature set of different individual fea-
ture selection methods for our ensemble feature selection method. The proposed combiner
aggregates the feature sets to obtain an optimal feature set by incorporating feature-feature
and feature-class correlations property. Feature-class correlation is defined as the relevance
of a feature based on the correlation between the feature and the ASL class label. The
two concept feature-feature and feature-class correlation helps to achieve relevant and non
redundant features form the large feature vector obtained in feature extraction step.

The proposed ensemble selection can be explained in two major steps. In the first the
filter based methods(ANOVA, Chi-square, Mutual Info, ReliefF) provides individual k-
best feature set.The choice of using four filter method for creating ensemble was based on
findings of Wang et al. [97]. while, in the second step of ensemble, these feature set are
aggregated using the feature-feature and feature-class relation providing the optimal feature
subset.

In our work an optimal feature set, f inal selected, is initially made by selecting distinct
features from the four filter based feature selection methods(ANOVA, CHI2, Mutual Info,
ReliefF). In this step, using the greedy search approach, the higher ranking features common
in all four feature set are directly added to the optimal features set, f inal selected. The
selection of common features from all four feature set is based on our heuristics that these
features are the highly significant feature with efficient discriminatory properties.

Later, the combination of any three individual feature selection method out of the four
methods are listed as groups. The non redundant and common features in the the listed group
are identified.The identified features are only added to the optimal set f inal selected, if
they satisfied the correlation threshold.

In the next step, the distinct features selected in at any two of the four feature selection
methods is added to the optimal feature set after validating through feature-class threshold.
A correlation test is performed on the optimal feature set, and the features having correlation
above a threshold (thres1) are truncated off from this feature set.

All those features not initially selected in the f inal selected are combined and opti-
mized based on the correlation threshold(thres2) and stored as rem f eatures. Further, for
each feature fi in rem f eatures; the feature-feature and feature-class correlation with the
features in optimal feature set f inal selected and ASL classes is performed. If the feature
fi satisfies thresholds, it is added to the optimal feature set. The thresholds thres1, thres2
and thres3 are derived based on the empirical results carried out with aim to attain higher
classification accuracy. We used the threshold thres1and thres2 equal to 0.85 while the
thres3 as 0.90 based on the exhaustive experimental result. While the initial number of “k”
features is selected based on the heuristics and the empirical analysis. The ensemble fea-
ture selection method is illustrated as Algorithm 1. The proposed feature selection approach
results in feature subset consisting of best discriminatory features form each sEMG channel.
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Algorithm 1 Ensemble feature selection.

3.9 Classification algorithms

The Catboost algorithm is used to classify the different ASL gestures associated with three
data sets (ASL-10, ASL-24, and Ninapro reference dataset). Catboost is a machine learning
algorithm that performs gradient boosting on symmetric decision trees. Gradient boosting
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Fig. 5 Data collection protocol

is based on the concept of how strong predictors can be produced by iteratively combin-
ing weaker predictors through greedily applying gradient descent. Moreover, the use of the
symmetric property helps the algorithm to deal with the model over-fitting, improves the
prediction time and to be more reliable to parameter change [24, 75]. The catboost algor-
tihm works well with heterogeneous data and have achived many state of art classification
accuarcy on various benchmark dataset [24].

3.10 Evaluationmetrics

We evaluated the performance of the proposed machine learning pipeline with a focus on
measuring its applicability if used as a recognition module in a sign language recognition
system. The efficiency of such a recognition module mainly depends upon factors such as
recognition time, recognition accuracy, pervasiveness, scalability, invasiveness, etc. [71].
However, in this article, we framed the experiments focusing on evaluating recognition time,
recognition accuracy, and system scalability.

For measuring the recognition accuracy we framed the ASL gestures recognition task as a
multi-class classification problem. Along with accuracy we evaluated other widely accepted
metrics for multi-class classification [36]. Metrics such as Receiver Operating Characteristic
(ROC) curve, Kappa score ,Matthews correlation coefficientMCCmc were used to measure
the performance of the experiments. Most of these evaluation metrics are derived based on
true positive(tp), true negative(tn), false positive(fp) and false negative(fn) samples and are
defined as follows:

Accuracy = tp + tn

tp + tn + fp + f n
(1)

Accuracy is a measure of how accurately the classification model is making predictions on
a given dataset.

MCC is a reliable statistical metric to measure the classification results. The MCC score
archives better results if the classifier performs well with all the true positive, true negative,
false positive, and false-negative samples and effectively handles imbalanced datasets [16].
It is defined as:

MCCbi = tp(bi) ∗ tn(bi) − fp(bi) ∗ f n(bi)√
(tp(bi) + fp(bi))(tp(bi) + f n(bi))(tn(bi) + fp(bi))(tn(bi) + f n(bi))

(2)

Where, tp(bi), tn(bi), f n(bi), fp(bi) refers to true positive, true negative, false positive
and false negative when framed as a binary classification problem. However, this concept
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can be extended for multi-class classification. The multi-class MCCmc can be derived using
multi-class confusion Matrix, C, and is given as:

