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Abstract
Skin cancer is a severe disease that is common and causes death if left untreated. When
skin cancer is detected early through dermatoscopic imaging, the possibility of definitive
treatment is very high. Although melanoma is one of the fatal types of skin cancer, early
detection dramatically increases the chances of survival. There is a low morbidity rate
and limited actual data to study this deadly disease. This is a significant handicap in the
application of machine learning techniques. Accurate diagnosis is essential because of the
similarity of some types of lesions. The accuracy of the diagnosis is related to the profes-
sional experience of the specialist. The development of rapid and successful computerized
diagnostic systems for the diagnosis and classification of skin cancer has become increas-
ingly important. Deep learning-based applications are especially new trend in the detection
of diseases from medical images. In this study, an effective data augmentation and a pre-
trained deep learning approach are proposed for skin lesion classification. A hybrid network
model called the Inception-Resnet-v2 is proposed to classify skin cancer images. The main
aim of this study is to increase the number of images in the dataset by applying the affine
transformation technique (data augmentation) and analyzing its effect on the skin cancer
classification system. The highest reported accuracy in this study with an augmented dataset
is 95.09% for the Inception-Resnet-v2 model while the same model achieved 83.59% with
the original dataset.

Keywords Skin cancer · Dermatoscopic images · Classification · Deep learning ·
Data augmentation

1 Introduction

Skin cancer occurs due to the uncontrolled proliferation of DNA structures of damaged skin
cells. It is among the most pervasive cancers in the world [40]. Skin cancer is the most
widespread malignant disease among white people. However, the percentage of skin cancer
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is increasing on a global scale [32]. Malignant skin cancer is one of the types of skin cancer
that has a high mortality rate. About 55,000 deaths from melanoma are reported worldwide
each year. This rate is equal to 0.7% of all cancer deaths. However, death rates vary widely
from country to country. Due to excessive exposure to ultraviolet rays, the annual number
of events of melanoma increased by 53% from 2008 to 2018 [14].

Although it is rare, it is the most malignant type of skin cancer and the number of deaths
is increasing. The American Cancer Society reported that 100,350 new cases were detected
in 2020. Also, estimated 6850 people died due to melanoma [44]. Although melanoma is
one of the fatal kinds of skin cancer, early detection greatly increases the chances of sur-
vival. The low rate of disease results in limited real image data on this deadly disease. This
is major handicap in the application of image processing and machine learning techniques.
The first step in diagnosing a malignant lesion by a dermatologist is a visual inspection
of the doubtful skin area. Accurate diagnosis is crucial because of the similarity of some
lesion types, and diagnostic correctness correlates with the expert’s professional experience
[20]. When skin cancer is detected early, definitive treatment is highly likely. Optical meth-
ods are available for skin cancer scanning. These methods are superficial and give a quick
response. Among the non-superficial methods, the most widely used is dermoscopic scan-
ning. Dermoscopy is an imaging technique to obtain a magnified and illuminated image of
the relevant area for accurate diagnosis of the stained area on the skin. Removing the sur-
face reflection of the skin can improve the visual effect of deeper skin levels and give a
more detailed view of skin lesions. In doubtful cases, visual inspection is assisted by der-
matoscopic images taken via magnifying and high-resolution cameras. In order to see the
deeper skin layers, the illumination is controlled with a filter to minimize reflections on the
skin during recording. Dermoscopy evaluation gives much higher accuracy than natural eye
evaluation. Dermoscopic images are mostly analyzed by visual inspection. The correctness
of skin lesion diagnosis can be improved thanks to this technical support [7, 8, 33, 47, 52].
The use of traditional methods like visual inspection, clinical scanning, biopsy, histopatho-
logical examination, and dermoscopic analysis of skin lesion need a high degree of skill,
concentration, and time [1, 8, 52]. Even when the diagnosis of skin cancer is made by
expert dermatologists, it can be erroneous due to factors such as different shapes, indistinct
borders, low contrast, skin hairs, oils, and air bubbles in skin lesions. Under these circum-
stances, the development of rapid and high success rate computer-aided diagnostic systems
for skin cancer detection and classification is becoming increasingly important. However,
diagnostic accuracy can vary widely among professionals with different experiences. Con-
sequently, there is a great interest in screening programs and the development of semi or
fully automated computer-aided diagnostic systems that can be used as a second stand-alone
opinion. Artificial intelligence models are the most used approaches in such computer-aided
diagnosis systems [11, 12, 15]. Especially in 2012, the use of deep learning approaches in
medical image classification has increased after the success of the model named AlexNet
by Krizhevsky et al. [27] in the ImageNet 2012 competition.

