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Abstract
Image deblurring for dynamic scenes is a serious challenge in computer vision. Motion
blur is caused by camera shaking or object movement during the exposure time. Many
photos cannot be reproduced at the moment they were taken, its contents cannot be
restored if motion blur occurs. In this article, we proposed a deblurring system that uses a
two-stage convolutional neural network (CNN) to achieve image deblurring through a
joint learning strategy. The first-stage network predicts the deblur kernel of each pixel and
pre-deblurs the input image, and then the second-stage network directly predicts clear
images based on U-Net architecture. In the first-stage network, the deblur kernel uses the
surrounding information to restore the centre pixel, which can effectively remove the tiny
motion blur. To additionally deal with large motion blur, we extend the second-stage
network is used to compensate for the limited receptive field of the first-stage deblurring
kernel. We evaluate the proposed method on benchmark blur datasets. Experimental
results show that the proposed method can produce better results than state-of-the-art
methods, both quantitatively and qualitatively. The proposed method can achieve the best
PSNR at 32.59db, 27.21db and 31.96db for the GOPRO, Köhler, and Su datasets,
respectively.

Keywords Image Deblurring, Image quality improvement . Deep learning . Convolution neural
network (CNN) . Joint learning

1 Introduction

As technology develops, more applications use images for recognition and analysis. Motion
blur is one of the common photography artifacts in dynamic environments. It is an effect
caused by the relative movements of the camera, the object, or the background. An image
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generated by a camera is actually the accumulated scenes over the exposure time. Therefore,
when objects are moving, the camera would record the entire process of moving within the
exposure time in the image, which is why the image becomes blurred. The performance will be
affected if the input image is blurred. Image deblurring technology not only allows us to
restore lost images but also helps some high-level image processing methods to improve
performance. The blurred images have various distortions that make the images difficult to
recognize.

The deep learning techniques handle the difficulty of finding useful features, because it can
learn the useful features through training on a large amount of data. The learning-based
methods have shown advanced performance in many computer vision problems [5, 23, 24,
29, 41], including the deblurring problem [8, 22, 24, 27, 30, 32–34, 44]. Many network
modules and functional units for image restoration have been exploited in the past, including
recursive residual learning [2, 42], dilated convolutions [2, 39], attention mechanisms [6, 42],
encoder-decoders [3, 44], and generative models [19, 45]. More recent works [8, 22, 30,
32–34, 44] used the end-to-end training networks to reach the goal of the image deblurring.
There are some works [24, 32, 34, 44] used multi-hierarchy architecture, which makes each
level of network focus on learning features in different size, and then combine those networks
to solve the problem.

The proposed two stages deblurring network is composed of two different networks to
deal with different types of motion blur. The first stage network predicts the deblur kernel
of each pixel and pre-deblurs the input image, and then the second stage network further
eliminates the blur to output the final deblurring result. Since latent pixels’ information
are scattered in a motion blurred image, the deblur kernel is to use the surrounding
information to restore the center pixel, which can effectively remove the small motion
blur. However, the deblur kernel is not effective in large motion blur, so the second stage
network is used to compensate for the limited receptive field of the first stage deblur
kernel.

In this article, we present a single image deblurring system. We briefly summarize the
contributions of this work as follows:

1) We proposed a two stages deblurring network to deal with different types of motion blur.
2) In the first stage, we use the pixel-wise kernel estimation network to predict the deblur

kernel of each pixel to restore the sharp image in pixel-level.
3) In the second stage, we use the image deblurring network to further refine the blurred

image with a global view.
4) We use several image processing techniques to augment the training dataset. This allows

the training data to be more diversified so that the proposed network can be adapted to a
variety of different blur scenarios without overfitting.

5) We use four different loss functions to train our proposed network. This allows the
proposed network has more information of the difference between output and ground
truth to reach a better deblurring result.

6) We adopt joint learning to train the two stages network simultaneously. This allows the
proposed network to find the global optimum of the whole task.

As mentioned above, our method can achieve a good deblurring result. We demonstrate our
method and some state-of-the-art method on four different datasets. The results show that our
method has better deblurring performance both qualitatively and quantitatively.
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2 Related work

Conventional approaches usually require explicit estimation of the blur kernel, and then
deconvolve the kernel with the blurry image to generate a sharp image. There have been
several works on estimating the uniform blur kernels, and these methods usually assume that
the blur caused by camera shake during the exposure time are uniform with negligible in-plane
camera rotation.

