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Abstract
Currently, the majority of the state-of-the-art speaker recognition systems predominantly
use short-term cepstral feature extraction approaches to parameterize the speech signals.
In this paper, we propose new auditory features based Caelen auditory model that
simulate the external, middle and inner parts of the ear and Gammtone filter for speaker
recognition system, called Caelen Auditory Model Gammatone Cepstral Coefficients
(CAMGTCC). The performances evaluations of the proposed feature are carried by the
TIMIT and NIST 2008 corpus. The speech coding represent by Adaptive Multi-Rate
wideband (AMR-WB) and noisy conditions using various noises SNR levels which are
extracted from NOISEX-92. Speaker recognition system using GMM-UBM and i-vector-
GPLDA modelling. The experimental results demonstrate that the proposed feature
extraction method performs better compared to the Gammatone Cepstral Coefficients
(GTCC) and Mel Frequency Cepstral Coefficients (MFCC) features. For speech coding
distortion, the features extraction proposed improve the robustness of codec-degraded
speech at different bit rates. In addition, when the test speech signals are corrupted with
noise at SNRs ranging from (0 dB to 15 dB), we observe that CAMGTCC achieves
overall equal error rate (EER) reduction of 10.88% to 6.8% relative, compared to
baselines.
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1 Introduction

The rapid growth of mobile phones today poses many challenges for voice technologies, in
particular Speaker Recognition (SR). The major challenges in speaker recognition for mobile
environment and effect of environmental noise are degradations introduced by the speech
codec and transmission channel [10, 43]. Speaker recognition is a branch of biometry. It is
defined by two tasks: speaker identification (SID) and speaker verification (SV) [18]. In
speaker identification, the goal is to identify the speaker of an utterance from a given
population and speaker verification is the process of authentication of a person’s claimed
identity by analyzing his/her speech signal. In general, robust SR system is based on three
stages: the first is feature extraction where the speech signal is represented in a compact
manner, the second is speaker modeling which can be defined as a process of describing
feature properties for a given speaker, and the last stage is scoring or decision [14]. Speech
codec can degrade the recognition performance in two different cases. In the first case, speech
codec can be degraded by the compression itself, which degrades the speech quality and hence
the recognition performance. The second case for performance reduction of the recognition
system is given by the difference between the training and test conditions [5]. Speaker
recognition have been deployed to improve the authentication procedure such as banking
over wireless digital communication network, security control for confidential information,
telephone shopping and database access services [14]. Speaker recognition is easy to use, has
low computation requirements (can be ported to cards and handhelds) and, given appropriate
constraints, has high accuracy. Speaker recognition, as all biometrics, has limitations pour
certain application. There are limitations in the software, it does not always work across all
operating systems. Speaker recognition embedded is refers to a technique in which all speech
coding processing, feature extraction, and recognition are performed in the mobile device. The
most important disadvantage for the embedded system is that the resources are very limited on
the mobile device [34].