Deep learning models have been frequently used in the classification of skin cancer
images. Brinker et al. [6] split skin cancer images into two classes (Melanoma and Nevus).
In the ResNet-50 model, instead of a constant learning rate, a distinct learning rate is
used for each layer of the model. In addition, new methods based on the cosine function
have been used to reduce learning rates. A sensitivity rate of 82.3% was achieved with
this method. Hosny et al. [24] augmented the data set using the data augmentation tech-
nique for each image in the data set and used the transfer learning approach. With this
approach, a classification accuracy of 95.91% was achieved. Esteva et al. [13] divided the
dataset into two classes. In the preprocessing step, the images in the data set were processed
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with Gaussian filtering. With the deep learning model called AdNet, 87.81% accuracy was
achieved. Nugroho et al. [34] divided the HAM10000 skin cancer dataset into seven classes.
The designed and trained Convolutional Neural Networks (CNN) model reached 78% clas-
sification accuracy. Alqudah et al. [5] used pre-trained AlexNet and GoogLeNet models to
recognize three classes of skin cancer images. The data set is divided into two formats, the
unsegmented data set and the segmented data set. The classification accuracy was 89.8% for
the unsegmented dataset and 92.2% for the segmented dataset. Moataz et al. [30] proposed
to use a pre-trained model with fine-tuning on Xception to recognize seven classes of skin
cancer images. They executed data augmentation to improve the model performance. They
used 30,294 images for training, 7,574 images for validation, and 7,714 images for testing.
They obtained 96% of the average accuracy of classification for the augmented and bal-
anced HAM10000 dataset. Chaturvedi et al. [10] proposed to use fine-tuning on Xception
architecture for HAM10000 dataset (total 10,015 images, 8,912 for training and 1,103 for
validation). They modified the Xception model that has a dense layer with ‘Relu’ activation,
softmax layer (for seven classes), and Adam optimizer. The proposed method detected can-
cer with 91.47% accuracy. Aldwgeri and Abubacker [3] used and modified deep learning
models (VGG16, VGG19, ResNet50, DenseNet121, InceptionV3, and Xception) to classify
skin lesions for HAM 10,000 dataset (for unbalanced balanced and datasets). The highest
reported accuracy was 80% for this ensemble model. Kassani et al. [26] studied different
deep learning models to detect melanoma on the augmented HAM 10,000 dataset. They
reported in this study that the highest accuracy was 92% with ResNet50 and 90% with the
Xception model. Cengil et al. [9] used Alexnet and Resnet architectures and created hybrid
architectures with these two models. Instead of Softmax classifier in the last layer, they
used decision tree, kNN and SVM for classification with Alexnet and Resnet. The highest
reported accuracy was 77.8% with Alexnet+SVM on HAM10000 dataset.

Literature review denoted that although there are different diagnosis and classification
methods for skin cancer, there are still many gaps that need to be addressed, for instance,
complex configuration, higher complexity of some studies, and less accuracy. It can be said
that most of the skin lesion diagnosis systems in the literature give reasonable classifica-
tion results to distinguish malignant melanoma from benign lesions. The performance of
most machine learning techniques depends on the selected features characterizing the can-
cerous region and requires high computation time. Most of these studies were trained on
a set of handcrafted features from images and used simple classifiers. With deep learn-
ing techniques and CNNs, impressive results have been achieved in image classification to
perform skin lesion analysis and automatic diagnosis of cancer types. In skin lesion clas-
sification, transfer learning techniques were used to reduce computational and memory
requirements, and data augmentation techniques were used to overcome the lack of data.
Rather than training a CNN from scratch, which requires large amounts of data and cost of
high computation, it is computationally efficient to use a pre-trained CNN architecture (e.g.
AlexNet, DenseNet, Inception, and ResNet) and fine-tune its performance to speed up the
process.

The scope and contributions of this study could be summarized as follows:

– In this study, effective data augmentation and a pre-trained deep learning approach are
proposed for skin lesion classification.

– A hybrid network model called the Inception-Resnet-v2 is proposed to classify skin
cancer images.

– By applying the affine transformation technique, the number of images in the dataset
has increased to analyze its effect on the accuracy of skin cancer classification.
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– Performance comparison of the proposed method with other pre-trained methods is
performed on an augmented skin cancer dataset.

The rest of this study is carried out as follows. In Section 2, the material and method
are presented. In this section, the studied original and augmented datasets, and pre-trained
Inception-Resnet-v2 architecture are explained in detail. Experimental results are given in
Section 3, and the discussion and conclusion part of this study is given in Section 4.