MCCmc = f ∗ e − ∑N
n pn ∗ tn√

(e2 − ∑N
n p2

n) ∗ (e2 − ∑N
n t2

n)

(3)

Where, C is the confusion matrix of size (n∗n), tn =
∑N

p Cpn denotes the number of times

class ‘n’ correctly occurred, wn=
∑N

p Cpn is the number of times class ‘n’ was predicted, f =
∑N

n Cnn denotes the total number of instances correctly predicted. While, e =
∑N

p

∑N
q Cpq

denotes total number of samples.
Another metric used to evaluate the performance was Kappa [30]. The metric help to

measure the agreement between real and assigned classes by a classifier. It can also be
defined using multi-class confusion Matrix, C, similar to MCCmc and is given as:

Kappamc = f ∗ e − ∑N
n pn ∗ tn

e2 − ∑N
n pn ∗ tn

(4)

Receiver Operating Characteristic (ROC) curve known as AUC is also used as a met-
ric for performance evaluation of proposed pipeline. AUC represents a modal ability to
differentiate between classes.

Further to estimate the recognition time of the module, we calculated the time spend by
trained classifier to predict a single ASL gesture and termed as Response Time(TRes). Let
Ws(s, p) be the optimal window size used in the model. The Response time is denoted as

TRes = Tws(s,p) + Tf e + TRecog

Tws is the time spend to extract a window segment Ws(p, s) from raw input signal. Tf s

is the time spent on extraction of selected features from the input data window segment
Ws(p, s). TRecog is the recognition time, which is the time spend to predict the label for the
window segment Ws(p, s).

Finally, to measure the scalability of the proposed pipeline, we framed a new dataset,
ASL-24, with an increased number of gestures and evaluated its performance on this dataset
to validate its scalability.

4 Results

The proposed experiments were performed with the objective to attain higher classifica-
tion accuracy for sEMG based gesture recognition task. During the experiments we utilized
mainly three datasets ASL-10 (10 ASL digit gestures), NinaPro reference dataset(12 hand
gestures), ASL-24(24 ASL manual alphabet gestures).The proposed pipeline is evaluated
on these dataset with different objectives. ASL-10 is used to measure the efficiency of our
proposed pipeline using optimal number of sEMG sensors for 10 ASL sign (0-9 digit).
While NinaPro reference dataset is used to study the generalizability of proposed method
on a benchmark dataset. whereas, ASL-24 dataset is used to validate its scalability.

To evaluate the efficiency of the proposed pipeline on ASL-10 dataset, we ran the model
multiple times with ten-fold cross-validation. The pipeline achieved an overall average clas-
sification accuracy of 99.99% using Catboost algorithm. In addition, three other popular
boosting algorithms, (Gradient Boost, Extreme gradient boost, Light Gradient Boosting),
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Fig. 6 Raw sEMG signals patterns of a subject for digit 9 of ASL

were applied and evaluated. The majority of the boosting algorithm used produced similar
classification accuracy.

In addition, standard evaluation metrics, as discussed in Section 3.10, were also calcu-
lated to comprehensively validate the obtained classification results and the efficiency of the
pipeline. Figure 7 depicts the multi-class “MCC” score against the number of iterations of
the Catboost algorithm for its 10 fold cross validation. In less than 50 iterations, the model
achieves the MCC scores greater than 0.9 and, after 150 iterations, eventually achieves the
highest MCC score. MCC measures the correlation between the predicted value and true
value of instances by the classifier. The high MCC scores suggest that the model performs
well with the positive and negative samples [46]. Meanwhile, Fig. 8 illustrates the Kappa
values obtained for various cross-validation step, supporting the higher efficiency of the
pipeline. The higher Kappa scores suggest the better agreement with the predicted value
and true value of instances by the classifier, hence its robustness. In addition, the multi-
class AUC [51] for all the ASL classes were plotted and shown in Fig. 9. For our model, the
Multi-class AUC reaches the value of 1 in less than 50 iterations. The higher AUC values
suggest the ability to distinguish between positive and negative classes.

The “Multi-class” loss function was plotted for each of ten-folds to investigate the model
performance. Figure 10 illustrates the “Multi-class” loss function with respect to the num-
ber of iterations of the classification algorithm used. The figure illustrates minimal error
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Fig. 7 MCC score plotted against number of Catboost iterations for each of 10 fold cross validation for
ASL-10 dataset

produced by the model while predicting the class labels. The “Multi-class” loss function
approaches zero after 150 iterations of the Catboost algorithm.