1.1 Related work

The most recent research in speaker recognition performance focuses on the background noise
and impact of speech coding. Many research works have been reported in the literature to
reduce the impact of speech coding distortion for SR system McCree [26] and Vuppala et al.
[48]. The effect of Global System for Mobile (GSM) coding is examined in Grassi.S et al. [13]
and Krobba. A et al. [19]. In Dunn et al. [7], they used different standard speech coders (G.729,
G.723, MELP) are used to evaluate speaker recognition performances under matched and
mismatched conditions. Methods for extracting the features directly from the coded speech
were proposed in Fedila.M and Amrouche.A [8]. McLaren et al. [27] analyzed several acoustic
features to examine the robustness of speaker recognition. Krobba. A et al. [20] proposed a
new framework based on Maximum Entropy (ME) and Probabilistic Linear Discriminate
Analysis (PLDA) to improve the performance of speaker identification system in the presence
of speech coding distortion. In noisy environments, the additive noises affect the signal
spectrum. This results in the appearance of certain peaks that do not exist in the original
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signal by the disappearance of certain peaks of the original signal and the flattening of the
spectral envelope (loss of information). These noises result in the loss of speech intelligibility
and quality, imposing great challenges on speaker recognition systems. Many different
compensation strategies have been proposed to reduce the impact of noisy environment such
as speech enhancement, feature compensation, robust feature extraction, robust modeling and
score compensation. In the compensation of noise, the simplest solution would be to utilize
speech enhancement (SE) technique as a pre-processing block for the SR system Olivier Bellot
et al. [2]. Spectral subtraction (SS) method reduces the noise spectrum from the noisy speech
spectrum to estimate the clean speech spectrum Chandra, M et al. [4], Minimum Mean Square
Error (MMSE), and subspace-based speech enhancement techniques Yu, D et al. [49]. The
robust feature extraction based Cepstral Mean Subtraction (CMS) is the most popular method
employed to ameliorate the effects of channel variability Shabtai, N. R et al. [42]. RASTA
filtering, feature warping [17], Mean and Variance Normalization (MVA) processing, and
nonlinear spectral magnitude normalization used to improve the recognition performance in
presence of convolution distortions and additive noise [28]. Samia Abd El-Moneim et al. [36]
proposed a text- independent speaker recognition system based on Long-Short Term Memory
Recurrent Neural Network (LSTM-RNN) classifier. MFCC extracted from the Discrete
Wavelet Transform (DWT) of the speech signal, with and without feature warping were
proposed in [1]. The spectrum estimation methods, for example Weighted Linear Prediction
(WLP), Stabilized Weighted Linear Prediction (SWLP), Regularization of Linear Prediction
(RLP) and Gaussian Mixture Linear Prediction (GMLP) are based on MFCC feature [31, 35].
In [22], the authors have demonstrated that Gammatone feature GFCC processing provided
substantial improvements in recognition accuracy in the presence of various types of additive
noise. In [9], the authors have proposed to use the Gammatone product-spectrum cepstral
coefficients under noisy condition and speech codecs. In [21] used a mixed method based on
the multitaper gammatone Hilbert envelope coefficients (MGHECs) and multitaper chirp
group delay zeros-phase Hilbert envelope coefficients (MCGDZPHECs) is used. The great
majority of past studies have addressed the effect of speech coding and additive noise
environment for speaker recognition to develop the robust feature extraction. However, only
few studies have been reported the impact of the complexity of human perception mechanism
on the performance of speaker recognition systems.

1.2 Motivation and contribution

A large majority of speaker recognition systems is based on low-level features which convey
physiological information about the speaker. This set of feature extractions can be modeled by
two ways: modeling the human voice production or modeling the peripheral auditory system.
The first way is generally based on the source-filter model, which leads to the extraction of
features such as linear coding (LPC). The second takes the mechanism of the auditory, Mel-
Frequency Cepstral Coefficients (MFCC) which have been the most widely used features for
speaker and speech recognition tasks. The auditory model used in MFCC is not optimal for
speaker recognition. The logarithmic nonlinearity used in MFCC feature to compress the
dynamic range of filter-bank energies is not immune to distortions of speech spectra caused by
a background noise. On the other hand, these acoustic feature extraction methods remain
largely ineffective and fail to provide satisfactory robustness for speaker recognition system
because spectral information includes a lot of redundant information and the complexity of the
human perception mechanism.
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A number of electrical analogues of the auditory model have been developed to estimate the
displacement basilar membrane Seneff [40], Lyon [25] and Ghitza [11]. Zhao X et al. In [50]
proposed novel auditory feature based gammatone (GT), inspired by Auditory Scene Analysis
(ASA) research, Computational Auditory Scene Analysis (CASA). Li et al. [23] proposed an
auditory-based feature, Cochlear Filter Cepstral Coefficients (CFCC), based on time-frequency
transform plus a set of modules to simulate the signal processing functions in the cochlea.
Xavier. V and Francesc. A [46] introduced a novel feature extraction method, the Gammatone
cepstral coefficients (GTCC) are a biologically inspired modification employing Gammatone
filters with equivalent rectangular bandwidth bands. Our work is inspired by previous works
that suggested the Gammatone Cepstral Coefficients (GTCC) which is based on an auditory
periphery model of the speech features to noisy environments that is significantly better than
MFCC. In this paper, we extend that work by integrating in the front-end of the speaker
recognition system based on auditory model to incorporate both hearing/perception and
phonetic/phonological knowledge, the auditory model which was first proposed by Caelen. J
[3] and adapted to be used as a front-end module in speech and speaker recognition systems by
Selouani [37, 38] and Kamil Lahcene Kadi et al., [16]. Our contributions can be concluded as
follows.

& Based on the GTCC feature, we design novel feature extraction methods based on Caelen
auditory model and cochlear gammatone filterbank.