Uniform blur kernel estimation usually assume that the blur caused by camera shake during
the exposure time are uniform with negligible in-plane camera rotation. Fergus et al. [7]
proposed a variational Bayes approach with natural image statistics to estimate the blur kernel.
This method uses an iterative approach to improve the estimate of the motion kernel and sharp
image on each iteration. Hence, the running time, as well as the stopping criterion, is a
significant problem for these kinds of algorithms. Cho et al. [4] proposed a fast deblurring
method, which exploited the blurred strong edges to reliably estimate blur kernel and accel-
erate both latent image estimation and kernel estimation in an iterative deblurring process.
Shan et al. [28] proposed a model of the spatial randomness of noise to separate the errors that
arise during the blur kernel estimation, as well as a new local smoothness prior that reduces
ringing artifacts. However, the uniform blur is unreasonable in reality, and ideal assumptions
cannot achieve good results.

Real camera blur is non-uniform, there is also a lot of work on non-uniform blur kernel
estimation. They are mainly in predicting non-uniform blur. Hirsch et al. [11] divide the image
into several locally uniform overlapping-patch to predict each blur kernel of different patches.
Gupta et al. [9] model the camera motion as a motion density function to estimate spatially
variant blur kernels. Sun et al. [33] propose a deep learning approach to predict the probabi-
listic distribution of motion blur at the patch level. There have also been some works that rely
on an accurate image segmentation mask to estimate different blur kernels for corresponding
image regions. Pan et al. [25] split an image into different layers according to moving objects
and assume that each layer corresponds to a blur kernel. Kim et al. [15] proposed a deblurring
framework that can adaptively combine different blur models to estimate the spatially varying
blur kernels. Kim and Lee [14] approximated the blur kernel to be locally linear and proposed
an approach that estimates both the latent image and the locally linear motions jointly. The
problem with non-uniform in real camera blur is also a problem faced in the past studies.

Due to the recent rapid development of deep neural networks, various advanced methods
have also been proposed. As for the high-frame-rate camera becomes available, Kernel-Free
for image deblurring started to be mentioned and studied. We can acquire a large number of
blur and blur-free image pairs synthetic by consecutive frames. Therefore, many works directly
restore the sharp image by learning the mapping functions from blur to blur-free images
through a convolution neural network without estimating blur kernels. Lim et al. [22] proposed
a deep spectral-spatial network, which used a two stages encoder-decoder network in a
cascaded scheme to restore the sharp image by learning both spectral and spatial features.
Zou et al. [46] proposed an architecture called SDWNet, obtaining different receptive fields by
using dilated convolution modules, and the wavelet transform module makes the restored
image contain more high-frequency details. Ye et al. [40] proposed a scale-iterative upscaling
network, which has two levels and implements the iterative process of downsampling a series
of tasks with smaller image scale. These methods all use a multi-level architecture and deblur
from a tiny scale. Liang et al. [20] proposed a raw image deblurring network architecture
consisting of spatial and color encoder, and bidirectional cross-modal attention. The
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architecture leads a shorter runtime and good large-scale shaking elimination. However, these
architectures cannot be more reserved for details. To achieve better results, we proposed a two-
stage single image deblurring network based on deblur kernel estimation, which recovers the
original sharp image from the cascaded architecture by estimating the deblur kernel in pixel-
level and learning latent blur features. Based on our proposed method, good results are indeed
obtained.

In addition, with the rapid development of medical assistance technology, deblurring is also
applied to medical images. Tien et al. [35] proposed the CycleDeblur GAN, which combined
the CycleGAN and Deblur-GAN deep learning models to improve the quality of chest CBCT
images. It also does produce good results in post-processing CT imaging. Ahmed et al. [1]
proposed an unsupervised bilinear model by using convolutional neural networks as param-
eters. It also achieves good results in the performance of removing blur.