2 Material andmethod

Deep learning-based models have recently been performing above human-level accuracy in
classification tasks [49]. There exist a great impact of hyper-parameter on the performance
of these models. Furthermore, the size of the dataset on which deep models are trained has
a great impact on performance.

In this study, effective data augmentation and a pre-trained deep learning approach are
proposed for skin lesion classification. Figure 1 shows the general flowchart of system
design. In this study, a hybrid network model called the Inception-Resnet-v2 is proposed
to classify skin cancer images. We have increased the number of images in the dataset by
applying the affine transformation technique and analyzing its effect on the skin cancer

Fig. 1 General flowchart of system design
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Fig. 2 Some example images from skin cancer dataset

classification system. The datasets used in this study are defined below as the original and
augmented datasets. The original dataset contains images that have not applied any prepro-
cessing. The augmented dataset consists of the images in the original dataset and the new
images obtained by applying the affine transform to the related images.

2.1 Original dataset

In this study, the public skin cancer MNIST HAM10000 dataset [48] was used to classify
skin cancer. The dataset consists of samples of pigmented lesions from distinct populations,
as shown in Fig. 2. The classes and their types of data contained in the dataset are given
in Table 1. As shown in Table 2, there exist images belonging to seven distinct classes (as
shown in Table 1) in the dataset. It contains an extensive catalog of multi-source dermato-
scopic images of pigmented injuries. In the original dataset, there are 10015 skin-threatening
dermatoscopic images from different classes gathered from different sources. Furthermore,
these images have a size of 600x450 in the RGB format. Then they are rescaled to 224x224
pixels for model.

Table 1 The classes of the skin cancer MNIST HAM10000 dataset

Class Abbreviation Type

akiec Actinic keratoses Benign or malignant

bcc Basal cell carcinoma Malignant

bkl Benign keratosis-like lesions Benign

df Dermatofibroma Benign

mel Melanoma Malignant

nv Melanocytic nevi Benign

vasc Vascular lesions Benign or malignant
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Table 2 The number of data before and after data augmentation process

Class Original images Augmented images

akiec 327 3,269

bcc 514 5,135

bkl 1,099 10,987

df 115 1,150

mel 1,113 11,122

nv 6,705 6,705

vasc 142 1,419

Total 10,015 39,787

2.2 Augmented dataset

The biggest problem that machine and deep learning algorithms face is that there is not
enough data to train the model. The lack of sufficient data creates an overfitting problem.
This is a big problem that often occurs in these algorithms. This event causes the network to
memorize the training data, and it fails when it encounters an input other than the training
data. One of the most important methods of getting rid of this problem is data augmentation.
This method is applied to the training set, and many images are obtained artificially by
changing the properties of the available data [4].

The size of datasets affects deep learning and classification models. Creating a skin can-
cer dataset from scratch is a difficult and time-consuming problem. Also, there are more
images in the dataset in some classes than in others, as shown in Table 2. Dealing with
unbalanced data can lead to a lower performance of the minority class. This situation can
lead to data misclassification in the most machine and deep learning approaches. The aim
of our study is to generate new images from existing images with the affine transformation
technique and analyze the effect of these images on skin cancer classification. At this stage,
we have performed data augmentation to improve the performance of the Inception-ResNet
model. The affine transformation could be brightness, rotation, shift, flip, and zoom for
image data augmentation [19, 50]. In this section, random rotation augmentation technique
is used to enlarge the size of the dataset.

Rotation augmentation is obtained by randomly rotating the image clockwise, a certain
number of degrees from 0 to 360. Rotation returns pixels from the image frame, leaving the
areas of the frame without pixel data that needs to be filled in. The figure shows random
rotations applied to the image between 0 and 90 degrees. In this stage, each image in each
class except nv class is randomly rotated nine times, as shown in Fig. 3. Therefore, when
the original data was added to the image, the data of each class increased ten times, as
shown in Table 2. At the end of this process, the number of images in the data set increased
from 10,015 to 39,787 as shown in Table 2. Dataset image distribution before and after
augmentation are also given in Tables 3 and 4. The dataset is split as 70% testing, 10%
validation, and 20% testing as shown Tables 3 and 4.

2.3 Method

In this study, a hybrid network called the Inception-Resnet-v2 is proposed for skin lesion
classification, which is composed of the Inception and the Residual modules. A pre-trained
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Fig. 3 A sample original image (a) from vasc class and randomly rotated nine images, (b-j) augmented
images

model has already been trained on a dataset and includes biases and weights. The model
represents the features of the dataset on which it was trained.

