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Kapur’s entropy underwater image segmentation based
on multi-strategy Manta ray foraging optimization
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Abstract
Image segmentation is an important part of image processing, which directly affects the
quality of image processing results. Threshold segmentation is the simplest and most
widely used segmentation method. However, the best method to determine the threshold
has always been a NP-hard problem. Therefore, this paper proposes Kapur’s entropy
image segmentation based on multi-strategy manta ray foraging optimization, which has a
good effect in CEC 2017 test function and image segmentation. Manta ray foraging
optimization (MRFO) is a new intelligent optimization algorithm, which has good
searchability, but the local development ability is insufficient, so it can not effectively
find a reliable point. To solve this defect, this paper proposes a multi-strategy learning
manta ray foraging optimization algorithm, referred to as MSMRFO, which uses saltation
learning to speed up the communication within the population and improve the conver-
gence speed, and then puts forward a behavior selection strategy to judge the current
situation of the population, Tent disturbance and Gaussian mutation are used to avoid the
algorithm falling into local optimization and improve the convergence speed of the
algorithm. In the complete CEC 2017 test set, MSMRFO is compared with 8 algorithms,
including FA_CL and ASBSO are variants of new algorithms proposed in recent years.
The results show that MSMRFO has good optimization ability and universality. In nine
underwater image data sets, MSMRFO has better segmentation quality than the other
eight algorithms, and the segmentation indicators under high threshold processing has
better advantages.
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1 Introduction

With the rapid development of computer technology, computer vision has gradually refined and
formed its scientific system, in which image segmentation, as an important branch of the field of
image processing, plays an increasingly important role. Image segmentation refers to the division of
images into disjoint, meaningful sub-regions, the pixels in the same area have a certain correlation,
and the pixels in different areas have certain differences, that is, the process of assigning the same
label to pixels with the same nature in the picture [18]. Threshold segmentation is one of the classical
segmentation techniques, and it is also the simplest, most practical, and efficient method [42]. The
target of threshold segmentation is to select one or more specific thresholds to divide the image into
several different regions. The main purpose of the threshold segmentation method is to obtain the
most appropriate and effective thresholds for image segmentation. Common segmentation methods
are the maximum class method, minimum error method, maximum entropy method, and so on.
Kapur’s entropy is also a popular segmentationmethod in recent years and has been applied tomany
fields by many researchers. This method is an image segmentation technique based on the entropy
threshold transformation, which combines the probability distribution of image histogram in the
process of use. When the threshold value is selected accurately, the entropy will get the maximum
value. Therefore, how to find the best threshold quickly and accurately is the focus of threshold
segmentation. When threshold segmentation is performed by a common exhaustive search, the
computation time is long and the limitations are large.

With the rise and development of swarm intelligence optimization algorithms, it has been
widely used in image segmentation because of its strong global optimization ability and fast
convergence speed, which has played a role in reducing the segmentation time and improving
the accuracy of the segmentation. Akay et al. [3] applied classical particle swarm algorithm and
artificial bee swarm algorithm to multi-threshold image segmentation. Kapur’s entropy and Otsu
were selected as fitness functions to search for thresholds to obtain the best segmentation results.
Mohamed Abd El Aziz [1] uses WOA andMoth-Flame Optimization (MFO) to solve the multi-
threshold image segmentation problem. The results show that the two algorithms have better
segmentation quality than other algorithms. Fayad et al. [15] proposed an image segmentation
algorithm based on ACO. Upadhyay [46] proposed the Crow search algorithm to handle the
multi-threshold segmentation problem, which has a good segmentation effect. Xing [29] applies
TLBO to image segmentation. Zhou Y et al. [58] proposed a moth swarm algorithm for image
segmentation. At the same time, to further obtain the optimal segmentation effect, scholars
improved some algorithms and better handle the threshold segmentation problem. For example,
Wachs-Lopes G et al. [13] proposed an improved Firefly algorithm to deal with the threshold
search problem. It uses Gaussian mutation and neighborhood strategy to improve search
efficiency and global searchability. Wang [47] introduced Levy flight into the salp swarm
algorithm, which showed better pioneering ability and searchability, and made the segmentation
quality better. Yang Z et al. [54] proposed a non-revisiting quantum-behaved PSO (NRQPSO)
algorithm for image segmentation. Xin Lv et al. [49] proposed a multi threshold segmentation
method based on improved sparrow search algorithm (ISSA). ISSA adopts the idea of bird
swarm algorithm to improve the search and development ability of the algorithm and can find the
best threshold quickly and accurately. Bao x et al. [7] proposed a method to solve the multi-
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threshold segmentation problem based on differential Harris Hawks Optimization. The results
show that HHO-DE is an effective color image segmentation tool. Jia et al. [28] proposed a
mutation strategy, Harris Hawks Optimization, to handle the multi-threshold segmentation
problem, and achieved good results in the quality of the segmentation. Zhao D et al. [56]
proposed the horizontal and vertical search ACO, which effectively reduces the probability of the
algorithm falling into the local optimal, has better searchability, and makes the segmentation
result better. Ismail S G et al. [44] proposed a chaotic optimal foraging algorithm for leukocyte
segmentation in microscopic images. Pare S et al. [36] proposed CS and egg-laying radius-
cuckoo search optimizer to solve multilevel threshold problems for color images using different
parametric analysis methods. However, the global optimization capabilities of the above algo-
rithms are still inadequate and can fall into local states in complex datasets. Before optimization,
a large number of experiments are needed to select appropriate algorithm parameters, which
makes the workload and efficiency of these algorithms significantly unbalanced.