3 Proposed deblurring network

The proposed deblurring network is based on two different U-net architecture [26] to achieve a
single image deblurring method, the flow chart is shown in Fig. 1. In the training process, the
input blur image would first be randomly pre-processed through a series of data augmentation
tasks, such as cropping, flipping, rotation, and hue and saturation adjustments. The first stage
pixel-wise kernel estimation network estimates a 5×5 deblur kernel for each pixel to eliminate
local blur in the pixel-level. The second stage image deblurring network learns latent blur
features from the original blurry input image and the preliminary result image from the first
stage. In the system trained by our proposed deblurring network, the first stage deblurring aims
to eliminate local blur in pixel-level, while the second stage deblurring generates the final
deblur image with a global view.

3.1 Pixel-wise kernel estimation network

We introduce the first stage of the proposed deblurring network. The proposed pixel-wise
kernel estimation network is based on the U-net architecture [26]. The overall architecture of

Input blur image Data augmentation
Pixel-wise kernel 

estimation network

Image deblurring

network

Output deblur

image

Pre-deblurring by 

pixel-wise deblur

kernel

First stage deblurring

concatenate

Second stage deblurring

Pre-processing

Fig. 1 Flow chart of the whole system
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the proposed kernel estimation network is shown in Fig. 2. The input of the proposed network
is a 3-channel blurry image, and the output is a 25-channel result, which indicates that the
predicted window size of the pixel-wise deblur kernel in the proposed method setting is 5×5.
After that, the output pixel-wise deblur kernel of this network will be passed to the dynamic
local filtering [12, 13] to get a pre-deblurring result.

Because of the motion blur is caused by camera shaking or object moving in the captured
image, so the original pixel’s information will scatter into the surrounding pixels. To deal with
the motion blur, we propose the pixel-wise kernel estimation network to predict the pixel-wise
deblur kernel of the blurry input image. It can use the surrounding pixel’s information to solve
the effect of motion blur. Finally, we can acquire the pre-deblurring result to feed into the next
stage deblurring network, as shown in Fig. 3.

The pixel-wise deblur kernel is to restore the center pixel’s information from the neighbor
pixels, as shown in Fig. 3b. Because of these predicted deblur kernels restore the blurry image
in pixel-level, so it has a good ability to restore local and non-uniform blur regions. However,
the large motion blur cannot be well restored due to the limitation of the window size of the
predicted deblur kernels.

We adopt the dynamic local filtering [12, 13] on the blurry input image and pixel-wise
deblur kernel. The operation of dynamic local filtering can be divided into three parts. First,
extract the blurry input patches of each pixel and then do an element-wise product with the
pixel-wise deblur kernel of the corresponding pixel position. The regions out of the image
range are filled with zero values. Finally, add all of the element-wise product results to
generate the pre-deblurring result, as shown in Fig. 3c. It represents the pixel-wise deblur

Fig. 2 The proposed pixel-wise kernel estimation network. H andW represent the image dimension. The number
on each block represents the output channel size
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kernel as position-specific. The pixel-wise deblur kernel in each position is the corresponding
predicted deblur kernel of the blurry input image.

The proposed kernel estimation network does not convert the blurry input image into the
latent deblur kernel directly at the beginning of the network, so we need to use the convolution
layer to extract the blur information. To achieve better performance, we use the residual
channel attention block (RCAB) [42] and residual dense block (RDB) [43] to extract the blur
feature in the proposed kernel estimation network. The RCAB can select useful feature maps
by the channel attention (CA) [42] mechanism, which can increase the weight of important
channels, and suppress less important weights. By using the RCAB, the proposed kernel
estimation network can adaptively choose the feature maps and reduce the impact of invalid
feature maps. Finally, we combine three RCAB and one convolution layer and use the skip
connection to compose the RCAB group to get better performance. In addition to use the
RCAB, we connect an RDB after the RCAB to get stronger blur information from the
extracted feature maps. The RDB not only can increase the depth of the network, but it can
also concatenate every output feature map to all subsequent convolution layers to complement
the information, since the information may be lost during the convolution operation. Since the
predicted pixel-wise deblur kernel has different characteristic compared to the image, so in the
decoder of the original dimension, the skip connection will not be applied.

The kernel estimation network directly uses the RCAB proposed in, as shown in Fig. 4. The
RCAB structure is to combine the CA and residual blocks. We use the CA mechanism to
achieve the feature selection. The residual learning strategy of residual blocks is widely used in
deep neural networks by adding an identical mapping with the shortcut connections to alleviate
the vanishing gradient problem.