As shown in Fig. 4(a), the Inception network has many convolution kernels at different
sizes to improve the adaptability of the network and extract many features of representa-
tions. Through the Inception network structure, the parameters of the model are reduced.
Thus, the network does not lose the model feature representation. As a result, the number of
convolution kernels is reduced as much as possible. Figure 4(b) shows a residual network
structure. In order to make network training and parameter optimization quickly, signals of
different units and layers can be transmitted directly forward and backward to any layer.
The residuals are necessary for deep network to prevent the problem of degradation. Now
we can say that using residual networks aids the network learn both depths and weights at
the same time. We also provide that the new layer (l+1) learns something new by ensuring
the output of the previous layer (l) without making any changes to the output of the cur-
rent layer (l+1). Thus, this technique overcomes both degradation and vanishing problems
in very deep networks. The number of feature maps of xi may differ from that of the fea-
ture map in the residual convolution network, so it is required to use 1 × 1 convolution to
increase or decrease the dimension. Meanwhile, the residual operation is stated by (1), (2),
(3) as follows [36, 51]:

F(Xi) = Xi ∗ w + α (1)

Yi = R(F) + h(Xi) (2)

Table 3 Data split and dataset image distribution before augmentation (original dataset)

akiec bcc bkl df mel nv vasc

Training 228 359 769 80 779 4,693 99

Validation 33 52 110 12 111 671 14

Testing 66 103 220 23 223 1,341 29

Total 327 514 1,099 115 1,113 6,705 142

18991Multimedia Tools and Applications (2023) 82:18985–19003



Table 4 Data split and dataset image distribution after augmentation (augmented dataset)

akiec bcc bkl df mel nv vasc

Training 2,288 3,594 7,690 805 7,785 4,693 993

Validation 327 514 1,099 115 1,112 671 142

Testing 654 1,027 2,198 230 2,225 1,341 284

Total 3,269 5,135 10,987 1,150 11,122 6,705 1,419

Xi+1 = R(Yi) (3)

R(z) = max(0, z) (4)

R(z) =
{

0, z < 0
z, z ≥ 0

}
(5)

In (1); Xi is the input; w is the weight; α is the offset; F(Xi) points to the convolution
operation. In (2); R is the ReLU function; h(Xi) is a basic transformation for the Xi input;
Y i is the sum of two branches. In (3); Xi+1 is the final output of the residual module.
There exist many different activation functions that could be used. The three most common
activation functions are the tanh, sigmoid, and rectified linear unit (ReLU) function. In this
study, ReLU activation function is used as (4). Because, ReLU is simple and increases the
nonlinearity and prevents network saturation. Especially, ReLU has a good effect because
it removes vanishing gradients and is utilized in hidden layers. But, the weak point here is
dead neurons. ReLU thresholds all negative values to zero, and its positive side has a fixed
gradient of 1 as (5). While z ≥ 0, R(z) = z, and its lead is 1; while z < 0, R(z) = 0, with
a lead of 0. As a result, The ReLU will not be saturated on the positive side. However, the
gradient of ReLU with respect to the input is zero on the negative side. This means that the
gradient flow to the neurons will always be zero because the ReLU neuron starts producing
a negative output. Therefore, due to the zero gradient, the weight of the neuron can never be
optimized [51].

∂Xn

∂Xi

= ∂Xi + F(Xi, ωi, αi)

∂Xi

= 1 + ∂F (Xn, ωn, αn)

∂Xn

(6)

Fig. 4 a) An Inception building block [46] b) A residual building block [22]
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The aim of utilizing a residual network learning unit is to prevent the problem of the
gradient disappearing entirely while training the Inception network model. When the perfor-
mance of the network model achieves an exact saturation, the residual network layer could
be mapped in the same way. This enables the training network to converge faster and easier.
From shallow i layer to deep n layer for the learning characteristics with (6), we understand
that no matter how deep the network layers are, the gradient will never reach zero. In (6);
Xi points the input of the ith residual unit, and Xn points the input of the nth unit, and F(.)
is the residual function [51].