& We introduced the speaker recognition system in the client-server architecture of the
mobile network and simulation of mobile environment by noisy environment and speech
coding distortion.

& We provide an experimental evaluation with the proposed feature and the total variability
i-vector G-PLDA modeling to improve speaker recognition system performance

The paper is structured as follows. Section 2 gives an overview of speaker recognition over
mobile communication. In Section.3, we describe the proposed CAMGTCC feature. Experi-
mental setup is given in Section 4. Results and discussion are presented in Section 5.
Conclusions and future work directions are provided in Section 6.

2 Overview of speaker recognition over mobile communication

In mobile communication, the SR system is developed in two architectures such as Network
speaker recognition (NSR) and Embedded speaker recognition (ESR) [44]. In NSR, where
speech is transmitted over the communication channel and the recognition is performed on the
remote server (Fig. 1). This technique makes it possible to consider the use of much more
powerful servers and therefore provide more diverse and generally better quality services. In ESR
both front-end and back-end are implemented on the terminal. The most important disadvantage
for the embedded system is that the resources are very limited on the mobile device.

2.1 Speech coding

Speech coding has been used in digital communication system; mainly to remove the
maximum redundancy in the speech signal while maintaining a quality in the decoded
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speech signal that is acceptable for the applications [6]. Reconstitution of the speech
signal is done from the parameters of the model production speech generally (source /
excitation). We have two steps in the speech coding, the first step: analysis of speech for
extraction of LPC (Liner- prediction) and pitch parameters. The second step: the speech
synthesis using these parameters for speech signal encoding. Fig. 1 represents a simple
block diagram of speech codec, this coder constitutes of two main blocks: A speech
coder represents the analysis of speech using the input speech signal to produce the Bit-
stream and another speech coder represents the speech synthesis. The bit-stream is used
as input to the block speech decoder to produce the output speech signal. The codec used
in this work is Adaptative Multi- Wideband Rate (AMR-WB G.722.2) speech coding
standard based on ACELP speech [5]. It was selected as ITU-T recommendation G.722.2
and it operates on speech of extended bandwidth ranging from 50 hz to 7 khz.with
bit-rates of 23.85, 23.05, 19.85, 18.25, 15.85, 14.25, 12.65, 8.85 and 6.60 kbp. AMR-
WB codec characterized by a Voice Activity Detector (VAD) and Discontinuous
Transmission (DTX) function to improve channel capacity and provides better speech
quality [33].

2.2 Background noise

In practical applications of speaker recognition in mobile communication, noise is defined as a
phenomenon that prevents the transmission of a message from a source to its destination or
anything that deteriorates the quality and intelligibility of the transmitted message. Noise
directly affects the signal spectrum, which results in the appearance of certain peaks that do not
exist in the original signal, by the disappearance of certain peaks of the original signal and the
flattening of the spectral envelope (loss of information) [30].

The most common source of noise is the background noise and noise can be classified into
a number of categories such as.

1. Noise from industrial systems: these correspond to noise emitted by machines with poor
sound insulation.

2. Noise from means of transportation: these correspond to the noise that can be observed in
various vehicles such as cars, trains or planes.

3. Noise from administrative and urban environments: the type of noise present in offices,
homes or in urban concentrations

Speech
S

Speech
Coded

Bit-stream Speech
Decoded

Speech Codec Feature 
Extraction

Speaker 
Modeling 

Decision 

Client 

Server

Fig. 1 NSR System architecture
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3 The feature extraction method based on Caelen auditory model
and Gammatone filterbank

Feature extraction is a crucial component in the ASR system. Generally speaking, the speech
features extraction methods aim at extracting relevant information about the speaker. In this
work, we have implemented different feature extraction techniques that have in common the
modeling of peripheral auditory system, namely MFCC, GTCC and the new feature
CAMGTCC. The block diagram of feature extraction is depicted in Fig. 4. The proposed
feature extraction methods are obtained from gammatone filter-bank. Gammatone filters are a
popular way of modeling the auditory processing at the cochlea. The Gammatone function was
first introduced by Johannesma.P [15]. Gammatone filters were used for characterizing data
obtained by reverse correlation from measurements of auditory nerve responses of cats [12].
The impulse response of a Gammatone filter centered at frequency f c is:

g tð Þ ¼ Kt n−1ð Þe−2πBtcos 2π f ct þ ϕð Þ ð1Þ
where K is the amplitude factor; n is the filter order; f c is the central frequency in Hertz; ϕ is
the phase shift; and B represents the duration of the impulse response. The filters are placed in
equal distance in frequency according to the Equivalent Rectangular Bandwidth (ERB).