The CA mechanism can adaptively rescale channel-wise features by considering interde-
pendencies among channels, as shown in Fig. 5. In other words, it can adaptively select the
feature maps by giving different weights to each feature map.

Fig. 3 a Pixel-wise kernel estimation network. b Pixel-wise deblur kernel. c Dynamic local filtering
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Here we describe how to achieve the feature selection by the CA mechanism. First, we use
the global average pooling function to acquire the channel-wise statistic global spatial infor-
mation by Eq. (1).

zc ¼ HGP xcð Þ ¼ 1

H �W
∑
H

i¼0
∑
W

j¼0
xc i; jð Þ; ð1Þ

where xc represents the input feature maps in the c-th channel, HGP represents the global
average pooling function, H and W represent the height and width of input feature maps,
respectively.

After doing the average global pooling, we acquire the channel-wise statistic global spatial
information, which can express the entire feature map of each channel in a single value. Then,
we feed it into the channel down- and up-scaling layer to obtain the scaling factor of each
channel, as shown in Eq. (2). The kernel size of the down- and up-scaling convolution layers
are 1 × 1. The number of channels reduces by the ratio of r in the down-scaling layer, and then
increases back to the original number in the up-scaling layer.

s ¼ f WUδ WDzð Þð Þ; ð2Þ
where f and δ represent the sigmoid and ReLU function, respectively;WU andWD represent the
convolutional weight set of channels up- and down-scaling layer, respectively; The ratio r in
the proposed method setting is 16.

Finally, we can acquire the weighted feature maps by multiplying the scaling factor with
input feature maps by Eq. (3).

bxc i; jð Þ ¼ sc � xc i; jð Þ; ð3Þ
where sc represents the scaling factor in the c-th channel; xc represents the input feature maps in
the c-th channel.

Fig. 4 Residual channel attention block [42]

Fig. 5 Channel attention (CA) [42] mechanism
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To further improve the performance of the proposed kernel estimation network, we use the
RDB [43] structure, which is the combination of the residual block [21] and dense block [36].
The residual block can improve the network by the residual learning strategy. The dense block
connects each layer to each layer in a feed-forward fashion, if there are m layers in a block, the
total number of connections will be m(m + 1)/2. RDB combines the above advantages, which
can alleviate the vanishing gradient problem, enhance feature propagation, and encourage
feature reuses.

Due to the image degraded by the motion blur, the latent pixel information is scattered in a
blurred image. We use the 3 × 3 convolution layer to replace the 1 × 1 convolution layer at
the end of the RDB as the dimensionality reduction layer and to capture the useful information
around the center pixel. The RDB we use in the proposed kernel estimation network is shown
in Fig. 6. We use five convolution layers. Each convolution layer is followed by the

Fig. 6 Residual dense block in the proposed kernel estimation network

Fig. 7 The proposed image deblurring network. H and W represent the image dimension. The number on each
block represents the output channel size
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LeakyReLU layer to form the proposed residual dense block with a growth rate is 64, which
means that the output of each convolution layer is 64 channels except for the output layer.

3.2 Image Deblurring network

The overall second stage architecture of the image deblurring network is shown in Fig. 7. The
proposed image deblurring network can handle the large motion blur by using the encoder-
decoder structure. The encoder-decoder structure reduces the feature maps resolution to
enlarge the receptive field so that the neural network can learn the general direction of the
image, but it is also easy to ignore the details of small places. Therefore, the final result is
obtained through the cooperation of the two stages of the network. We concatenate the blurred
input image with the pre-deblurring results as the input of the proposed image deblurring
network. It can give the network a better starting point and reserve the original image
information.

In order to improve the performance of the network, we stack the number of convolution
layers to obtain richer feature expressions. But deep neural network will encounter the
vanishing/exploding gradient problems. Because the gradient signal from the loss function
changes exponentially when it propagates back to earlier layers, it is difficult or even
impossible to converge. Therefore, we use the residual learning proposed in ResNet [10] to
add a shortcut connection between convolution layers to solve the vanishing/exploding
gradient problems. In addition, when the convolution layer does not learn new features, the
shortcut connections can be treated as an identical mapping, it can ensure that the performance
of the network does not deteriorate to avoid model degradation. The proposed residual block
(Resblock) is shown in Fig. 8a. The Resblock group we use in the proposed image deblurring
network consists of four Resblocks stacked, as shown in Fig. 8b.