In this study, it is proposed to classify skin cancer images with Inception-ResNet-v2
architecture as shown in Fig. 5. Inception-ResNet-v2 is a model created by combining
Inception and ResNet architectures with improved recognition and classification perfor-
mance. The Inception and Residual modules use benefits of each other to enhance the
detection accuracy and decrease the number of computations. Inception-ResNet-v2 has been
trained on the ImageNet database with too many images and is a convolutional neural net-
work (CNN). This CNN network has 164 layers and is able to split images into a thousand
object categories like keyboard, pencil, mouse, and many animals [53]. Consequently, the
network learned about the plentiful feature representations for a wide variety of images.
ResNet and Inception give boosting performance in image recognition with low computa-
tional cost when it is compared to other models. ResNet architecture is about growing deep,
while Inception is about growing wide. Therefore, with the Inception-ResNet-v2 architec-
ture, we can achieve the optimum result in going both deep and wide. Inception-ResNet-v2
is a CNN algorithm based on the Inception architecture and includes residual connections.
The connections now allow for shortcuts while the model is being trained. Thus researchers
are able to set up deeper neural networks for better performance. This also provides a signif-
icant simplification of the initial blocks. This structure allows optimization of the residual
layer by changing the size of the first convolution operation to 1 × 1. The process of

Fig. 5 Proposed Inception-Resnet-v2 architecture for skin lesion classification
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transferring the previous activation value to the output also continues even if learning stops
[17, 22].

f (
→
z )i = ezi

K∑
j=1

ezj

, f or i = 1.....k and z = zi .....zk (7)

In this study, Inception-ResNet-V2 model has 54,339,810 total parameters which are
54,279,266 of trainable and 60,544 of non-trainable. As shown in Fig. 5, the top layers of
method contain a global average pooling layer, a FCL (fully-connected layer) that has 1024
neurons with ReLU activation function, and the end of the layer the neurons that provide
classification in each of the seven classes with Softmax activation function. When there
are multiple classes to be predicted, the Softmax activation function is usually used. For

k classes, Softmax is calculated by (7). In this equation,
→
z is input vector to the Softmax

function, all the zi values are elements of the input vector, ezi standard exponential function
of each element in the input vector, and

∑K
j=1e

zj normalization term at the bottom of the
formula [31].

Global average pooling is a process that calculates the average output of the feature map
in the previous layer. There is a global average pooling layer that precedes the fully con-
nected layer at the end of the network to obtain the deep features, as shown in Fig. 5. This
fairly simple operation significantly reduces the data, preparing the model for the final clas-
sification layer. In the global average pooling process, overfitting is prevented by taking the
average value of the feature map. A dropout layer was used to reduce overfitting during the
training process. It is the elimination of some memorizing nodes in the network to prevent
the memorization of the network. Thus, the memorization of the network is tried to be elimi-
nated. The dropout layer is a flatting layer for fully connected layers. The dropout operation
increases the neural network’s ability to be flattened [28]. With the dropout process, a ran-
dom zero weight value was assigned to the neurons in the network. The dropout ratio for
this process was determined as 0.5. Thus, it is ensured that the model becomes resistant to
small changes in the input and achieves a higher accuracy rate.

3 Experimental results

We compared the proposed Inception-Resnet-v2 method with the others, trying to find the
best accuracy value according to different deep networks. In this study, we ran each method
ten times on different training and test sets. Each method was run for 100 iterations in train-
ing. We performed all comparisons on the same machine and on the same data set. We
recorded and compared the runtime of all methods in the experimental results. We used
the classification report tool in the Python-Sklearn library to evaluate classification perfor-
mance. In order to obtain the best accuracy in classification, we observed and compared the
methods on the same machine by recording execution time under the same conditions. All
experiments conducted in this study were developed using the Python 3.10.0 Jupyter Note-
book development environment on a computer with an CPU with i7 (8700U) @ 3.20 GHz
processor, 4 GB graphics card, and 16 GB primary memory hardware. In addition, the Keras
and Tensorflow libraries are used.

In preprocessing stage, all images are uniformly rescaled to 224 × 224 to reduce the
computational load. In experimental studies, the data is split into 70% training, 10% valida-
tion and 20% testing. We settled the best parameters through the quantitative experiments,
and then skin lesion classification have been carried out according to those parameters. Our
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main aim is to demonstrate the functionality of the proposed model on large skin cancer data
set by comparing it with well-known pre-trained deep learning models. Model evaluations
are carried out using a running average of the parameters calculated over time. In this study,
in order to make an acceptable contrast between the various approaches to application con-
figurations, we decided to adjust the basic parameters throughout all the studies. There are
many hyperparameters that help to adjust the accuracy of the approximation. In this section,
we have performed experimental setup throughout with model hyperparameters. We have
tuned hyperparameters according to the accuracy of the model’s experimental results. We
utilized ‘Adam’ as an adaptive optimizer. We can say that Adam is one of the time-efficient
and important optimizers for deep networks. With learning rate = 0.0001, this optimizer
uses ‘categorical crosss-entropy’ as a loss function. We trained the models for 100 epochs
with a 128 batch size. We used dropout (0.5) to generalize the network. Furthermore, tun-
ing training parameters are; learning rate η = e−5, β1 = 0.9, β1 = 0.999, ε = e−8 dropout
rate (0.5) and batch size (128) are set respectively. The momentum rate (0.9) and the weight
decay parameters (e−5) are set respectively. We set regularization parameter to be 0.0001 to
prevent overfitting.