The ERB filter models the spectral integration derived from the channeling effectuated by
the inner hair cells, the ERB is defined by

ERB ¼ f c
EarQ

� �p

þ minBWð Þp
� �1=p

ð2Þ

where EarQ is the asymptotic filter quality at high frequencies, bandwidth at low frequencies
and p is commonly 1 or 2, minBWis the minimum.

3.1 Caelen auditory model (CAM)

Caelen Auditory Model (CAM) consists of three parts which simulate the behavior of the ear,
[3]. The extern and middle ear are modeled using a band pass filter, which can be expressed as
follows

s
0
kð Þ ¼ s kð Þ−s k−1ð Þ þ α1s

0
k−1ð Þ þ α2s

0
k−2ð Þ ð3Þ

where s(k) is the speech signal, s’(k) is the filtered signal, k = 1,. .., K is the time index and K is
the number of frame-samples. The coefficients α1and α2 depend on the sampling frequency
Fs, the central frequency of the filter and itsQ-factor [39]. The next part of the model simulates
the behavior of the basilar membrane (BM), the most important part of the inner ear that acts
substantially as a non-linear filter bank. The output of each filter is given by:

yi kð Þ ¼ β1;iyi k−1ð Þ þ β2;iyi k−2ð Þ þ G s
0
kð Þ−s0 k−2ð Þ

h i
ð4Þ

and its transfer function can be written as

Hi zð Þ ¼ Gi 1−z−2½ �
1−β1;iz−1 þ β2;iz−2

ð5Þ
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where yi (k) represents the vibration amplitude at position xi of the BM and constitutes the BM
response to a mid-external sound signal s(k). The Gi, β1,i and β2,i, parameters represent the gain
and coefficients, respectively, of the filter i. Nc is the number of overlapping cochlear filters or
channels and is set to 24 in our case. The absolute energy in the output of each channel was
calculated as follows:

W
0
i Tð Þ ¼ 20log ∑

K

k¼1
jyi

0
kð Þj where i ¼ 1; 2::……Nc ð6Þ

T refers to the frame index i refers to the channels and Nc is the total number of channels that is
24; k denotes samples and therefore K is the frame length. A smoothing function is applied in
order to reduce the energy variations:

Wi Tð Þ ¼ c0Wi T−1ð Þ þ ciW
0
i Tð Þ ð7Þ

where Wi(T) is the smoothed energy, the coefficients c0 and c1 averaging Wi(T − 1) and
Wi’(T). The acoustic features based on the Caelen ear model were calculated after performing
linear combinations of energies of the channel outputs. Each feature is computed based on the
output of the 24 channel filters of the above-mentioned ear model.

In this work, we extracted seven acoustic features which are: Acute/grave (AG), open/
closed (OC), diffuse/compact (DC), sharp/flat (SF), mat/strident (MS), continuous/
discontinuous (CD) and tense/lax (TL) given in Table 1 [38]. In the Figs. 2 and 3 examples
of the acoustic feature based on clean auditory model computed from speech coding and noisy
speech are given.

We conclude from Figs. 2 and 3 that the acoustic feature derived from the Caelen
auditory model with a noisy speech give the best representation of auditory model
compared to the acoustic feature derived from speech coding. Figure 4 illustrates the

Table 1 Descriptions of the acoustic feature based clean auditory model

Acoustic
feature

Description

(G/A) Measures the difference of energy between low frequencies (50–400 Hz) and high frequencies
(3800–6000 Hz): (W1+· · ·+W5)−(W20+· · ·+W24)

(O/C) A phoneme is considered closed if the energy of low frequencies (230–350 Hz) is greater than
that of the middle frequencies (600–800 Hz). Hence, the O/C cue is calculated by: W8+W9−
W3−W4

(D/C) Compactness reflects the prominence of the central formant region (800–1050 Hz) compared
with the surrounding regions (300–700 Hz) and (1450–2550 Hz):W10+W11−(W4+· · ·+W8+
W13+· · ·+W17)/5

(F/S) A phoneme is considered sharp if the energy in (2200–3300 Hz) is more important than the
energy in (1900–2900 Hz): W17+W18+W19−W11−W12−W13