The same pipeline was applied it on a benchmark dataset, Ninapro database, which is
used for accessing the sEMG based classification methods. Database 5 of Ninapro consists
total of 53 various hand movements and gesture grouped into three different exercises set.
For better comparison and to relate the benchmark dataset with our problem, we used only
the raw sEMG signals corresponding to 12 different hand gestures of exercise A, of the
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Fig. 8 The Kappa values calculated for multi-classification performed at the ASL-10 dataset
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Fig. 9 Multi Class AUC calculated for ten fold cross validation calculated for ASL-10 dataset

Ninapro database 5. The pipeline performed extremely well and achieves the MCC score
almost to 1 while classifying the sEMG signals for the Ninapro database. Figure 11 illus-
trates the accuracy achieved for each of the ten fold validation. As compared to the ASL
dataset (Fig. 12) the highest accuracy was achieved in lower number of iterations performed
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Fig. 10 Figure illustrating the Mutlticlass loss function using 10 fold cross validation(ASL-10 dataset)
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Fig. 11 The accuracy obtained for the Ninapro subset using the proposed pipeline

by the classification algorithm. Normalized confusion matrix describing the pipeline perfor-
mance in shown in the Fig. 13. For most of the classes, class labels were predicted accurately
with negligible miss-classification.

t-distribution Stochastic Neighbor Embedding (t-SNE) [94], was used to map the selected
features subset in lower-dimensional for better visualization . The t-SNE is a nonlinear
dimensionality reduction technique that efficiently captures the local structure(pattern) in
the original space and represents that pattern in the lower dimension [98]. It ensures that
if two points are close to each other in higher dimensional space, those points should also
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Fig. 12 Figure illustrating the accuracy achieved for ten fold cross validation with respect of number of
iterations of classification algorithm
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Fig. 13 Normalized confusion matrix for the reference Ninapro Dataset

remain close to each other in reduced dimension. The Fig. 14 illustrates the labeled selected
features set for the ASL dataset when visualized through the t-SNE. For the t-SNE plot,
values of two hyperparameters variables, “max-iterartion” and “preplexity” were taken as
1000 and 50, respectively. Other Fig. 15 illustrates the t-SNE plot for the features subset
obtained for the Ninapro Data subset. Hyper parameters values of “max-iteration” and “per-
plexity” were made similar to ASL dataset for plotting this graph. The selected features
for the Ninapro dataset also depicted identical properties like the ASL dataset forming the
almost non overlapping clusters for each gesture class.

Among the features extracted from the raw sEMG signals, the majority of FTT coeffi-
cients were listed as the most significant features by the ensemble feature selection. The
optimal feature subset, as illustrated in Table 3, consists of various components of FTT coef-
ficients in the range of coefficient 30 to coefficient 36. In another experiment, by increasing
the number of features to top 250 in the first level of the ensemble feature selection, we
found that the range of the various FFT coefficients in the selected feature set increases from
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Fig. 14 Features distribution corresponding to ten classes of ASL-10 dataset using t-sne

coefficients 30-36 to coefficients 30-51. The importance of individual features was ana-
lyzed in separate experiments. For analyzing the efficiency of each of the FFT components,
only single components of the FTT coefficients (REAL, IMG, ABS, ANG), were used in
the selected feature set while applying the pipeline. The Table 1 highlights the average
classification accuracy achieved through various features. The FFT coefficients combined
performed better than the individual components.

To identify the impact of various features on the classification task, we calculated the
SHAP values [58]. SHapley Additive explanations(SHAP values) is a technique to explain
the factors contributing to predictions made by a Machine learning model. It includes calcu-
lation of Shapley values which is based on Game Theory. The Fig. 16 highlights the global
importance of the selected features while classifying different instances of the ASL Classes.
In the plot, features with larger Shapley values (absolute) are arranged in decreasing order.
The larger the Shapley values the larger is the importance of the features for predicting the
class labels. The global importance are obtained by averaging the Shapley values(absolute)
per features in the dataset.The FFT coefficients 33 (IMG) have the highest impact on all the
10 classes of ASL digits. Similarly, the FFT coefficients 33(ANG) and 35(ANG) are the
next influential features having the most significant impact on all the class prediction.
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Fig. 15 2D-classwise features projection using t-sne (Ninapro dataset)

In addition, the Fig. 17 illustrates the feature importance and the effect of features value
on individual class label prediction. The y axis of the plot are shows the various features
involved while classifying the class 1 of the ASL dataset, while the values at the x-axis
represent the Shapley values obtained from that features. Meanwhile the colors in the figure
reflects the features value from high to low. For the FTT coefficient 35(ANG), the higher is
the value the higher is the impact on the class label prediction. Similarly, the effect of other
individual feature value on the class prediction can be derived using the figure.

Maintaining a optimal window size is crucial as larger widow size can increase the recog-
nition time in real time application. To find the optimal window size, efficiency of the
the proposed classification pipeline was analyzed for different window sizes. The window
size of 400, 300, 200, 60 data points with 50 percentage overlap and without overlap was
analyzed. However, We achieved the optimal window size of 60 with accuracy 99.99%.

Another experiment analysis was made to measure the Response time of our classifica-
tion model, which is depicted as the total time incurred from obtaining test data input to
predicting its class label (described in Section 2.11). Response time is approximated as the
summation of various time delays incurred during window segmentation, feature extrac-
tion, and recognition of a single instance. The total Response time turns out to be 316ms.
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Table 1 Various features and the corresponding performance metrics

Features Average accuarcy Features Average accuarcy

FTT(ABS) 99.71% FFT combined(8 channels) 99.99%

FFT (IMG) 99.53% Other features excluding FFT (8 channels) 97.22

FFT(ANG) 99.49% Time domain features (8 channels) 51.09

FFT (REAL) 99.42% Friedrich coefficients (8 channels) 83.33

FFT combined 99.99%

Time domain features 43.01%

(2 channels)

Other features excluding 96.7%

FFT(2 channels)

In which 300 ms was the time spent in window segmentation, 7 ms for feature extraction,
9 ms recognition time. However, the Response time may be further reduced by analysing
the pipeline efficiency when used with sEMG sensors having a higher sampling frequency.
Table 2 summarized each component of the Response time for the proposed pipeline.

