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TRACK 2: MEDICAL APPLICATIONS OFMULTIMEDIA

Diffusion tensor image denoising via geometric
invariant nonlocal means on the tensor manifold

Xiangyuan Liu1 ·ZhongkeWu1 ·Xingce Wang1

Abstract
Diffusion tensor imaging (DTI) is an advanced magnetic resonance technology that
describes subtle brain structures using a diffusion tensor at each point. The obtained DTI
image is always degraded since diffusion-weighted imaging sequences, which are used to
estimate DTI images, are corrupted by noise. In this paper, we propose an approach called
geometric invariant nonlocal means on the tensor manifold (GINLM-TM) to reduce unde-
sired components in the degraded DTI image. We transform the diffusion tensor into a
positive definite matrix (called a tensor) to measure the intrinsic property of the diffusion
tensor. Then, we directly regularise DTI images in the tensor manifold endowed with an
affine invariant metric. Finally, geometrically invariant measures of patches of tensors are
used to define the similarity function of patches to ensure the similarity between patches is
more accurate and robust. It is experimentally demonstrated that the proposed method per-
forms adequately in reducing undesired components without blurring the boundaries of DTI
images. The results of fractional anisotropy (FA) images and fibre tracking of our restored
data indicate that our method performs well in denoising the DTI image.

Keywords DTI · Riemannian manifold · Shape · DWI · Non-local means ·
Diffusion tensor

1 Introduction

Diffusion tensor imaging (DTI) [10] is a special form of magnetic resonance imaging (MRI)
and describes subtle brain structure using a 3×3 symmetric matrix (called diffusion tensor)
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at each point. Compared with other medical imaging methods, such as computed tomogra-
phy (CT [7, 9]), MRI, DTI can provide unique information such as white matter fibre travel
which has great practical meaning. However, the obtained DTI image is usually degraded as
the diffusion-weighted imaging (DWI) sequences, which are used to estimate DTI images,
are polluted by Rician noise [26]. The degraded DTI images limit clinical applications, such
as the tracked fibre structure not being smooth enough and the fractional anisotropy (FA)
measurement [25] of a DTI image is degraded due to the diffusion tensor being disordered
and irregular in direction. Therefore, the denoising of DTI images is crucial for theoreti-
cal and applied research. In this paper, we provide a novel method to remove the undesired
components from the DTI images to improve their qualities.

The nonlocal mean (NLM) filter [8, 18] performs well in denoising digital images, which
uses redundant image information to restore the clear image and maximizes the images’
detail features while denoising. The classical NLM filter is generated in [31] to the tensor
manifold and is used to regularise DTI images directly. Moreover, a novel nonlocal mean
method is proposed in [27] to denoise the DTI data in diffusion tensor space, and they com-
pare the denoise performances of Euclidean distance, Riemann distance, and log-Euclidean
distance are used as the nonlocal weighted mean. It shows that using the Riemannian dis-
tance can achieve a better denoising effect and that the Riemannian metrics for a similar
patch search on the Riemannian geometric space can better preserve the diffusion tensor
geometry.

However, the NLM filter measures the patch similarity using the weighted average dif-
ferences between diffusion tensors in the fixed order. Thus, the geometric information of the
patch of diffusion tensors is ignored. In this paper, we introduce two statistics to measure
the geometric information of the patch and improve the NLM filter reasonably. Moreover,
we use the tensor manifold (each element of which is a symmetric positive definite (SPD)
matrix) to measure the diffusion tensor similarity since the Riemannian manifold does mea-
sure the intrinsic property of diffusion tensors. However, although most diffusion tensors
in DTI images are SPD matrices, there still exist some diffusion tensors that have negative
or zero eigenvalues. The existing methods in the Riemannian manifold have ignored these
diffusion tensors but processed the diffusion tensors whose eigenvalues are positive. In our
work, we provide a method of transforming diffusion tensors into SPD matrices to make
sure our filter can use the tensor manifold to measure the intrinsic properties of diffusion
tensors.

In general, we propose the geometric invariant nonlocal means on the tensor manifold
(GINLM-TM) method to directly regularise DTI images using the tensor manifold. Our
main contributions are summarized as follows.

• By transforming diffusion tensors as the SPD matrix, we propose an approach to
directly regularise DTI images on the tensor manifold endowed with an affine invari-
ant Riemannian metric. Using the tensor manifold can accurately measure the intrinsic
property of diffusion tensors.

• We use geometric invariant measures of tensors’ patches to define the similarity
function that is used in our regularisation method, ensuring the accuracy of tensors’
similarity measurement. Here, we derive the intrinsic measures of the tensor patch,
which do not change under rigid transformations (e.g., rotation, translation), to define
the novel weights to ensure that our method is more robust.
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2 Related works

There are mainly three types of methods for denoising DTI images, i.e., denoising DTI
images by filtering DWI images, denoising DTI images directly and denoising DTI images
using the tensor manifold.