(M/S) Strident phonemes are characterized by a presence of noise because of a turbulence at their
articulation point which leads to more energy in (3800–5300 Hz) than in (1900–2900 Hz):
W21+W22+W23−W16−W17−W18

(C/D) Quantifies the variation of the spectrum magnitude by comparing the energy of current and
preceding frames. N i=c1|Wi(T)−Wa(T)−Wi(T−1)+Wa(T−1)|Wi(T) is the energy of channel i
Wa(T) is the energy average over all channels of current frame T

(T/L) Measures the difference of energy between middle frequencies (900–2000 Hz) and relative high
frequencies (2650–5000 Hz): (W11+· · ·+W16)+(W18+· · ·+W23)

16201Multimedia Tools and Applications (2023) 82:16195–16212



Sp
ee

ch
M

id
-E

xt
 E

ne
rg

y
G

/A
O

/C
F/

S
S/

M
C

/D
T

/L

Time (second)

Frame

Frame

Frame

Frame

Frame

Frame
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generalized block diagrams of MFCC, GTCC and the CAMGTCC features extraction
processes, respectively.

Thereafter, we presented an algorithm that summarized the different steps of the feature
extraction proposed.

Algorithm, the steps involved in the CAMGTCCs feature extraction.

1. Read the speech signal s(t)

2. Calculate the Fourier Transform FFT

3. Applied the gammatone filter-bank 

4. To compress the dynamic range of the estimated spectral parameters power-law 

nonlinearity is applied

5. Apply DCT on GTCC and retain first few coefficients to obtain GTCCs

6. Calculate the Caelen Auditory Model (CAM) 

7. Combined Caelen Auditory Model (CAM) with GTCC

8. Append CAMGTCC with their first and second order derivative

Windowing

FFT

Caelen Auditory

Model (CAM)
Magnitude

Spectrum

Gammatone Filter Bank

Logarithmic

DCT

Combination

Windowing

FFT

Magnitude

Spectrum

Gammatone Filter Bank

Logarithmic

DCT

Input speech

Input speech Input speech

Windowing

FFT

Magnitude

Spectrum

Mel Filter Bank

DCT

Logarithmic

Append  Δ & ΔΔ

Append  Δ & ΔΔ Append  Δ & ΔΔ

CAMGTCCs

GTCCs MFCCs

(c)(b)

(a)

Fig. 4 Block diagram of, (a) CAMGTCCs, (b) GTCCs and (c) MFCCs features
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4 Experimental setup

This section presents the results of the experiments to study the performance of the
proposed features under noisy environment and speech coding distortion. We use the
TIMIT corpus which contains a total of 6300 sentences, 10 sentences spoken by each of
630 speakers (438 male and 192 female) from 8 major dialect regions of the United
States, both section from DR1 to DR8 and NIST-2008 Speaker Recognition Evaluation
(SRE) corpora containing a single channel microphone recorded conversational segments
of eight minutes or longer duration of the target speaker and an interviewer [24] [29].
The clean waveforms are transcoded by passing them through a coding and decoding
AMR-WB codec [33]. For evaluating the robustness of these features in mobile noisy
conditions, the speech test data are corrupted using (Babble, Car, Factory) at various
noise levels (0, 5, 10,15 and 15 dB) which are taken from NOISEX-92 database [47]. In
all experiments, we utilized three different acoustic features: (a) Mel frequency Cepstral
coefficients (MFCC), (b) Gammatone Cepstral Coefficients (GTCC) and (c) Caelen
Auditory Model Gammatone Cepstral Coefficients (CAMGTCC). The feature vectors
contain 20 cepstral coefficients appended with the first and second order time deriva-
tives, thus providing 60 dimensional feature vectors. After feature extraction, each
speaker model is adapted from a 512-component in which the Universal Background
Model (UBM) are trained using the entire database. For the total variability matrix
training, the UBM is training dataset is used. The Expectation Maximization (EM)
Algorithm training is performed throughout five iterations. We use 400 total factors
(i.e., the i-vector size is 400) then Linear Discriminate Analysis (LDA) is applied to
reduce the dimension of the i- vector to 200, and length normalization is then applied. In
the process of variability compensation and scoring, a GPLDA model with adding noise
is used [45]. In practice, the MSR Identity Toolbox [41] is used for implementing the
GMM-UBM and i-vector-GPLDA system. Speaker recognition systems are evaluated by
speaker ID accuracy and equal error rate (EER). The speaker ID accuracy can be defined

Speaker ID accuracy ð%Þ ¼ Correctly identified recordings

testing recordings
� 100 ð8Þ

EER (%) determines the threshold values for its false acceptance rate (FAR: probability
(or rate) for an impostor to be accepted by the system) and its false rejection rate
(FRR: probability (or rate) for a client (target speaker) to be rejected by the system). Its
value indicates that the rate of false acceptances (FAR) is equal to the rate of false
rejections (FRR). The lower the equal error rate value, the higher the accuracy of the
verification system.