The plots in the Fig. 18 highlights the scalability of a classification model built using our
proposed pipeline. The plot on the left describes the time taken(fit times) in unit to train
the LDA classifier on different number of samples while the plot on right describes the
accuracy score archived with respect to the time(fit times). Considering the two plot we can
deduce that in less than 10000 samples the model achieves its maximum score which doesn’t

Fig. 16 Classwise feature importance illustrated using SHAP
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Fig. 17 Figure illustrating the impact of feature values on the model performance while predicting class 1 of
the ASL dataset

varying largely with increasing the number of samples while training. This information can
be used while adding the new gestures to the recognition model, which is not present during
training. Also, the non varying accuracy scores suggests the robustness of the pipeline.

Moreover, a separate analysis for scalability of the pipeline was performed using the
ASL-24 dataset. The ASL gestures for the dataset was deliberately increased up-to 24 dif-
ferent gestures. These 24 gestures corresponds to 24 ASL manual alphabets mainly using
while finger-spelling ASL words. Using ten fold cross validation the model achieves the
average classification accuracy of 99.91% and MCC score of 0.99. The Fig. 19 illustrate
the MCC score achieved with respect to the iterations of the Catboost algorithm. Initially,
the MCC scores lies in the range of (0.25-0.5). However, its reaches to maximum within 50
iterations. Morover, the Fig. 20 shows the model efficiency by plotting “Multi-Class” loss
function against the iteration performed by Catboost algorithm. The validation and learning
curve reaches to zero within 400 iterations. Both the learning and validation curve for all the
ten folds are almost overlapping and smooth in nature suggesting the lower error produced
by the model while predicting class label.

Table 2 Response time of the proposed pipeline to identify a single ASL gesture

Window segmentation Feature Extraction Recognition Time Response Time

(Tws ) (Tf e) (TRecog) (Tws +Tf e+TRecog)

300 ms 7 ms 9 ms 316 ms
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Fig. 18 The figure illustrating the time required to train various number of samples using LDA

4.0.1 Statistical analysis

We conducted a comprehensive statistical analysis of the obtained experimental results to
validate their correctness, hence the performance of our proposed machine learning pipeline.
Statistical hypothesis tests were applied to ensure that the results obtained were actual and
not produced due to statistical fluke. Specifically, these analyses were performed with two
primary objectives. First, to prove the statistical significance of the features selected using
our proposed ensemble feature selection method. Second, to establish the correctness of the
classification algorithm results by using the 5*2 cv t-test.
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Fig. 19 MCC score plotted against number of Catboost iterations for each of 10 fold cross validation for
ASL-24 dataset
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Table 3 The selected features and the corresponding p-values

Channel 1 feature p-value Channel 2 feature p-value

Fft coefficient 31 (REAL) 8.372341E-12 fft coefficient 32 (REAL) 0

Fft coefficient 36 (REAL) 1.5706702E-101 fft coefficient 35 (REAL) 7.696407E-68

Fft coefficient 31(IMG) 1 fft coefficient 36 (REAL) 1.570670E-101

Fft coefficient 32 (IMG) 0 fft coefficient 32 (IMG) 0

Fft coefficient 34 (IMG) 0.001298 fft coefficient 35 (IMG) 4.8492671E-13

Fft coefficient 35 (IMG) 4.849267E-13 fft coefficient 31(ABS) 0

Fft coefficient 34 (ABS) 0 fft coefficient 32 (ABS) 0

Fft coefficient 35 (ABS) 0 fft coefficient 33 (ABS) 0

Fft coefficient 36 (ABS) 0 fft coefficien 35 (ABS) 0

Fft coefficient 31 (ANG) 0 fft coefficient 31 (ANG) 0

Fft coefficient 32 (ANG) 0 fft coefficient 35 (ANG) 0.000083

Fft coefficient 34 (ANG) 0 fft coefficient 36 (ANG) 1.283962E-56

Fft coefficient 35 (ANG) 0.000083

Kruskal Wallis test was applied to statistically substantiate the significance of the features
selected by our proposed ensemble method [60]. The Kruskal Wallis test is a computa-
tionally efficient statistical method and has been frequently used in literature to determine
features with significant discriminatory ability. Sharma and Pachauri [88] use the Kruskal
Wallis statistical test to validate the discriminative ability of their proposed method to clas-
sify epileptic seizures and seizure-free signals. In similar work, Khan et al. [4] applied the
Kruskal Wallis test to validate the features with higher discriminative information for the
face recognition task. The features with p-values near zero were considered discriminative
face features and claimed to produce a high recognition rate. In [66] the author claims to find
significant features for the classification task when the p-value lies near 0 (p-value<0.5).