Fig. 8 a Resblock b Resblock group
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3.3 Loss and training detail

In deep learning, we usually have multiple different modules, and each with its own function.
We can choose to learn everything together or separately. The joint learning is to combine
multiple different modules to train together to find the global optimum for the entire task.

We use joint learning to train the proposed image deblurring network, which is composed
of two different networks to deal with different types of motion blur. In the first-stage network,
we predict the pixel-wise deblur kernel to remove the small motion blur. In the second-stage
network, we learn the blur-to-blur-free mapping function directly from the feature maps, which
has a good ability to remove the large motion blur. Therefore, through joint learning, the first
and second stages of the proposed network can compensate each other for better results.
Figure 9 shows the overall architecture of the joint learning network.

The proposed network is trained by using four different loss functions, such as spatial loss
(Lspatial), spectral loss (Lspecteal), structural similarity index measure (SSIM) loss (Lssim), and
gradient loss (Lgradient). The overall loss function is shown in Eq. (4), and four loss functions
are shown in Eq. (5)–(8).

Ltotal ¼ ∑
i¼1;2

λ1 � Li
spatial þ λ2 � Li

spectral þ λ3 � Li
ssim þ λ4 �Li

gradient ð4Þ

where i is the i-th stage deblurring result; λ is the weight of different loss function.

Li
spatial ¼ I iout−Igt

�� ��
1
; ð5Þ

Li
spectral ¼ F Iiout

� ��� ��− F Igt
� ��� ���� ��

2
; ð6Þ

Li
ssim ¼ 1−SSIM I iout; Igt

� �
; ð7Þ

Li
gradient ¼ GH ;V I iout

� �
−GH ;V Igt

� ��� ��
1
; ð8Þ

Fig. 9 Overall architecture of the proposed joint learning network
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where Iout and Igt are deblurring result and ground truth, respectively; |F(∙)| is the magnitude of
frequency coefficients; SSIM is image quality metrics; GH, V is operators that compute image
gradient along the horizontal and vertical directions.

The proposed method is trained using GOPRO dataset [24]. In the data pre-processing step,
we randomly crop the training patch to a size of 256×256, then randomly rotate and flip the
patch, and finally adjust the saturation and hue of the patch. We use the Adam [16] optimizer
to update the proposed network. The initial learning rate is set to 1e−4 with a linear decrease to
zero after 20% of training, the batch size is set to 4.

4 Experimental results

The proposed method is implemented on the PyTorch framework. Both training and
testing were conducted on the same PC with an NVIDIA GTX1080Ti GPU, and an Intel
i7–4790@3.60 GHz CPU.

We evaluate our proposed method on three different test datasets to show the effectiveness
of the proposed method. We use the same parameters, which are trained based on the GOPRO
training set [24] to conduct on three different test datasets. The GORPO dataset [24] use
GOPRO4 Hero Black camera to record the 240 fps videos. Then, researchers average the
varying number of consecutive frames to the synthesized realistic blurry image. The sharp
image corresponding to each blurry image is defined as the middle frame of the consecutive
sharp frames that are used to make the blurry image. The GOPRO dataset [24] contains 2103
pairs for training and 1111 pairs for evaluation. For all the following experiments, we used the
GOPRO training set [24] to train the proposed system, and tested on different dataset
separately.

We use MATLAB for all PSNR, SSIM [38], and MS-SSIM [37] evaluations. The visual
comparison with other methods has reproduced by the codes that were provided by the
authors.

4.1 Evaluation methods

The PSNR of the deblurring result with the corresponding ground truth sharp image can be
obtained by the Eqs. (9) and (10). A higher PSNR value indicates the result is closer to the
ground truth sharp image.

MSE ¼ 1

3mn
∑

R;G;B
∑m−1

i¼0∑
n−1
j¼0 I rgb i; jð Þ−I 0rgb i; jð Þ

h i2
; ð9Þ

PSNR ¼ 10�log10
Imax2

MSE

� �
; ð10Þ

wherem and n are the image width and height, I and I′ are the ground truth sharp image and the
deblurring result, Imax is the maximum pixel value of the image.