4.1 GMM-UBM and i-vector GPLDA based speaker recognition

The Gaussian mixture model–universal background Model (GMM-UBM) approach used for
the first time in this work (Reynolds et al., 2000), represents speaker-independent distribution
of feature vectors. The standard GMMs model which gives the distribution of feature vectors
for speaker-dependent can be defined as:

p x=θð Þ ¼ ∑
M

k¼1
ωkpk xð Þ ð9Þ
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whereM represents the mixture weights, pk(x)is the prior probability. The UBM modelthat is a
large GMM trained on a diverse dataset to be speaker- and text-independent. TheGMM –UBM
super-vector is obtained by concatenating the mean vector of all components ofthis aapted
GMM.

M ¼ μ1;μ2; :………;μkf g ð10Þ
where μk is the mean super-vector of the k Gaussian component. However, The GMM – UBM
super-vectors are very high dimensional vectors. In the total variability space, a speech
utterance is represented by a vector in a low dimensional subspace in the GMM-UBM super-
vector domain called i-vector where speaker and channel information is assumed dense. It is
expressed as

M ¼ mþ Tw ð11Þ
where m is a speaker and channel independent super-vector, T is a low rank matrix represent-
ing the primary directions of variation across a large collection of development data, and w is a
normally distribution with parameters N(0, 1). In the GLPDA modeling approach, a speaker
and channel dependent i-vector, can be defined

wr ¼ wþ U1x1 þ U2x2 þ εr ð12Þ
where U1 is the eigen-voice matrix and U2 is the eigen-channel matrix, x1 is the speaker
factor and x2 the channel factor; εr is the residual for each session. The scoring in
GPLDA is conducted using the batch likelihood ratio between a target and test i-vector
[32]. Given two i-vectors, w1 and w2 for the target and test utterance, the batch likelihood
ratio is as follows

Score w1;w2ð Þ ¼ log
P w1;w2=ϕsð Þ
P w1;w2=ϕdð Þ ð13Þ

where ϕs denotes the hypothesis that the i-vectors represent the same speakers and ϕd denotes
the hypothesis that they do not. The block diagram of the proposed speaker recognition system
is shown in Fig. 5.

5 Results and discussion

5.1 Speaker ID performance under codec degradation

In this section, we analyzed the effect of speech coding over speaker identification perfor-
mance by using different extraction features such as CAMGTCC, GTCC and MFCC. In
speech coding, there are two reasons why a speech codec can degrade the recognition
performance. The first and more important is the degradation by the compression itself. The
second reason is using different speech codecs in the speaker identification system, then a
mismatch between training and testing conditions. The original feature set and codec feature
set are represented by a couple of points(CClean, CCodec), where CClean is a particular feature
computed from clean data, while CCodec is the feature computed from coded-decoded speech
using G722.2 at different bit-rates. Figure 6 shows an alignment of these GTCC, CAMGTCC
feature from original speech and GTCC-codec, CAMGTCC-codec feature from coded-
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decoded speech. The coded–decoded distortion, defined as D = CClean − CCodec can be seen in
Fig. 6, the coefficients of clean and speech codec with CAMGTCC feature give good linear
distribution compared with GTCC feature.

Table 2 and Fig. 7 show the performance of the proposed CAMGTCC feature with the
baseline system MFCC and GTCC for speaker identification in multi-condition training. It can
be seen that the proposed CAMGTCC feature has a better performance compared with the
GTCC and MFCC under the different bit-rate.