The Kruskal Wallis test is a non-parametric method. It mainly validates a null hypothe-
sis that the medians of the groups/features used are similar and helps find whether samples
originated from the same distribution. The H -statistics and the p-value is applied to deter-
mine the acceptance or rejection of the null hypothesis. We validated the distribution of the
selected features using the Shapiro Wilk test before applying the Kruskal Wallis test. In our
experiment, the Kruskal Wallis test rejected the null hypothesis for the ASL digit dataset
with a p-value being less than 0.001.

However, the Kruskal Wallis hypothesis test doesn’t reveal many details on the group/
features that differ. A Post hoc test is required to compare the pairwise feature’s significance.
As the selected features were non-parametric, we chose the Dunn’s test as a post hoc test
[25]. In addition, Bonferroni adjustment was applied to deal with the cumulative Type I error
or alpha inflation while using the Dunns test [23]. Bonferroni controls the Type I error by
simply calculating a new pairwise alpha to keep the familywise alpha value at any specified
value.

For the Dunns test, the resultant p values for all the pairs of features were reported to
be less than 0.001. The Table 3 shows the pairwise p-values for the “emg1 fft coefficient
31 (IMG)” wrt to all the other features after Bonferroni adjustment. Figure 21 shows the
schematic diagram of the statistical tests performed to validate the obtained results
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Fig. 20 Figure illustrating the Mutlticlass loss function using 10 fold cross validation(ASL-24 dataset)

4.0.2 5*2 CV t-test

To statistically validate the performance of our classification model, we used the 5*2 cv t-
test proposed by Dietterich [22]. This statistical approach applies a t-test on five iterations
of 2-fold cross-validation. 5*2 CV t-test can efficiently distinguish the classification algo-
rithm’s performance on a single dataset with an acceptable Type I error rate as compared to
other statistical methods [22].

The use of the 5*2 cv t-test was based on our heuristics. If two different instances of
the classifier, C1, and C2, provide statistically similar results on our selected feature set,
then such results suggest the correctness and generalizability of our proposed pipeline.
The two instances were made by assigning different hyperparameters to the classifier. C1
corresponds to an instance of the classifier with default hyperparameters.In contrast, C2
corresponds to the classifier instance with tuned hyper-parameters which provided the best
average classification accuracy on the ASL 10 dataset.

The 5*2 cv t-test randomly partitioned the dataset into two equal-size sets, Xi(train
set) and X̄i(test set), repeatedly for five iterations. In every iteration, each of the two
classifiers,C1 and C2, are trained using the training set Xi and evaluated on the test set
X̄i and vice versa. This training and testing pattern generates the four error estimates p

(1)
C1

,

p
(1)
C2

, p
(2)
C1

, p
(2)
C2

in a single iteration. These error estimates are used to calculate the two

performance measures(p(1)
i and p

(2)
i ) which are described as

p
(1)
i = p

(1)
C1

− p
(1)
C2

(5)

p
(2)
i = p

(2)
C1

− p
(2)
C2

(6)
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Fig. 21 The schematic diagram describing the statistical test performed to validate the results

With, (5) and (6) the variance can be calculated as s2
i = (p

(1)
i − p̄i )

2 + (p
(2)
i − p̄i )

2 where,

p̄i = (p
(1)
i + p

(2)
i )/2. Using these variables the 5*2cv t-statistics is described as follows:

t̄ = p
(1)
1√

1
k

∑k
i=1s

2
i

(7)

Where, k = 5, p
(1)
1 is the error estimate of the first iteration and s2

i is the variance evaluated
at i-th iteration. For our experiment, p-value was reported to be 0.96 (p-value>0.05), which
suggests the performance of the two instance of the classifier are similar.

5 Discussion

This paper presented a reliable and accurate machine learning pipeline for sEMG based
hand gesture recognition utilizing an optimal number of sensors 8-sEMG channels for
(ASL-24) and 2-sEMG channels for (ASL-10) dataset. The result obtained highlights the
application of Fourier transform as a sufficient feature extraction technique for classifying
ASL and other similar hand gestures involving combined or single finger movements. The
FFT coefficients evaluated for sEMG signals are complex numbers and can be decomposed
into real (REAL), imaginary (IMAG), absolute (ABS), and angle (ANG) components. These
individual components can be treated as a separate feature for recognizing the sEMG based
gestures. The sEMG signals contain frequency in the range of 0-500 Hz. For our collected
ASL gesture dataset, while performing classification, the FFT coefficients corresponding
to the lower frequency component of sEMG signals show a more significant contribution
than the higher frequency components. When treated as features, these lower frequency FFT
components as a group exhibit sufficient information to identify effectively various hand
gestures involving finger movements.

In the proposed pipeline, ensemble feature selection method helps list the best represen-
tative feature set among the extracted features for the classification task. The ensemble is
performed in two steps to deal with the larger feature space. At the initial level, the fea-
ture space is reduced using the wrapper-based methods (ANOVA, CHI2, ReliefF, MUTUAL
INFO). While the next level merges these selected features in a final selected set using
the ranking, feature-feature and feature-class label correlation information. The correlation-
based approach helps to obtain optimal number of highly significant non-correlated features
in the final selected feature subset.