The SSIM [38] metric is to compare the luminance (l), contrast (c), and structure (s) of two
images, as shown in Eqs. (12) to (14). The SSIM [38] score of the deblurring result and the
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corresponding ground truth sharp image is a weighted combination of those comparative
measures, where α, β, and γ are weight constants. As shown in eq. (11).

SSIM I ; I
0

� 	
¼ l I ; I

0
� 	h iα

c I ; I
0

� 	h iβ
s I ; I

0
� 	h iγ

; ð11Þ

where μI and μI
0 are the average of I and I′; σI and σI 0 are the variance of I and I′; σI I

0 is the

covariance of I and I′; C1, C2, and C3 are constants.

l I ; I
0

� 	
¼ 2μIμI

0 þ C1

μ2
I þ μ2

I
0 þ C1

; ð12Þ

c I ; I
0

� 	
¼ 2σIσI

0 þ C2

σ2
I þ σ2

I
0 þ C2

; ð13Þ

s I ; I
0

� 	
¼ σI I

0 þ C3

σIσI
0 þ C3

; ð14Þ

The MS-SSIM [37] metric is a multi-scale method to evaluate image details at different
resolutions, as shown in Fig. 10. The MS-SSIM [37] of the deblurring result with the
corresponding ground truth sharp image uses the Eq. (15).

MS−SSIM I ; I
0

� 	
¼ lM I ; I

0
� 	h iαM �∏M

j¼1 c j I ; I
0

� 	h iβ j
s j I ; I

0
� 	h iγ j

; ð15Þ

whereM is scale index; cj and sj are contrast comparison (13) and structure comparison (14) at
the j-th scale, lM is the luminance comparison (12) only be computed at scaleM; αM, βj, and γj,
similar to (11), are used to adjust the relative importance of different components.

4.2 GORPO testing set

The GOPRO testing set [24] consists of 1111 blur and blur-free image pairs. The results of the
proposed method can well restore the image details and text edges due to the use of deblur
kernels and four loss functions, as shown in Fig. 11. Quantitative evaluation results with state-

Fig. 10 MS-SSIM system, L: low-pass filtering; 2↓: downsampling by 2
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of-the-art methods are shown in Table 1. The proposed method produces the best results in
terms of PSNR and SSIM.

From the enlarged view of Fig. 11, we can observe the difference in many details. In the
enlargement of the above results, we can see that the structure of the overall image is mostly
reconstructed successfully. However, in scene details with indistinct boundaries by Nah et al.
[24], shaking still cannot be eliminated. From lower yellow and upper blue rectangle, the green
and black forest scene or the gray floor with thin black lines still retains a large degree of blur.
Next, we can observe from lower red rectangle. Due to the inability to correct and synthesize
details well, some parts of the license plate are also missing in the middle. Therefore, the
details cannot be clearly restored, and only good picture restoration can be seen. Besides, in the
indistinct-boundaries enlargement by Tao et al. [34], we can observe some details in the
enlarged image. The gray floor and thin black lines in blue rectangle still retain a certain degree
of blur. While it maintains a better structure to the object, the blur is also preserved and
composited together. The license plate from the lower blue rectangle, a white line in the middle
can be clearly seen, which looks like a white line produced by superposition. Finally, from the
results of the proposed method, we can observe more successful deblurring and sharper detail
restoration from the enlarged image. In addition to the number in the license plate being clearly

Fig. 11 Deblurring results on the GOPRO testing set [24]. First column: input blurry images. Second column:
deblurring results by Nah et al. [24]. Third column: deblurring results by Tao et al. [34]. Fourth column:
deblurring results by proposed method

Table 1 Quantitative results on the GOPRO testing set [24]

Methods PSNR SSIM

Kim et al. [14] 23.64 0.8239
Sun et al. [33] 24.64 0.8429
Nah et al. [24] 29.08 0.9135
Tao et al. [34] 30.26 0.9342
Zhang et al. [44] 30.25 0.9351
Gao et al. [8] 30.92 0.9421
Lim et al. [22] 30.62 0.9388
Sim et al. [30] 31.34 0.9474
Ye et al. [40] 30.28 0.9046
Proposed method 32.59 0.9589

17067Multimedia Tools and Applications (2023) 82:17055–17074



restored, the lines on the floor and the detailed scenery of the forest can also be clearly seen.
Therefore, we can see the proposed method achieves the best results in PSNR and SSIM,
which are 32.59 and 0.9589 respectively.