Denoising DTI images by filtering DWI images At present, some works focus on reg-
ularising DTI images by removing noises in DWI sequences using a filter, such as the
block-matching fourth-dimensional (BM4D) filter [17], the multichannel Wiener filter [19],
or the linear minimum mean square error estimator [1]. In addition, [6] applied Weickert
anisotropic filter to DWI smoothing, which can better protect the boundary information
of the structure whilst removing noise. The nonlocal means (NLM) algorithm is used in
[31] to remove noise in DWI data. The regularised Perona & Malik filter was provided in
[33], where the DWI images are denoised by convolving the gradient with a non-Gaussian
smoothing kernel. According to the characteristics of DWI images, the weighted nuclear
norm denoising algorithm was proposed in [32] for diffusion-weighted image denoising.
Translational invariant BayesShrink wavelet thresholding and total variation regularisation
are used to remove noise and pseudo-Gibbs phenomena in DWI images in [13].

Denoising DTI images directly Moreover, some works denoise DTI images by directly nor-
malising diffusion tensors. The coefficients of diffusion tensor matrices are smoothed in [28]
using an anisotropy scheme based on the partial differential equations (PDE) to ensure the
positive or semipositive properties of the diffusion tensor. The shortcoming of this reg-
ularisation is that the information of diffusion tensors is falsified. Diffusion tensors are
regularised in [30] during the processing of estimation using Cholesky decomposition of
the diffusion tensor. However, such Cholesky decomposition requires that all eigenvalues
of diffusion tensors be greater than zero, but the eigenvalues of some diffusion tensors will
also have zero or negative values. The feature information of the diffusion tensor is used in
[5, 14, 24] to regularise DTI images directly. Lui et al. [14] proposed diffusion tensor imag-
ing denoising based on a Riemannian geometric framework and sparse Bayesian learning.
The work of [24] used the energy function of the Markov model to regularise the main eigen-
vector of the diffusion tensor, while [5] used the iterative recovery method to regularise the
eigenvector of the diffusion tensor. However, they only considered the main eigenvectors,
which will lead to the loss of some important information during the filtering process.

Denoising DTI images using the tensormanifold The 3×3 diffusion tensor of each voxel
in the obtained DTI image is a 3 × 3 diffusion tensor that shares some property of a 3 ×
3 SPD matrix (called tensor). Therefore, domestic and foreign scholars apply the Rieman-
nian manifold of tensors to DTI denoising. Several Riemannian or Euclidean metrics for
the space of tensors were proposed in [23]. Subsequent studies found that the Euclidean
metric was no longer suitable for regularised diffusion tensor images, and the Riemann
metric proposed by [2, 4, 21] was effective. The Gaussian filter, anisotropic regularisation
method, and harmonic regularisation method under the Riemannian framework were pro-
posed in [22, 29] to restore DTI images. Combined with anisotropic filtering of the structure
tensor and Riemannian geometric frame, [16] denoised DTI images based on the complex
shearlet in multiscale geometric transformation. Liu et al. [15] learned the prior distribution
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of patch groups that searched using the Riemannian similarity measures. Lebrun et al. [3]
denoised DTI images using the total variation regulariser defined by the extended discrete
Riemannian gradient. By reinterpreting the Bayesian approach of [12], a two-step nonlocal
patch-based method is proposed in [11] to restore the manifold-valued images, wherein the
estimated result of the first step is used to accurately define the distance of patches that is
used in the second step.

The remaining parts of this work are organised as follows. Our method is described
in Section 3, where the problem of DTI denoising and the motivations of our method
are defined in Section 3.1; the transformation of the diffusion tensors are described in
Section 3.2; the tensor manifold and geodesic distance between two tensors are described in
Section 3.3, and the geometric invariant weights of our method are defined in Section 3.4.
Then, several experiments are shown in Section 4. The details are described in the following.

3 Methodology

3.1 Problem formulation

The obtained DTI image can be modeled as F(x) = G(x) + η(x), x ∈ �, where � is a
M×N×K 3D grid, F : � �→ Sym3 is an obtained DTI image that is degraded by undesired
random components η : � �→ Sym3, G : � �→ Sym+

3 is the clear DTI image, with Sym+
3

and Sym3 referring to the tensor space and 3 × 3 symmetric matrix space, respectively.
The purpose of DTI denoising is to design an operator T to ensure Ĝ(x) = T (F (x)) ≈

G(x), x ∈ �, which means that the undesired components η in the degraded DTI
image F are removed, and Ĝ is the restored DTI image. A suitable denoising approach
(corresponding to T ) is to convolute the neighbourhood of F(x) by a kernel, i.e.,