The selected features subset through the ensemble method provides sufficient discrim-
inatory property/information to distinguish different ASL dataset classes accurately. A 2D
projection of selected features for each class of the ASL gestures using a t-sne plot is shown
in Fig. 13. The instances associated with varying ASL classes are used to form the data

23861Multimedia Tools and Applications (2023) 82:23833–23871



points of the t-SNE plot. These datapoint associated with each ASL class is projected in
lower dimension space, forming different clusters. The resultant least overlapping clusters
for each class suggest the discriminatory ability of the resulting feature set, which eventually
helps machine learning classifiers attain higher classification accuracy. While converting
N-D feature space to 2-D feature space, the t-SNE algorithm ensures that the two points in
a close distance in a higher dimension should remain close in generated lower dimension
mapping. So two clusters representing different classes being mapped in a non-overlapping
fashion in common feature space such as t-SNE suggest higher class separability. Simi-
lar observation about the selected features was made while applying the pipeline on the
benchmark dataset (Ninapro database 5 exercise A). The resultant FFT coefficients corre-
sponding to lower frequencies were able to classify the twelve different gestures involving
finger movements with higher accuracy. When plotted in lower dimension with t-sne, these
features too resulted in the least overlapping clusters supporting the inference made for our
collected ASL gesture dataset.

Statistical tests performed validated the correctness of the experimental results. More-
over, the Kruskal Wallis test statistically substantiated the significance of the features subset
selected by our proposed ensemble method. The reported p-value was less than 0.001, sug-
gests the higher significance of the each of the selected features on the classification results.
Moreover, the post hoc test cross validated the Kruskal Wallis results. In addition, the 5*2
cv t-test statistically validated the classification accuracy of the pipeline and ensures that
the obtained result are not produced due to statistical fluke.

The reported efficiency of the FFT coefficient can be supported by the fact that simi-
lar observations about the FFT coefficients were analyzed in various other related works.
In [26], the author found the Fast Fourier Transform coefficients as an efficient means
for developing a sEMG signals-based camera control. Using Simple Principal Component
Analysis, they achieved a classification accuracy of 81%. Similarly, in [72], the authors
claim that the use of FFT is beneficial in identifying different leg movements, and in [37],
FFT was used to classify neuromuscular disorders involving sEMG signals. However, the
capability of these sEMG signals features need to further investigated in detail on dataset
wuth larger number of ASL gestures.

Various Machine learning approaches have been applied to build an accurate and reliable
classifier for ASL gesture recognition. As mentioned in the Related work, these methods
deployed various sensors, feature extraction, and feature selection techniques to improve the
classification accuracy. In Table 4, organizing the relevant information about the prominent
research works for the sEMG based ASL recognition and our proposed work, we have
tried to present the significance of our method for ASL gesture recognition. In order to
compare the two methods, All the experiments should be performed and evaluated in similar
circumstances. However, most of the dataset used in these research works are not publicly
available, which prevents such a comparison.

However, a glance at the table’s evaluation metrics highlights that using a machine
learning classification pipeline based on Fourier Transform is an efficient means to obtain
sufficient and acceptable results for recognizing ASL gestures involving finger movements.

Utilizing two sEMG channels, our proposed pipeline achieved a classification accuracy
of 99.99% for 10 ASL gestures(ASL-10). Also, the integrated feature selection applied
helps obtain the optimal number of features (25 features) for the classification tasks. The
efficiency of the proposed model is generalized and has been validated on a dataset having
a comparatively larger number of subjects and the number of samples compared to other
research work. Considering the use of an optimal number of sensors, among the various
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Table 4 Summary of the related work for sEMG sensor based ASL recognition

References Different types No of No of No of No of Classification

of sensors used samples gestures subjects channels accuracy

Savur and Sahin [86] 1 1040 26 10 8 61.04%

Fatmi et al. [27] 4 26000 13 3 26 93.79%

Paudyal et al. [71] 3 − 20 10 34 97.72%

Wu et al. [101] 3 3000 40 4 10 95.94%

Wu et al. [99] 3 24000 80 4 10 85.24%-96.16%

Kosmidou et al. [53] 1 180 9 − 2 97.7%

Savur and Sahin et al. [85] 1 2080 26 − 8 91.1%

Taylor [92] 3 − 20 − 15 94%-98%

Proposed method (ASL-10) 1 53000 10 20 2 99.99%

Proposed method (ASL-24) 1 83000 24 10 8 99.91%

research work listed in the Table 4, only the authors [53] tried to use a reduced number of
sensors (2 sEMG channels). Compared to this work, the proposed model achieves better
classification accuracy and is more robust as they have only used 180 samples for model
validation.

To analyze the computational overhead of a real-time recognition system built using our
proposed pipeline, we tried to approximate end to end processing delay of such a system.
The end-to-end delay can be approximated by calculating the individual delay of all the
major components of an online classification system. Mainly an online classification sys-
tem consists of various modules, including data acquisition (buffer storage)& segmentation
(windowing), feature extraction, and class label prediction using pre-trained model [85]. We
quantified the summation of each component’s time delay in a single term called response
time. Table 2 highlights the value of the response time for the system. All the values are eval-
uated on the workstation with Intel Core i7 having 2.9 GHz frequency with 16 GB RAM.
The resultant processing delay is approximated as 316 ms, which is acceptable for real-time
recognition.