Fig. 6 Cluster plot of the two first coefficients of different features (CAMGTCC and GTCC) from original
speech and coded-decoded speech

Feature Extraction

i-Vectors
Extraction

Sufficient Statistics

Session 

compensation

Length/Norm

Decision

i-Vetcors EnrollementScoring GLPDA
Target

Non-target

Feature

Extraction

i-Vectors

Extraction

GPLD_LDA

GMM-UBM 

Total Variability

Speech test 

Test

i-vectors

Fig. 5 A block diagram of GMM-UBM and G-PLDA based i-vectors for speaker recognition system
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5.2 Speaker identification SID and speaker verification ASV performance under noise
speech

In the next section, we evaluate the performance of speaker ID and speaker verification ASV
system using MFCC, GTCC and CAMGTCC features, where the acoustic conditions of
training and testing are mismatched; the training data and the testing data were set with
different types of background noise (Factory, car and babble) at various SNR levels (0, 5,
10 and 15 dB). The speaker ID accuracy using the feature extraction techniques for different
noise speech is shown in Table 3. It is evident to show that the proposed features perform
better than GTCC and MFCC at almost all SNR levels and clean condition.

EER (%) performance using the feature extraction techniques for different noise speech is
shown in Figs. 8, 9 and 10. Those figures presents the experimental results for this part of the
study, ASV performance in terms of equal error rate (EER), where the acoustic conditions of
training and testing are mismatched; the training data set was recorded under a clean condition
and the testing data sets with different types of background noise (Factory, car and babble).
The results were obtained by using a development set i-vector-GPLDA with different feature
extraction methods (MFCC, GTCC and CAMGTCC) .

From the results of Figs. 8, 9 and 10, we can see that the CAMGTCC feature outperform
the baseline MFCC and GTCC feature, more specifically, at low level noise (0db and 5db).
Compared to the MFCC and GTCC baseline feature, the CAMGTCC feature achieves a
reduction in average Equal Error Rate (EER) ranging from 1.05% to 0.25%, 1.05% to 0.25%
and 10.88% to 6.8% at Babble, Car and Factory noises, respectively.
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Fig. 7 Speaker ID Accuracy of clean and AMR WB speech codec with different bit rates using a proposed
feature

Table 2 Comparison of speaker identification performance under different bit-rates of AMR-WB speech codec

Speaker ID Accuracy (%)

Bit-rate 23.5 19.85 18.25 15.85 14.25 12.85 8.85 6.60 Clean

MFCC 55.15 54.55 53.94 53.94 53.48 52.58 48.71 44.09 93.33
GTCC 73.40 72.80 72.64 72.95 72.64 71.43 69.04 62.77 77.20
CAMGTCC 76.29 76.44 77.05 76.44 75.53 75.38 72.53 67.02 83,89
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6 Conclusion and future work

In this paper, we investigate the performance of speaker recognition system under noisy
environment and speech coding distortion. We developed the new paradigm of feature based
on Caelen auditory model and gammatone filterbank. This study of new feature was conducted
by using the AMR-WB (Adaptive Multi-rate-Wideband) codec under mismatched testing
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Fig. 8 ASV performance comparison (in terms of %EER) of the proposed feature with MFCC and GTCC
baseline under Babbel noise at different SNR
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Fig. 9 ASV performance comparison (in terms of %EER) of the proposed feature with MFCC and GTCC
baseline under Car noise at different SNR

Table 3 Speaker ID Accuracy (%) with different types of background noise (Babble, Car and Fctory)

Noise Features 0 5 10 15

Babble MFCC 2.88 7.58 20.45 44.12
GTCC 3.65 10.10 33.89 60.46
CAMGTCC 8.58 13.26 37.66 60.06

Car MFCC 19.70 28.48 49.47 66.72
GTCC 34.19 57.71 66.41 70.23
CAMGTCC 35.71 67.00 67.41 70.05

Factory MFCC 4.89 17.10 35.73 56.64
GTCC 8.24 25.50 46.72 59.08
CAMGTCC 10.68 30.69 56.08 75.78
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conditions. Furthermore, when we use the new feature is used with different acoustic noise
which included Factory noise, car noise, and babble noise. Experimental results show that the
CAMCTCC feature outperforms both the CTCC and MFCCs features in mismatched condi-
tion under speech coding distortion with different bit rates. In the noise environment, speaker
recognition performance can be improved significantly even when the testing data are
mismatched from the training data. Our system can achieve verification accuracy from
1.05% to 0.25%, 1.05% to 0.25% and 10.88% to 6.8% at Babble, Car and Factory noises,
respectively.

We suggest two lines of research for further work. First of all, we would like to extend the
experiments using the prosodic feature with acoustic distinctive to improve the performance of
speaker recognition. Second, we plan to extend our study of auditory-based on acoustic
distinctive features and gammatone filter to other speech application tasks, including speech
synthesis and emotion recognition.
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