At this stage, the performance of the method was evaluated with different evaluation cri-
teria. The performance of the method is measured using four performance criteria that are
recall, precision, F1-score, and accuracy (Acc). The confusion matrix gives these values for
each class (6=vasc, 5=nv, 4=mel, 3=df, 2=bkl, 1=bcc, 0=akiec). The performance of the
method was evaluated according to the accuracy value calculated over the confusion matri-
ces for the original and augmented datasets as shown in Fig. 6. For example, performance
records of the Inception-Resnet-v2 model are given in Table 5 for the original dataset. The
calculated scores for recall, F1-score, precision for each class, and obtained average results
are presented in this table. According to this experimental study, the accuracy value obtained
with the Inception-Resnet-v2 model is 83.59% for the original dataset. Similarly, perfor-
mance scores of the Inception-Resnet-v2 model are given in Table 6 for the augmented
dataset. Obtained accuracy value with the Inception-Resnet-v2 model is 95.09% for the
augmented dataset. A comparison of overall accuracy rates from original and augmented
datasets with Inception-Resnet-v2 model is also shown in Table 7.

In Fig. 7(a), graph of training/test accuracy and graph of training/test loss for 100 iter-
ations of the InceptionResNetV2 model are given for the original dataset. Similarly in
Fig. 7(b), the graph of training/test accuracy and the graph of training/test loss for 100

Fig. 6 Confusion matrices of the Inception-ResNet-v2 model from original and augmented datasets
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Table 5 Performance scores of the Inception-Resnet-v2 model for original dataset

Accuracy=83.59% Precision Recall F1-Score

akiec 0.7500 0.5909 0.6610

bcc 0.8571 0.5243 0.6506

bkl 0.6772 0.7818 0.7257

df 0.9167 0.4783 0.6286

mel 0.6269 0.5650 0.5943

nv 0.8941 0.9321 0.9127

vasc 0.9600 0.8276 0.8889

Average: 0.8117 0.6714 0.7231

iterations of the Inception-Resnet-v2 model are also given for the augmented dataset. Both
the test and training accuracy curves indicate that when iteration number increases, learning
occurs, and test accuracy gives successful results as shown in Fig. 7(a) and (b). Both the test
and training loss curves indicate that when iteration number increases, learning occurs, and
test error rate decreases as shown in Fig. 7 (a) and (b).

In addition, the performance comparison of the proposed InceptionResNetV2 model
with other pre-trained models in terms of accuracy was performed in this study. Table 8
shows the performance comparison of the different pre-trained methods on the augmented
skin cancer dataset. These pre-trained methods are VGG16, VGG19, SqueezeNet, LeNet-
5, AlexNet, and an established deep CNN model. The deep CNN model consists of four
sequential convolution pooling layers, one flatten layer, three fully connected layers, and
a softmax classifier. We compared the proposed InceptionResNetV2 method in this study
with the others, trying to find the best accuracy value according to different deep networks
and trainable parameters. Other studied existing pre-trained models in experimental studies
with low accuracy are not included in this table. The proposed InceptionResNetV2 model
achieved the highest accuracy with 95.09% among all other methods as shown in Table 8
and the boxplot graph in Fig. 8. Performance comparison of these methods is also shown by
using boxplots, as shown in Fig. 8. In this study, we ran each method ten times on different
training and test sets. Each method was run for 100 iterations in training. The average accu-
racy value of each method was calculated. The boxplot graph was formed with the min-max
and average values of each method.

In addition, the execution times of different pre-trained methods are analyzed by tak-
ing into account the training time over approximately 30k images for 100 iterations.

Table 6 Performance scores of the Inception-Resnet-v2 model for augmented dataset

Accuracy=95.09% Precision Recall F1-Score

akiec 0.8860 0.9740 0.9279

bcc 0.9796 0.9367 0.9577

bkl 0.9655 0.9536 0.9595

df 0.9858 0.9087 0.9457

mel 0.9518 0.9506 0.9512

nv 0.9262 0.9448 0.9354

vasc 0.9895 0.9930 0.9912

Average: 0.9549 0.9516 0.9527
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Table 7 Comparison of overall accuracy rates from original and augmented datasets with Inception-Resnet-
v2 model

Dataset # of images Accuracy (%)