Ĝ(x) =
∫

y∈ν(x)

w(x, y)F (y)dy,
∑

y∈ν(x)

w(x, y) = 1, (1)

where ν(x) is the neighbourhood of x, and w(x, y) is the normalised coefficients defined by
x and y (or F(x) and F(y)). Using the maximum similarity expression, the regularisation
described in (1) can be reformulated as

Ĝ(x)∗ = arg min
Ĝ

∫
y∈ν(x)

w(x, y)‖F(y) − Ĝ(x)‖2dy. (2)

The definitions of w(x, y) and ‖ · ‖ will significantly affect the performance of DTI
denoising. It is reasonable to find a suitable strategy to define the norm ‖·‖, which measures
the similarity of two diffusion tensors. To describe the intrinsic property of diffusion tensors,
we transformed the diffusion tensor into an SPD matrix and defined ‖ · ‖ on the tensor
manifold rather than a linear space.

Furthermore, the weight w(x, y) is normally defined by two methods: the space distance
of x and y, such as the Gaussian method [22], and the similarity of diffusion tensors G(x)

and G(y). Using the second method, the classical NLM method provides a more reasonable
definition of w(x, y). Since we can obtain the degraded DTI image F , it is inaccurate to
define the weight using F(x) and F(y). The NLM method uses the similarity between
patches centered at x and y to estimate the similarity between G(x) and G(y) and finally to
define w(x, y).
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However, the geometric information of patches has been ignored since the similarity
function in the NLM filter is defined by the distance of diffusion tensors arranged in a
fixed order. We regard patches from the geometric view, and the similarity between them is
measured accurately by their geometric properties that do not change under rigid transfor-
mations. Using the tensor manifold and the geometric information of patches, we propose
the GINLM-TM approach to correct DTI, and the flowchart of our method is shown in
Fig. 1, where the pipeline includes the following steps:

(a). Target area detection. We first detect the target area that contains tissue information,
where the DTI image is estimated by DWI sequences, and the target area is detected
using the Ostu method and a DWI image.

(b). Tensor transform. Diffusion tensors in the obtained DTI F are transformed into
tensors using (3), and Fp is the transformed DTI image.

(c). Assigning the search window and similar patches in Fp . To restore the diffusion
tensor at x, we need to assign its neighbourhood (search window) and a series of
tensor patches in Fp .

(d). Calculating invariant measures and weights. Invariant measures of tensor patches
are calculated first, and the similarity between patches is measured by both the fixed
patch similarity wps and the geometric similarity wgi .

(e). Restoring the tensor G(x). The tensor is corrected by combining the convolution of
the obtained area F(S) and corresponding weights w = wps · wgi .

(f). Results. The DTI image is restored by changing the position of the diffusion tensor
and repeating steps (d-e) until all diffusion tensors are covered.

The details of our method are described in the following.

Fig. 1 Flow chart of the proposed method, where M
.= G is the metric of the tensor manifold. (Ms3

,Mp) is
the space of s × s × s patches of tensors and Mp means that geometric information is used to measure the
similarity of patches
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3.2 Data preprocessing

DTI images are obtained using water molecule motion of tissue cells. Therefore, it is reason-
able to remove the area that does not contain tissue cells and only process the DTI data with
tissue information. Moreover, due to the existence of undesired components, some diffusion
tensors in DTI images are 3×3 symmetric matrices, whose eigenvalues are negative or zero,
although most diffusion tensors are SPD matrices. There exists a complete framework [23]
for SPD matrix analysis, and the intrinsic properties of SPD matrices are measured under
this framework. The symmetric matrix shares some properties of the SPD matrix, and the
difference is that the eigenvalues of an SPD matrix are positive, while the eigenvalues of a
symmetric matrix may be negative or 0. Therefore, we convert the diffusion tensors in the
DTI image into SPD matrices to describe the essential property of diffusion tensors in the
tensor manifold.

We preprocess the degraded DTI images in two stages before the denoising process, the
details of which are provided as

• Target area detection. We detected the target area in an obtained DTI image by seg-
menting tissue voxels in the DWI image using the Otsu threshold algorithm. After this
process, the DTI image to be regularised contains important tissues and organs of the
brain and the areas that do not have anatomical meaning are ignored. Figure 2 shows
the results of this procession, where Fig. 2(b) is the whole DTI image estimated from
the DWI images Fig. 2(a), (c) and (d) show the detected target area and the DTI image
with anatomical meaning, respectively.

• Diffusion tensor transformation. Due to the influence of undesired components, the
eigenvalues of some diffusion tensors in the obtained DTI image might not be positive.
To sufficiently measure the intrinsic property of the symmetry matrix, we transform the
diffusion tensor to ensure its positivity by

Fp(x) = U(S + k · Id3)V
T , with x ∈ �, F(x) = USV T , (3)

where Fp(x) is the transformed tensor; F is the DTI image after target area detection;
Id3 is a 3 × 3 identity matrix; F(x) = USV T is obtained using singular value decom-
position, and k ≥ 0 is a parameter used to ensure that all eigenvalues are positive. In our
experiments, we set k = 10−4. This process is reasonable since all eigenvalues have the
same operation and k is so small that they do not severely influence the final results.