Manta ray foraging optimization (MRFO) is a new swarm intelligence optimization algorithm
proposed in 2020. It is stronger than Particle Swarm Optimization (PSO) [31], Genetic Algorithm
(GA) [48], Differential Evolution (DE) [9], Cuckoo Search (CS) [53], Gravitational Search Algo-
rithm (GSA) [40], and Artificial Bee Colony (ABC) [30] in function optimization. It has the
advantages of few parameters, easy to understand, and strong global optimization [57]. So far, it
has been successfully applied to solar energy [14, 23], ECG [24], generator [6, 21], power system
[20], cogeneration energy system [45], geophysical inversion problem [8], directional overcurrent
relay [4], feature selection [17], hybrid energy system [5], and sewage treatment [12]. MRFO has
flexible searchability and strong global searchability, but it lacks local development ability. For
example, the ordered search between individualswill cause greater dependence and lack of initiative,
resulting in a better overall search range, but poor local search performance.

Inspired by the above literature, this paper presents a multi-strategy learning manta ray foraging
optimization (MSMRFO) algorithm. It introduces saltation learning, which enables individuals to
communicate closely and obtain important information in different locations. Then, a behavior
selection strategy is presented, which introduces Tent disturbance andGauss mutation to prevent the
convergence shortage and local optimum in the later stage. This strategy makes an important
judgment on the current situation and effectively improves the global optimization ability of the
algorithm. The specific workload and contributions of this article are as follows:

(1) Firstly, Saltation learning is introduced to speed up the information exchange of the
population and improve the search efficiency of the algorithm.

(2) A behavioral selection strategy is designed, which uses Tent disturbance and Gauss
mutation to improve Manta ray convergence and trap into local optimum.

(3) In the CEC 2017 test set, MSMRFO is compared with 8 algorithms, among which the
firefly algorithm with courtship learning (FA_CL) [37] and ASBSO [55] proposed in
recent years are also compared. The results verify that the algorithm has good searching
ability and universality.

(4) MSMRFO is used to optimize the threshold segmentation. It is also the first time that
MRFO performs threshold segmentation in the underwater image. Nine underwater
image datasets are used to validate the optimal segmentation from different thresholds.
The result shows that MSMRFO has better segmentation quality than other algorithms.

The main part of the paper is structured as follows: Section 2 mainly introduces the background
knowledge, including Kapur’s entropy and basic MRFO. Section 3 introduces and analyses the
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content and process of MSMRFO. Section 4 is to test and analyze the algorithms in CEC 2017.
Section 5 describes the process of Kapur’s entropy threshold segmentation based on MSMRFO.
Section 6 introduces and analyses the threshold segmentation experiments of each algorithm. The
seventh section summarizes the full text, and the last section discusses the future work.

2 Background

2.1 Multi-threshold segmentation based on Kapur entropy

Kapur’s entropy is one of the early methods applied to single-threshold image segmentation,
and it has been applied to the field of multi-threshold segmentation by many scholars. This
segmentation method is a more effective image segmentation technique based on the entropy
threshold transformation method, which combines the probability distribution of the image
histogram. When the optimal threshold value is correctly selected and allocated, the maximum
entropy will go. The ultimate goal of this method is to search for the optimal threshold value,
which is the maximum direct value.

Assume that K is the gray level of 0-K-1 for a given picture, N is the total number of pixels,
and f(i) is the frequency of the i-th intensity level.

N ¼ f 0ð Þ þ f 1ð Þ þ⋯þ f K−1ð Þ ð1Þ
The probability of the i-th strength level can be expressed as:

pi ¼ f ið Þ=N ð2Þ

Assume there are G thresholds: {th1, th2, ⋯, thG}, where 1 ≤ G ≤ K − 1. Use these thresholds
to divide a given picture into G + 1 classes, each represented by the following symbols:

Class 0ð Þ ¼ 0; 1; 2;⋯; th1−1f g
Class 1ð Þ ¼ th1; th1 þ 1;⋯; th2−1f g

⋮
Class Gþ 1ð Þ ¼ thG−1; thG−1 þ 1;⋯; thGf g

ð3Þ

The combination entropy is obtained by calculating the sum of each type of entropy. Entropy-
based methods are calculated as follows:

E0 ¼ − ∑
i¼th1−1

i¼0

pi
w0

ln
pi
w0

;w0 ¼ ∑
i¼th1−1

i¼0
pi

E1 ¼ −∑i¼th2−1
i¼th1

pi
w1

ln
pi
w1

;w1 ¼ ∑i¼th2−1
i¼th1 pi

⋮
EG ¼ − ∑

i¼K−1

i¼thG

pi
wG

ln
pi
wG

;wG ¼ ∑
i¼K−1

i¼thG
pi

ð4Þ

Where Ei represents the entropy of class i. The final current function is as follows:

F thð Þ ¼ E0 þ E1 þ⋯þ EG ð5Þ
For the best threshold, the higher the F(th) value, the better.
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2.2 Manta ray foraging optimization

Inspired by the foraging behavior of manta rays, the algorithm is divided into three stages:
chain foraging, spiral foraging, and somersault foraging.