Original 10,015 83,59

Augmented 39,787 95,09

Depending on the complex configuration of the methods, the depth of the network and
the number of trainable parameters; high computation times can be obtained. The execu-
tion time of the InceptionResNetV2 model is approximately recorded as 1h 50 min 4 sec
as shown in Table 8. According to the running analysis, the lowest execution time was
obtained during the training period with the InceptionResNetV2 model, and the lowest sys-
tem response in the test evaluations was obtained with this model. Furthermore, Table 9
shows the performance comparison of similar studies on the MNIST HAM10000 dataset
recently. By researching the best practice methods in the literature, we applied an effec-
tive data augmentation and a pre-trained deep learning approach to get a high classification
accuracy. The classification accuracy for the augmented dataset is achieved to 95.09% by
effective data augmentation and pre-trained deep learning approach. In comparison, the
InceptionResNetV2 model gives 83.59% accuracy with the original dataset, as shown in
Table 9.

Fig. 7 Accuracy and loss graphs of the Inception-Resnet-v2 model for (a) original dataset and (b) augmented
dataset
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Table 8 Performance comparison of the different pre-trained methods on augmented skin cancer dataset

Method # of Trainable params Precision Recall F1-score Acc (%) Training time

VGG19 66,567 0.6354 0.5417 0.5638 61,55 6h 10min 16s

VGG16 66,567 0.6420 0.5824 0.5912 62,96 6h 29min 35s

SqueezeNet 119,399 0.6737 0.6332 0.6141 67,41 8h 54min 40s

LeNet-5 5,407,031 0.6963 0.6970 0.6867 69,33 2h 52min 52s

AlexNet 50,851,015 0.7331 0.7227 0.7253 72,43 1h 58min 20s

Deep CNN 274,258,951 0.8559 0.8585 0.8565 85,51 7h 49min 42s

InceptionResNetV2 55,857,255 0.9549 0.9516 0.9527 95,09 1h 50min 04s

4 Discussion and conclusion

Skin cancer is a serious disease that is common and causes death if left untreated. If skin
cancer is not diagnosed early, it can lead to fatal cases.Dermatoscopic images are of great
importance in the early diagnosis of skin cancer. When skin cancer is detected early from
dermatoscopic images, definitive treatment is highly likely. The low rate of disease results
in limited real image data on this deadly disease. This is a significant handicap in the appli-
cation of deep learning techniques. Thus, we have increased total number of images in
the dataset using by the data augmentation technique. Deep learning-based models have
recently been performing above human-level accuracy in classification tasks. There exist a
significant impact of hyper-parameter on the performance of models. Furthermore, the size
of the dataset on which deep models are trained has a significant impact on performance.
The biggest problem encountered in the machine and deep learning algorithms is that there
is not enough data to train the model. The lack of enough data creates the overfitting prob-
lem, a big problem that frequently occurs in these algorithms. This event causes the network
to memorize the training data, and fails when it encounters an input other than the training
data.

In this study, data augmentation is carried out to the training set, and more images
are obtained artificially by changing the properties of the available data. In this context,
effective data augmentation and pre-trained deep learning approach are proposed for skin
lesion classification. A hybrid network model called the Inception-Resnet-v2 is proposed

Fig. 8 Boxplot graph of studied pre-trained methods for accuracy
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Table 9 Performance comparison of similar studies in the literature on MNIST HAM10000 dataset

Study Year Method # of images Acc (%)