3.3 The tensor manifold

A n × n SPD matrix � ∈ Sym+
n can be decomposed as � = UDUT , where D is a

diagonal matrix composed of the eigenvalues of �, U is the matrix of eigenvectors, and the

(a) (c) (b) (d) 

Fig. 2 Target DTI detection. (a) DWI image, (b) the whole degraded DTI image, (c) the target area to be
regularised framed by blue color, (d) the target DTI image
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decomposition is equal to � = �
1
2 �

1
2 , with �

1
2 = U

√
DUT . This shows that the natural

properties of the tensors are represented by eigenvalues and eigenvectors.
Therefore, On�OT

n and � have the same eigenvalues and eigenvectors, where On ∈
SO(n) is a rotation matrix and SO(n) = {On | OT

n On = Id, det (On) = 1}, Id is a n × n

identity matrix. More generally, extending On to a matrix A ∈ GL(n) (the linear group of
n × n matrices), an affine invariant metric is defined for the tensor manifold (Sym+

n ,G) (a
Riemannian manifold) [23]. The Riemannian metric G is chosen according to the invariant
properties of tensors.

Affine invariant metric The Riemannian metric of a tensor manifold smoothly assigns an
inner product on T�Sym+

n (the tangent space at �) to � ∈ Sym+
n . The simplest inner

product at the identity matrix Id is defined as

〈W1 | W2〉Id = Tr(WT
1 W2),

where W1 and W2 are tangent vectors (i.e. symmetric matrices, not necessarily definite or
positive) of TIdSym+

n . This scalar product is invariant to rotation On, i.e.,〈
OnW1O

T
n | OT

n W2O
T
n

〉
Id

= 〈W1 | W2〉Id .

More generally, when W1 and W2 are two tangent vectors of T�Sym+
n , � �= Id, the scalar

product is required to be invariant by the action of any transformation A ∈ GLn, i.e.,

〈W1 | W2〉� = 〈A � W1 | A � W2〉A�� . (4)

The action “�” is defined as A � � = A�AT . Choosing A = �
− 1

2
1 , the affine invariant

metric of the tensor manifold satisfies

〈W1 | W2〉� =
〈
�

− 1
2

1 W1�
− 1

2
1 | �

− 1
2

1 W2�
− 1

2
1

〉
Id

, (5)

which means that the scalar product at any � can be transformed into the scalar product
at identity Id using the affine invariant transformation. Figure 3 shows a tensor manifold
endowed with an affine invariant Riemannian metric.

Geodesic distance Geodesic distance measures the natural distance of tensors and is the
fundamental theorem for tensor manifold statistical analysis. Let γ (t), t ∈ [0, 1] be the
geodesic (the red curve line on the tensor manifold in Fig. 3) connecting � and �, and
	(0) = �,	(1) = �. Thus, the length of the geodesic (called geodesic distance) between
� and � is

d2
g(�,�) =

∫ 1

0

∥∥∥∥dγ (t)

dt

∥∥∥∥
2

γ (t)

= ‖W‖2
� , (6)

Based on the above analysis, the norm (corresponding to length) of a tangent vector W of
T�Sym+

n is defined as

‖W‖2
� = 〈W | W 〉� =

∥∥∥(�− 1
2 )W(�− 1

2 )T
∥∥∥2

Id
.

Here, W ∈ T�Sym+
n is a tangent vector at � and points to �, i.e., W = −→

��. In a
Riemannian manifold, a tangent vector is obtained using the manifold’s logarithmic map

log� : Sym+
n �→ T�Sym+

n , i.e., W = −→
�� = log� �.
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Fig. 3 (a) Tensor manifold (Sym+
n ,G) endowed with an affine invariant metric M

.= G. The geodesic 	� ,
tangent space T�Sym+

n and tangent vector W� at � can be transformed to the corresponding elements at Id

using affine transformation A

The logarithmic map at Id is defined as
−−→
Id� = log(�) = logId (UDUT ) = UDIAG(log(di))U

T ,

with D = DIAG(di). Then, using the invariant metric, the logarithmic map at � is defined
as

log� � = �
1
2 log(�− 1

2 ��− 1
2 )�

1
2 (7)

Since the norm of a tangent vector is equal to the corresponding geodesic, a candidate
geodesic distance dg(�,�) between �,� is defined as

d2
g(�,�) =

∥∥∥log(�− 1
2 ��− 1

2 )

∥∥∥2

Id
=

n∑
i=1

(log σi)
2, (8)

where σi is the ith eigenvalue of �− 1
2 ��− 1

2 .