4.3 Köhler dataset

The Köhler dataset [17] is generated by recording trajectories of human camera shaking and
then playbacks on a hexapod robot. This dataset consists of 48 blurry images. They provide
their own evaluation code; Thus, we report the MS-SSIM [37] instead of the SSIM [38].
Table 2. lists the average PSNR and MS-SSIM values of our proposed method and the state-
of-the-art methods for the Köhler dataset [17]. Figure 12 shows some deblurring results for
subjective comparison.

From the enlarged view of Fig. 12, there are few differences can be observed from some of
the details. In the enlargement of the above results on the Köhler dataset [17], we can see that
the details and the structure of the overall image are mostly well reconstructed. However, some
differences can be observed. From the results by Nah et al. [24], the enlarged image shows that
blur can still be seen. While some details have been sharpened, blurring can still be observed in
some figures or lines. The number 9 with several lines in lower red rectangle, show us the
effect as a clear example. As for the results by Tao et al. [34], most of the details have been
well reconstructed and sharpened. In lower yellow and red rectangle, both the Roman
numerals and the number 9 on the clock have been relatively free of wobble and blur. Aside

Table 2 Quantitative results on the Köhler dataset [17]

Methods PSNR MS-SSIM

Kim et al. [14] 24.68 0.7937
Sun et al. [33] 25.22 0.7735
Nah et al. [24] 26.48 0.8079
Tao et al. [34] 26.75 0.8370
Zhang et al. [44] 24.66 0.7639
Gao et al. [8]* 27.02 0.8387
Lim et al. [22] 27.02 0.8442
Sim et al. [30]* 25.87 0.8109
Ye et al. [40] 26.99 0.8551
Proposed method 27.21 0.8397

* indicates that we use the code provided by the author to evaluate the score

Fig. 12 Deblurring results on the Köhler dataset [17]. First column: input blurry images. Second column:
deblurring results by Nah et al. [24]. Third column: deblurring results by Tao et al. [34]. Fourth column:
deblurring results by proposed method
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from some lines in the enlarged image, it can still be seen that there is still a slight degree of
blurring. And finally, from the results of our method, it can be seen that basically the details are
sharpened to some extent. Parts of the clock have no visible noticeable blur. But there are gains
and losses, we can see that in the enlarged image from lower yellow rectangle, there are slight
imprints similar to water ripples below the Roman numerals. Although it can be found in the
enlarged image, it does not affect its clarity in the overall picture. Thus, we can see the
proposed method achieves the best results in PSNR, which is 27.21. And SSIM, although not
the best among them, also got a result of 0.8397.

4.4 Su dataset

The Su dataset [31] consists of 6708 blur and blur-free image pairs with a resolution of 1920 ×
1080 or 1280 × 720. They collect 71 videos from multiple devices, i.e., iPhone 6 s, GoPro
Hero 4, and Canon 7D, and generate the blurry image by accumulating a number of
consecutive frames in specific conditions (the consecutive frames whose relative motions in-
between are smaller than one pixel) to approximate a long exposure. We use all 6708 images
for testing. Table 3 lists the average PSNR and SSIM [38] values of our proposed method and
the state-of-the-art methods for the Su dataset [31]. Figure 13 shows some deblurring results
for subjective comparison.

As we can see from Fig. 13, results by Nah et al. [24] provide a well reconstruction for the
whole image. Most of the blur is removed, but the blur and shaking are still noticeable after

Table 3 Quantitative results on the Su dataset [31]

Methods PSNR SSIM

Nah et al. [24]* 29.73 0.9198
Tao et al. [34]* 31.09 0.9328
Sim et al. [30]* 30.64 0.9231
Proposed method 31.96 0.9390

The bold number means the best one among all methods
* indicates that we use the code provided by the author to evaluate the score

Fig. 13 Deblurring results on the Su dataset [31]. First column: input blurry images. Second column: deblurring
results by Nah et al. [24]. Third column: deblurring results by Tao et al. [34]. Fourth column: deblurring results
by proposed method
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zooming in on the image. As for results by Tao et al. [34] and our proposed method, we can
see that the difference is not large, and the degree of blurring is similar. The only difference is a
slight difference in colour and brightness, as well as the sharpening of some details. Therefore,
this is also the reason why the PSNR and SSIM values on both sides are similar to other
methods. But still, the proposed method achieves the highest scores in PSNR and SSIM, which
are 31.96 and 0.9390 respectively.