Various approaches utilizing machine learning (ML) methods have been proposed to
build an accurate and reliable classifier for sEMG based ASL gesture recognition. These
ML-based approaches mainly deployed various sensors, extract relevant features for sEMG
signals and then apply machine learning classification algorithms. Some of the most popular
baseline approaches for sEMG-based recognition include Support Vector Machine (SVM),
Hidden Markov model (HMM), Artificial neural network (ANN), linear discriminant clas-
sifier, etc. Savur et al. [86] uses the SVM classifier and achieves 61.04% classification
accuracy on a multi-user dataset. While Fatmi et al. [27] compared the three machine learn-
ing baseline approaches (ANN, SVM, and HMM) for the ASL recognition task. The author
claims that ANN achieves an overall higher accuracy of 93.79% than the other baseline
approaches. (SVM 85.56% and HMM 85.90%).Meanwhile, Wu et al. [101] evaluated the
Decision tree, LibSVM, Nearest Neighbour, and Naı̈ve Bayes machine learning algorithm
for ASL gesture recognition. Using an additional inertial sensor, the authors achieved a
classification accuracy of 95.94%.

Dynamic Time Warping(DWT) [63] measures similarity between two temporal
sequences and has also been commonly used for ASL recognition. Paudyal et al. [71]
uses the DWT for classifying 20 ASL gesture. Using two additional sensors and sEMG,
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they could attain 97.72% classification accuracy. However, for building a real-time ASL
sign recognition system, comparatively higher recognition accuracy is required. Consider-
ing the performance of the baseline approaches in the research work discussed above, we
tried to explore the newer algorithm for the classification task. The Catboost algorithm,
with the ensemble feature selection approach, achieved a classification accuracy of 99.91%
for a comparable number of gestures (24 ASL manual alphabets). The reported accuracy
highlights the efficiency our method over the other baseline approaches.

Table 4, provides a comparison of prominent sEMG-based ASL recognition research
works with our proposed work. The tables summarizes the performance of each research
work highlighting the number of different type of sensors used, the subject involved in data
collection, the dataset size, number of ASL gestures, number of sensors channel used and
the performance metrics. For any two methods to be compared correctly, all related experi-
ments must be performed and evaluated under similar conditions. But most of the datasets
used in these research works are not publicly available, which prevents such a compara-
tive analysis. However, a glance at the table’s evaluation metrics suggests that our proposed
pipeline perform better or comparable than state of art methods for ASL recognition task.

Considering the use of an optimal number of sensors, with two sEMG channels, our pro-
posed pipeline achieved a classification accuracy of 99.99% for 10 ASL gestures . Also, the
ensemble feature selection method helps obtain the optimal number of features (25 features)
for the classification tasks. Among the various research work listed in the Table 4 only the
authors in [53] tried to use a reduced number of sensors (2 sEMG channels). Compared to
this work, our proposed model achieves better classification accuracy and is more robust as
they have only used 180 samples for model validation.

Moreover, the proposed pipeline presented an efficient scalability while recognizing a
increased number of ASL gestures. When applied on dataset consisting 24 manual alphabets
gestures (ASL-24) it achieves the average classification accuracy of 99.91%. Comparing
with the state of art methods (Table 4) the reported accuracy is highest for a approach using
optimal number of sEMG sensors. The proposed pipeline with ASL-24 dataset, perform
better when to compared with the work of Fatmi et al. [27], Paudyal et al. [71] , Taylor [92],
Kosmidou et al. [53], Savur et al. [85]. We cannot directly compare classification accuracy
with Wu et al. [99] and Wu et al.[101] as both of them have used a greater number ASL
gestures. However, the performance of our approach is comparable to these two methods
as they have used greater number of sensors and have validated their model on dataset
on comparatively containing lesser number of samples. On the other hand our model is
more generalizable as have been validated on dataset with larger number of people. For
Savur et al. [86] and Savur et al. [85] attain a lower classification accuracy with comparable
number of ASL gestures.Based on above comparison we can conclude that our proposed
pipeline is better suited for developing cost effective SLRS using optimal number of sensors.

The use of sEMG sensors has an advantage over the other sensor-based ASL recognition
system as these sensors are easily available in wearable wireless modules and are less sus-
ceptible to maintaining a line of sight with the receiver attached to the recognition module.
This can increase the ease of use as compared to other sensor-based approaches. In addition,
the use of sEMG sensors can provide a significant role even if the signer is suffering from
upper limb amputation(Finger amputations). Our proposed pipeline is more interpretable
and provides comparable classification accuracy than the deep learning models used for
a similar gesture recognition task. Most deep learning pipelines are deployed end-to-end,
implicitly extracting the features from the raw signals, giving less insight about the features
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used. Thus a user-friendly, cost-effective, and reliable sEMG based SLRS system for ASL
can be built using our proposed pipeline.