3.4 Geometric invariant nonlocal meansmethod on tensor manifold

Since similar small patches may be found several times in an image, the classical NLM
approach restores the diffusion tensor at x by

Ĝ(x) =
∑

y∈ν(x) w(x, y)F (y)∑
y∈ν(x) w(x, y)

, F (x) ∈ Sym+
3 (9)

with

w(x, y) =
{

e
−‖Px,s−Py,s‖2

2τ2 , x �= y

maxy∈ν(x){w(x, y)}, x = y

∥∥Px,s − Py,s

∥∥
2 = 1

Num

Num∑
i=1

d ′
g(V (xi), V (yi)),
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and

d ′
g(V (xi), V (yi)) =

{
dg(V (xi), V (yi)), V (xi), V (yi) ∈ Sym+

3+∞, others

where τ is a parameter, ν(x) ⊆ � is a d × d × d window center at x, V (xi) and V (yi)

are the ith diffusion tensors of the vector representation of the s × s × s patches Px,s, Py,s

centred at x and y, respectively, and Px,s = {F(y) | y ∈ Dx,s} where Dx,s ⊆ � is a 3D
window centre at x with radius s. Num is the number of cases that satisfy V (xi) and V (yi)

are both tensors.
Using the similarity between patches Px,s and Py,s , rather than F(x) and F(y), to deter-

mine w(x, y) can reduce the influence of undesired random components on the similarity
measurement to a certain extent. However, some diffusion tensors are not regulated as
their eigenvalues are not positive, and they are not used to measure patch similarity ‖·‖2.
Moreover, the geometric information of patches has been ignored as the similarity between
patches is defined by the sum of differences between the tensors arranged in a fixed order.
Standing at the geometric viewpoint, we derived intrinsic mean tensor and tensor vari-
ance as two geometric invariant measures of the patches to define the similarity between
patches. These geometric invariant measures are not influenced by the orientation and rigid
transformations and can more accurately define the similarity function.

Therefore, our DTI regularisation approach is defined using the transformed DTI image
Fp to make full use of the DTI image, and the geometric information of patches is used to
define the similarity of patches. More precisely, our method is defined as

Ĝ(x) =
∑

y∈ν(x) wps(x, y)wgi(x, y)F (y)∑
y∈ν(x) wps(x, y)wgi(x, y)

, (10)

where wps(x, y)wgi(x, y) measures the similarity between patches; wps(x, y) is fixed patch
similarity defined by the distance between patches P ′

x,s , and P ′
y,s in the transformed DTI

image Fp , wgi(x, y) is geometric invariant similarity defined by the invariant measures of
the patches. The details of these two types of weights are defined as follows.

The definition of wps (x, y) The fixed patch similarity is defined as

wps(x, y) =
⎧⎨
⎩ e

−
(∑s3

i=1
‖xi−yi‖2

e dg(V ′(xi ),V
′(yi ))

s3

)
/2τ 2

1
, x �= y

maxy∈ν(x){wps(x, y)}, x = y

(11)

where ‖xi − x‖2
e = exp−‖xi−x‖2 is defined by the spatial distances between xi and yi , which

means that tensors that farther away from the center tensor have less impact on the similarity
of patches. In our method, P ′

x,s , P
′
y,s are the patches defined in the transformed DTI image

Fp , which means all tensors are used to measure patches’ similarity, and V ′(xi) and V ′(yi)

are the ith tensors of the vector representation of P ′
x,s , P

′
y,s .

The definition of wgi (x, y) The geometric invariant similarity wgi(x, y) is defined by the
geometric invariant information of patches to find more similar tensors to restore G(x), and

wgi(x, y) =
{

e
−

(
dg(P̄ ′

x,s ,P̄ ′
y,s )+|σx−σy |

)
/2τ 2

2 , x �= y

maxy∈ν(x){wgi(x, y)}, x = y
(12)
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where P̄ ′
x,s is the intrinsic mean tensor of patch P ′

x,s and can be calculated by minimising
the sum of squared distances, i.e.,

P̄ ′
x,s = arg

P̄ ∗
x,s

s3∑
i=1

dg(P̄
∗
x,s , V (xi))

2, P̄ ∗
x,s ∈ Sym+

3 .

The intrinsic mean tensor P̄ ′
x,s is practically calculated by the intrinsic Newton gradient

descent algorithm [20], i.e.,

P̄ ′t+1
x,s = exp

P̄ ′ t
x,s

⎛
⎝ 1

s3

s3∑
i=1

−−−−−−−→
P̄ ′t

x,sV (xi)

⎞
⎠

σx is the standard deviation of patch P ′
x,s and is calculated by σ 2

x = ∑s3

i=1 dg

(P̄ ′
x,s , V (xi))

2. This measure describes the dispersion of patches, and can be used to
describe the reasonable similarity between patches.