Purnama et al. [37] 2019 Inception V3 10,015 72

Nugroho et al. [34] 2019 CNN 10,015 78

Pai & Giridharan [35] 2019 CNN 10,015 79.56

Kassani & Kassani [26] 2019 Augmentation + ResNet50 39,060 92.08

Garg et al. [18] 2020 ResNet 10,015 90.51

Chaturvedi et al. [10] 2020 InceptionResNetV2 + ResNeXt101 10,015 92.83

Ratul et al. [39] 2020 InceptionV3 10,015 89.81

Moataz et al. [30] 2021 Fine-tuned xception model 30,294 96

Cengil et al. [9] 2021 Alexnet+SVM 10,015 77.80

Salamaa & Aly [42] 2021 ResNet50+ Preprocessing 10,015 93.98

Salamaa & Aly [42] 2021 ResNet50+ Preprocessing+SVM 10,015 98.43

Hameed et al. [21] 2021 Stacked CNN 36,800 92.5

Ramachandro et al. [38] 2021 Dense net 10,015 95

Kalaivani et al. [25] 2021 Fine-Tuned VGG-CNN 10,015 92

Mehra et al. [29] 2021 ResNet-50 10,015 84.87

Srinivasu et al. [45] 2021 MobileNet V2-LSTM 10,015 85.34

Salma & Eltrass [43] 2022 CNN 1400 98.79

Hoang et al. [23] 2022 Lightweight deep learning 10,015 86.33

This study 2022 InceptionResNetV2 10,015 83.59

This study 2022 Augmentation+InceptionResNetV2 39,787 95.09

to classify skin cancer images. The aim is to increase the number of images in the dataset
by applying the affine transformation technique and analyzing its effect on the skin cancer
classification system. Creating a skin cancer dataset from scratch is a complex and time-
consuming problem and many datasets are unbalanced. Dealing with unbalanced data can
cause lower performance of the minority class. This situation can lead to data misclassifica-
tion in most deep and machine learning approaches. Our study aims to generate new images
from existing images with the affine transformation technique and analyze the effect of
these images on skin cancer classification. Thus, we have performed data augmentation to
improve the performance of the Inception-ResNet model. ResNet and Inception give boost-
ing performance in image recognition with low computational cost when it is compared to
other models. ResNet architecture is about growing deep, while Inception is about growing
wide. Therefore, with the Inception-ResNet-v2 architecture, we can achieve the optimum
result in going both deep and wide. The highest reported accuracy in this study with an aug-
mented dataset is 95.09% for the Inception-Resnet-v2 model while the same model achieved
83.59% with the original dataset.

Although these pre-trained deep learning models can be utilized to solve many important
problems, their usage is still seriously criticized. Since it is extremely difficult to deter-
mine which data descriptors are the most sufficient to represent a particular phenomenon
of special interest. Classifiers could be unsuccessful when there are too many variables
and there exists a high correlation relationship between these variables. At this stage, vec-
tors belonging to the representation set are kept at lower dimensions and the number of
random variables is reduced by dimension reduction techniques. Dimension reduction is a
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preprocessing step in machine learning to eliminate unwanted features and improve learning
accuracy. There are methods of data representation, each of which has its own advantages
to reduce redundancy characteristics. In addition, imbalance data and high dimensional-
ity common problems in pattern recognition and machine learning. Imbalance is a major
problem in classification, and this process becomes more complex when the dataset has
numerous features. For attribute selection, the traditional classification generally prefers
the majority class. This situation leads to poor performance for parameter setting or the
selection of attributes that better define the majority class [2, 16, 41]. In order to solve the
imbalance problem, in data-driven methods, the expected balance is tried to be achieved by
reducing the majority class data. Another data-driven method is to generate data from the
minority class distribution [54]. In this context, data from the minority class (for example
akiec, bcc, df, vasc ) has been augmented by using the data-driven method in this study.
When the studies on this topic are examined, Roccetti et al. [41] modified the training strat-
egy by re-evaluating categorical data in the light of the Pareto analysis approach. They have
developed a tool that gives a new shape to the dataset based on the Pareto rule. In this way,
they used these categorical descriptors as a tool, not as an input, to train their deep learning
model. With this data arrangement, they developed a more efficient deep learning model.
Akram et al. [2] proposed a new framework for classification of skin lesion that incorpo-
rates in-depth feature information to generate the best distinguishing feature vectors while
maintaining the original feature domain. To select distinctive features and reduce dimen-
sionality, they used entropy-controlled neighbor component analysis. To test the success
of the method, they examined the accuracy success with different classifiers. Fattahi et al.
[16] proposed a hybrid method that performs the process of feature extracting and selecting
concurrently to reduce the data dimensionality in the shape of a cost-sensitive optimization
problem.

As a result, our main aim is to demonstrate the functionality of the proposed model
on a large skin cancer data set by comparing it with well-known pre-trained deep learn-
ing models. This model assembles the advantages of Inception and Residual module,
expanding the network width and lightening the training problem of the deep network.
Since, these modules can benefit from each other to increase accuracy of detection and
reduce the total number of calculations. Residual connections have been observed to sig-
nificantly increase the training speed of the Inception architecture. We have achieved high
accuracy by building both deep and wide networks through the proposed model on the
augmented dataset. To the best of our knowledge, there exist limited studies that com-
bine effective data augmentation and Inception-Resnet-v2 model to increase the accuracy
of skin lesion classification and compare it with other pre-trained deep learning mod-
els. In further studies, we will try to construct a cost-sensitive model of misclassification
of minority class data by proposing a new cost-sensitive or model-based method. We
will also expand this work on effective dimension reduction on high-dimensional data. In
addition, other deep learning models and hybrid methods will be studied, and compar-
isons will be made on the augmented datasets, which include more affine transformation
techniques.
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