The Myo armband used in the experiments can communicate with Android smartphones
through various interfaces. Effort would be made to implement a cost-effective ASL recog-
nition system using the smartphone, Myo armband, and the proposed model in our future
work. The reported experimental results further can be utilized field of robotics/prosthetics
involving replicating, decoding, or identifying the finger or hand gesture movements to
improve prosthetic control. In addition, can be used to improve precision and control while
building sEMG based Human-computer Interaction applications [3].

5.1 Limitations and challenges

Despite providing better classification accuracy for the ASL gesture recognition task, our
proposed machine learning pipeline poses certain limitations, which are as follows:

a) The accuracy of the sEMG-based gesture recognition is affected by various factors
such as the sensor placement, intra & inter-day data collection, muscle fatigue, and
skin impedance [20, 48, 110]. However, during our experiments, we followed a strict
protocol to minimize the effect of these variables. The sensor’s placements and distance
between these sensors were strictly monitored, data collection was performed in an
intraday scenario, and various short sessions were separated by relaxation time to deal
with muscle fatigue. In addition, the conductive gel was administered over the sensor
placement area to deal with skin impedance. Evaluating the proposed machine learning
pipeline in an environment without such protocols may adversely affect the overall
recognition accuracy.

b) The ASL gestures considered for recognition tasks are primarily static in nature.
Whereas the ASL dictionary contains different dynamic words (consists of various
hand motions). The proposed machine learning pipeline may behave differently when
applied to these dynamic gestures.

c) Non-manual markers (facial expressions) are an essential part of ASL communication.
A recognition module based on sEMG signals used cannot capture this information
or differentiate between two ASL signs involving Non-manual markers. Hence, the
proposed pipeline is ineffective for ASL gestures heavily dependent on Non-manual
markers.

d) The reported classification accuracy is based on evaluating isolated ASL gestures.
However, during real-time ASL communications, a signer generates continuous ges-
tures. To effectively work in a continuous gesture scenario, a recognition module must
be able to identify the presence and duration of a gesture performed. So for real-time
use, the proposed machine learning pipeline has to be integrated with algorithms that
can predict the presence and duration of the ASL gesture.

Despite the advancements in technology such as sensor fabrications, activity recognition,
and deep learning algorithms, a commercial, cost-effective ASL system is not available.
Around 70 million deaf people uses nearly 300 sign languages worldwide [11]. The avail-
ability of a cost-effective accurate SLRS could help improve the day-to-day standard of
living of these people. One of the major challenges in SLRS is maintaining acceptable
recognition accuracy in real-time without increasing the overall system complexity and cost
[5]. Recognition accuracy can be improved by integrating multiple or complex hybrid sen-
sors, which eventually affects the price. Hence a tradeoff between the number of sensors and
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cost must be maintained. Developing accurate machine learning models, channel optimiza-
tion algorithms, cost-effective hybrid sensors, and relevant compatible software are some of
the other major challenges which need to be dealt with in the SLRS field.

6 Conclusion and future work

This paper presented an sEMG-based machine learning pipeline for Sign language Recog-
nition and accessed its validity on two newly collected datasets consisting of sEMG signals
corresponding to different ASL gestures. The proposed pipeline is also validated on a
benchmark dataset(Ninapro Database 5), frequently used to access sEMG-based gesture
recognition methods. Validation of the pipeline is performed in terms of average classifica-
tion accuracy, MCC, AUC, response time, and scalability. Experimental results show that
our pipeline achieved an excellent classification accuracy of 99.91% and other performance
parameters compared to recently published research work showing the proposed work’s
novelty. The statistical test such as Kruskal Wallis and 5*2 cv t-test confirm the statistical
significance of the reported results.

Our experiments concluded that properly curating the quality of the extracted features
for sEMG signals can result in improved performance of sensor-based Sign Language
Recognition system and other similar hand gesture analysis tasks. Also, the FTT analysis
plays a significant role in sEMG based gesture recognition model. Using the various FFT
coefficients as features can help improve the performance of a gesture recognition system
involving finger movements. Sensor-based systems, less susceptible to lighting conditions,
can be treated as a better alternative to visual methods for building accurate sign language
recognition systems.

In future, our proposed recognition pipeline can be used to develop an advanced sign
language recognition system capable of recognizing complete ASL sentences. For sentence-
level recognition, individual sign words initially needs to be identified by separately using
a machine learning classification module similar to our proposed pipeline. Generating ASL
sentences requires continuous hand motion. Hence for correct identification of ASL words,
an automatic gesture presence detection and segmentation algorithm need to be developed
and integrated. Further, being correctly identified these individually sign words can be put
in sequential order to reconstruct the sentence meaning. The accuracy of the model can be
further improved by integrating it with Natural Language Processing (NLP) models such
as N-gram(customized for ASL grammar). Such a sentence-level ASL recognition sys-
tem would significantly impact ASL signers while learning or expressing sign languages.
Despite the advancement in HCI, an accurate, cost-effective SLRS is not available commer-
cially. The paper demonstrates the feasibility of using the sEMG-based recognition model
in building such SLRS.
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