Properties Compared with the classic NLM method (9) defined using the difference
between tensors in a fixed order, our method is more effective as all the diffusion tensors
are regularised and as our similarity function of patches can much more accurately measure
the similarity between patches, and the advantages of our similarity function are described
in both flat areas and boundary areas:

• Boundary areas. When patches P ′
x,s and P ′

y,s are the boundary areas and P ′
x,s can

be obtained by the rotation transformation of P ′
y,s , our method prefers to use F(y) to

restore F(x) since P ′
x,s and P ′

y,s are more similar from the geometric invariant view.
It is reasonable, as F(y) is potentially more similar to F(x) than most other diffusion
tensors in the neighbourhood ν(x).

• Flat areas. The similarity function designed using the geometric invariant information
of patches can enlarge the differences of the patches, which means it is easier to distin-
guish more similar patches from all the candidate patches. For example, when P ′

x,s and
P ′

y,s are flat areas but P ′
z,s is a boundary area, and wps(x, y) = wps(x, z), our function

tends to use F(y) rather than F(z) to restore G(x) since w(gi)(·) extends the difference
between P ′

y,s and P ′
z,s .

Therefore, our method is more reasonable as the accumulation of dissimilar patches is
avoided by accurately describing the similarity between patches.

4 Experiments and discussion

This section reports DTI regularisation within a platform constructed in MATLAB 2019b
(MathWorks, USA). Our experiments were performed on clinical DTI images estimated
from 19 DWI sequences of different directions. DWI sequences were obtained from Beijing
Shunyi District Hospital with FS=3, TR=8000, and TE=89, and each DWI series included
62 slices. In addition, considering the mechanisms of DTI contamination, we provide two
types of comparison strategies.

• The compared methods in the first type are shortened as E-BM4D and E-NLM, respec-
tively, which means that we remove noise in DWI sequences using the BM4D and NLM
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approaches to regularise DTI images. Then, the regularised DTI images are estimated
using these denoised DWI sequences.

• The second type of compared method is the T-G and T-NLM methods, which means
that the Gaussian filter [22] and NLM method [31] on the tensor manifold are used to
restore DTI images.

Besides, we show visual results using colour-coded DTI images and the associated FA
images obtained with different methods. Each diffusion tensor in the DTI image is repre-
sented by an ellipsoid, and the colour is coded by the principal eigenvector (red: left/right,
green anterior/posterior, blue: top/bottom), see Fig. 4.

4.1 Comparison experiment

Figures 4 and 5 show the regularised DTI results obtained by different methods, and Fig. 5
is the FA image of Fig. 4. It shows that our method obtains better visual results than other
methods in both DTI and FA images.

More precisely, most diffusion tensors in the DTI image (Fig. 4b) that are regularised by
E-BM4D method have small eigenvalues although the noisy components are removed. The
E-BM4D method severely smooths diffusion tensors and it is difficult to distinguish impor-
tant boundaries which are provided in the obtained data Fig. 4a. Compared with the results
of E-BM4D method with our method Fig. 4f, it can be found that our method performs bet-
ter in preserving important boundaries and structures. It is because our method attempt to

Fig. 4 DTI correction results obtained by different methods, where (b)–(f) refer to the results of E-BM4D,
E-NLM, T-G, T-NLM and our method, and (a) is the degraded DTI image
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Fig. 5 FA images of corrected DTI obtained with different methods, where (b)–(f) refer to the results of
E-BM4D, E-NLM, T-G,T-NLM and our method, and (a) is the degraded FA image

measuring the diffusion tensor instrinsic properties in the tensor manifold. This conclusion
can also obtained from the FA measure Fig. 5 of the DTI images in Fig. 4. Figure 5b shows
that the white matter in the FA image obtained by the E-BM4D method has been excessively
smoothed and expanded. Although the contrast between white matter and gray matter was
enhanced, the boundary was blurred, and boundary displacement even occurred.

The Figs. 4c and 5c show the results of the E-NLM method. It shows that most undesired
components are still retained in both DTI and FA images after the regularisation using the
E-NLM method (see the orange frame). Comparing the result of the E-NLM method and
our result shows that using the tensor manifold to remove the noise in the DTI image is
considerable.

Although denoising the DTI image base on the tensor manifold, the T-G method can’t
obtain acceptable since it has severely blurred DTI and FA images, see Figs. 4–5d. It shows
that using the redundant image information to restore DTI images is important. Moreover,
Fig. 5e shows that the T-NLM method has obtained an acceptable FA image compared to
the above methods, but they still retain some undesired components in the corrected DTI
image; see the framed areas in Fig. 4e. However, our result in Fig. 4f shows that our method
has the best performance when regularising DTI images, and the geometric features of the
diffusion tensor were preserved when reducing most undesired components (see orange
and black frames). It is mainly because we consider the instrinsic patch similarity from the
shape pointview and use it to improove the NLM method. In addition, our method obtains
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Fig. 6 DTI correction results obtained by different methods, where (b)–(f) refer to the results of E-BM4D,
E-NLM, T-G, T-NLM and our method, and (a) is the degraded DTI image

an improved FA image (Fig. 5f) result without blurring boundaries (see orange and green
frames).