4.5 Lai dataset

The Lai dataset [18] has the real image dataset and the synthetic dataset, each with 100 blurry
images. The real image dataset is generated by capturing the real-world scenarios from

Fig. 14 Deblurring results on the Lai dataset [18]. First column: input blurry images. Second column: deblurring
results by Nah et al. [24]. Third column: deblurring results by Tao et al. [34]. Fourth column: deblurring results
by proposed method

Fig. 15 Deblurring results on the Lai dataset [18]. First column: input blurry images. Second column: deblurring
results by Nah et al. [24]. Third column: deblurring results by Tao et al. [34]. Fourth column: deblurring results
by proposed method
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different cameras. The synthetic dataset is generated by convolving nonuniform blur kernels
on sharp images and imposing several common degradations. However, the blurry images and
sharp images are not aligned, making the PSNR and SSIM [38] metrics are less correlated with
perceptual quality. Therefore, the calculated PSNR/SSIM is meaningless i.e., the deblurring
results of our method and Tao et al. [37] have better visual quality but got a lower score in
quantitative evaluation. Figure 14 show some deblurring results of the real image dataset, and
Fig. 15 show some deblurring results of the synthetic dataset for subjective comparison.

In the real image dataset, it is more challenging to remove the real blur. We failed to restore
sharp information in some real blurry images because the blur caused by real camera shake is
more complicated. We show a successful result and a failure result in Fig. 14. As shown in
upper Fig. 14, our result can restore the sharp information well in the real blurry image, but all
methods failed to remove the blur in lower Fig. 14. In the synthetic dataset, our deblurring
result performs better than other methods. As shown in upper Fig. 15, our method can restore
the sharper edges than other methods on the blurry image generated by the blur kernel. As
shown in lower Fig. 15, our method can even restore the details of the railway (stone texture)
in the yellow rectangle region, while the other three methods failed.

5 Conclusions

This article proposed a single image deblurring method to directly restore the sharp image
from a blurry input image. The proposed deblurring method is featured with the two stages
deblurring network to deal with different types of motion blur. The first stage network is used
to restore the small motion blur, and the second stage network is used to restore the large
motion blur. In order to efficiently combine the two stage networks, we use a jointly learning
strategy to train both networks simultaneously.

We used some image processing techniques, i.e., random cropping, rotating, and flipping, and
adjusting colour saturation and hue, to augment the training dataset so that the proposed network can
be adapted to a variety of different blur scenarioswithout overfitting.We also used four different loss
functions to provide the proposed network with more information to reach a better deblurring result.

To show the effectiveness of the proposed method we evaluate on three different bench-
mark datasets, which synthetic blurred images using different methods. These datasets gener-
ated blur and blur-free image pairs by averaging the different number of consecutive frames
captured by high-frame-rate cameras, using the hexapod robot to playback camera shaking
trajectories, convolving blur kernel on the sharp image, and capturing the real-world blur
image. The experimental results show that the proposed deblurring result outperformed the
state-of-the-art methods in PSNR, SSIM, and MS-SSIM evaluation for all the aligned bench-
mark datasets. Besides, the results of the proposed method show better visual quality compared
with the state-of-the-art methods for all benchmark datasets.

In the future, we believe that the blur dataset needs to be more diverse to simulate a variety
of real blurs. When using continuous frames to synthesis blurred images, different blocks can
be selected to average or discard some frames, because there is not such richness information
in real blurred images. Moreover, we would like to make the model smaller and implement the
deblurring system on other platforms, i.e., camera or mobile device can bring more conve-
nience to users. And also, we would try to use the proposed deblurring method as a pre-
processing step for other high-level image processing applications, such as object recognition,
segmentation, and classification, to improve its accuracy.
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