Figures 6 and 7 show other comparison results of correcting DTI images. It can be
observed from Fig. 7b that the E-BM4D method has shifted the boundaries of white matter,
and the edges of the hippocampus (the crescent-shaped object) are difficult to distinguish.
Figures 6–7c show that most artifacts are not removed by the E-NLM method. The restored
DTI image and its FA image (Fig. 7d) are seriously blurred after the T-G method. The

Fig. 7 FA images of corrected DTI obtained with different methods, where (b)–(f) refer to the results of
E-BM4D, E-NLM, T-G,T-NLM and our method, and (a) is the degraded FA image
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T-NLM method has obtained a considerable result, but some structures are ignored (see
the green frame in Fig. 7e), and our method obtains the best results of DTI (Fig. 6f) and
FA image Fig. 7f. Our method performs well in preserving details when regularising DTI
images, especially the areas highlighted by colored frames. All these results show that using
the tensor manifold to measure the intrinsic properties of diffusion tensors is reasonable
for denoising DTI images. Moreover, the introduced invariant statistics of patches in our
method perform well in preserving essential image boundaries.

4.2 The analysis of the time consumption

The time complexity of our method is various according to d (the size the search area ν(x))
and s (the size of patches). By considering the trade-off between the computational costs
and accuracy, we set d = 5 and s = 3, which means there are 125 diffusion tensors in the
search area and 27 diffusion tensors in each patch. Then, as for a N × N × N image, the
time complexity of our method is O(27 × 125 × N3). Moreover, the parameters τ1 and τ1
are respectively recommended to satisfy 1 ≤ τ1, τ2 ≤ 5 based on our experiments. In our
experiment section, we set τ1 = 3.0, τ2 = 4.0 for obtaining acceptable results by using the
proper proportion of the patch similarity.

Table 1 shows the time consumption comparison of various methods, where 0.57 × 19
means that the method need 0.57s when processing a DWI image. Therefore, there are total
0.57 × 19s to process these 19 DWI sequences. Table 1 indicates that the consumption
time of our method is highest. However, the comparison between the consumption times of
the E-NLM method in various platforms shows that the time consumption of a method is
indeed dependent on the platform. It also shows that our method is potentially accelerated by
another platform. Moreover, since each diffusion tensor processing is independent and does
not interfere with each other, our method can be potentially accelerated by GPU parallel
computing model, which can be investigated in future work.

4.3 Fibre tracking

Fibre tracking constructs nerve fibre bundles throughout the brain using both FA images
and the main diffusion direction of DTI images. To evaluate our method, we tracked fibre
structures of the brain using FA results obtained with different methods. Figures 8 and 9
respectively show the tracked fibres with different ROIs, wherein the ROI is the region of
interest and the fibres passing through the ROI are tracked. Figures 8 and 9 are the results
tracked using a slice of the DTI image and the hippocampus as ROIs.

It can be seen from these two figures that the fibres of the original DTI image restored
by the E-NLM method are messy sue to the existence of undesired components. The fibres
obtained with the BM4D method are seriously outspread and do not well represent the fibre

Table 1 Time consumption (/s) of different methods with various platforms

Image size 19 DWI sequences, 53 × 53 × 62 DTI image

Platforms MATLAB 2019b Visual Studio 2012

Methods E-BM4D E-NLM T-G T-NLM Our E-NLM

Time consumption 118 × 19 246 × 19 5.99 3169 4037 0.57 × 19
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Original

T-G

BM4D E-NLM

T-NLM Our

Fig. 8 The fibres tracked using different methods, with a slice of the DTI image as the ROI

structure of the brain. The fibres of the T-G restored DTI image are sparsely distributed as
the DTI image is oversmoothed. The fibres tracked using T-NLM and our methods can well
represent the outline of the brain, but our method is better as the length of fibres is longer,
see the orange framed areas in Fig. 8 and colored framed areas in Fig. 9.

BM4D E-NLMOriginal

T-NLMT-G Our

Fig. 9 The fibres tracked using different methods, with the hippocampus as the ROI
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We calculate several statistics to quantitatively evaluate the results of fibre tracking, such
as the total number of fibres Nf ; the length of the longest fibre Lmax ; the percentage of long
fibres 100% ∗ Nl/Nf , where Nl is the number of fibres that longer than 2 ∗ Lmax/3; the
percentage of short fibres 100% ∗ Ns/Nf , where Ns is the number of fibres that are shorter
than Lmax/5; and the mean and variance of fibre length. All these metrics are useful for
measuring the performance of fiber tracking. They measure the tracking results from various
perspective. To evaluate the general performance of our algorithm on various statistics, we
scored the performance of five methods, with “1” meaning the best method and “5” meaning
the worst method. The detailed results are marked in black font in Table 2 and the final
evaluation score for each algorithm is the sum of all sorts of statistics (marked as “Final”).

Table 2 shows that when the ROI is the entire brain, our algorithm has the best per-
formance, with a final score of 11, followed by the E-BM4D method with a score of 14.
However, the total number of fibres tracked using the restored DTI image with the E-BM4D
method is 15,947, which is 2605 larger than the value of the noisy DTI image. This is unrea-
sonable and shows that the E-BM4D algorithm has severely expanded the boundary of the
fibre structure. In addition, when the ROI is the hippocampus, the result of our method is
slightly worse than that of the E-NLM algorithm but is still acceptable. This is because the
FA values in the selected ROI area are almost constant, and the shortcomings of the E-NLM
algorithm are ignored. It can also be seen from the numerical statistics of the two parts that
our algorithm is better than the T-NLM algorithm and is an effective improvement to the
NLM algorithm.

4.4 Discussion

It is observed from the experimental results that the correction of DTI using the geometric
information of patches in the tensor manifold is effective. Regularising DTI by denoising
multiple DWI sequences is not suitable for clinical application, where the E-BM4D method

Table 2 Several statistics of different fibres that tracked using vary DTI regularisation methods, and the
ROIs are respectively hippocampus (noted as ‘Part’) and all the brain (noted as ‘All’), ‘Noisy’ means the DTI
image without regularisation. The performance of each method is scored from 1(low) to 5 (high), which is
boldly highlighted

Methods Number of fibre Length of Final

total(Nf ) long short mean variance longest

Part Noisy 2247/– 25.4%/– 4.1%/– 101/– 1496.6/– 203/– –

E-BM4D 2014/2 22.7%/3 11.9%/3 103.8/2 2499.7/4 229/2 16

E-NLM 2085/1 17.8%/2 10.6%/2 202/1 8200/5 427/1 12

T-G 1110/5 10.3%/5 18.2%/5 71.4/5 1375.6/3 198/5 28

T-NLM 1739/4 13.9%/4 14.3%/4 84.9/4 1702.2/1 215/3 19

Our 1798/3 22.7%/2 9.5%/2 88.9/3 1753/2 206/4 14

All Noisy 13342/– 0.29%/– 52.4%/– 57/– 1993/– 243/– –

E-NLM 13551/2 0.95%/5 61.6%/4 105/1 8563/5 561/1 18

BM4D 15947/1 3.8%/3 56.2%/2 52/2 1789/4 229/2 14

T-G 7765/5 2.5%/4 62.2%/5 38.5/5 1004/1 198/5 21

T-NLM 10161/4 3.9%/2 56.3%/3 48/4 1568/2 215/4 17

Our 10590/3 4.0%/1 55.2%/1 49/3 1629/3 221/3 11
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has seriously distorted the fibre structure of the brain, and the results of E-NLM have
remained more undesired components. Moreover, such methods introduce other undesired
elements to the restored DTI, such as boundary offset. Compared with other DTI regulari-
sation approaches on the tensor manifold, our proposed method has obtained the best DTI
and FA images and tracked fibres. The utilize of statistically invariant factors guarantees
that the boundaries in DTI and FA images are accurate, and the natural properties of tensors
are preserved well when reducing most undesired components. The tracked fibres can well
represent the fibre structure of the brain when reducing noise.

5 Conclusion

We propose an approach for regularising DTI images on the tensor manifold using the geo-
metric information of tensors. All diffusion tensors in the DTI image are transformed into
SPD matrices to make full use of the property of symmetric matrices. The intrinsic property
of diffusion tensors is measured on the tensor manifold, which is constructed as a Rieman-
nian manifold endowed with an affine invariant metric and can more accurately measure
the similarity between diffusion tensors. Then, the transformed DTI image and geometric
information of patches of tensors are used to regularise the degraded DTI image. The invari-
ant statistics (the intrinsic mean tensors and variance) are derived to measure the invariant
geometric information of patches, and the similarity function of our method defined using
these statistics can effectively restore the flat areas and preserve the boundary of the DTI
image. The experiments show that the proposed method can regularise DTI more accurately
than the compared methods, and retains well the geometric characteristics of the tensors.
The NLM filter is indeed time-consuming, which is a drawback of our method. But the
restoration of each diffusion tensor is independent and does not interfere with each other.
Therefore, the process can be potentially accelerated by GPU parallel computing model.
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