2.2.1 Chain foraging

When manta rays are foraging, the higher the food concentration at a certain location, the better the
location. Although the specific location of the best food source is not known, assuming that the
location with the highest known food concentration is the best food source, manta rays will observe
and swim to the best food source first. During swimming, the first manta ray moves to the best food
source, while other manta rays move to the best food source and the manta ray in front of it at the
same time, forming a foraging chain from head to tail. That is, in each iteration, each manta ray
updates its position according to the best food source position found so far and themanta ray in front
of it. The mathematical model of the chain foraging process can be expressed as follows:

xdi t þ 1ð Þ ¼ xdi tð Þ þ r � xdbest tð Þ−xdi tð Þ� �þ α � xdbest tð Þ−xdi tð Þ� �
i ¼ 1

xdi tð Þ þ r � xdi−1 tð Þ−xdi tð Þ� �þ α � xdbest tð Þ−xdi tð Þ� �
i ¼ 2; 3;…;N

�
ð6Þ

In eq. (6), xdi tð Þ represents the d-dimensional information of the location of the i-th manta ray

in the t-generation, and r is a random number subject to [0,1] uniform distribution. α ¼ 2⋅r⋅ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijlog rð Þjp
is the weight coefficient, xdbest tð Þ is the d-dimensional information of the best

location found at present. The manta ray in position i depends on the manta ray in position
i-1 and the best food location currently found. The update of the first manta ray depends on the
optimal location.

2.2.2 Cyclone foraging

When a manta ray finds a high-quality food source in a certain space, each manta ray in the
manta ray population will connect the head to the tail and spiral to the food source. During the
aggregation process, the movement mode of the manta ray population changed from simple
chain movement to spiral movement around the optimal food source. The cyclone foraging
process can be represented by the following mathematical model:

t þ 1ð Þ ¼ xdbest tð Þ þ r � xdbest tð Þ−xdi tð Þ� �þ β � xdbest tð Þ−xdi tð Þ� �
i ¼ 1

xdbest tð Þ þ r � xdi−1 tð Þ−xdi tð Þ� �þ β � xdbest tð Þ−xdi tð Þ� �
i ¼ 2; 3;…;N

�
ð7Þ

Among them, β ¼ 2e
r1 T−tþ1ð Þ

T � sin 2πr1ð Þ represents the weight coefficient of helical motion, t is
the maximum number of iterations, r1 is the rotation factor and obeys the uniform random
number of [0,1]. In addition, to improve the efficiency of group foraging, MRFO randomly
generates a new location in the optimization process and then performs a spiral search at that
location. Its mathematical model is:

xdi t þ 1ð Þ ¼ xdrand tð Þ þ r � xdbest tð Þ−xdi tð Þ� �þ β � xdbest tð Þ−xdi tð Þ� �
i ¼ 1

xdrand tð Þ þ r � xdi−1 tð Þ−xdi tð Þ� �þ β � xdbest tð Þ−xdi tð Þ� �
i ¼ 2; 3;…;N

�
ð8Þ

xdrand tð Þ represents a new position in space.
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2.2.3 Somersault foraging

When a manta ray finds a food source, it regards the food source as a fulcrum, rotates around the
fulcrum, and somersaults to a new position to attract the attention of other manta rays. For the manta
ray population, somersault foraging is a random, local and frequent action, which can improve the
foraging efficiency of the manta ray population. The mathematical model is as follows:

x ji t þ 1ð Þ ¼ x ji tð Þ þ S r1x
j
best tð Þ−r2x ji tð Þ� �

i ¼ 1;…;N ð9Þ
S is the somersault factor, which determines the flip distance. r2 and r3 are two random
numbers that are uniformly distributed [0,1]. As S values vary, individual bats somersault to
locations in search space that are symmetrical to the optimal solution at their current location.

3 Manta ray foraging optimization based on fusion mutation
and learning

3.1 Algorithm analysis

From these equations, it can be seen that more communication between individuals and
orderly work can improve the searchability of the algorithm and perform a wide search.
However, the lack of initiative among individuals in the population limits their ability to
develop. On the other hand, updates within the population are related to the best location.
When encountering high-bit complex problems, the change of the optimal position is similar,
which results in less change in the two updates before and after the algorithm, and limits the
algorithm’s optimization ability. Therefore, a flexible change strategy is needed to improve the
development ability and local convergence effect of the algorithm.

3.2 Related work

At present, Scholars are also constantly exploring new technologies to make MRFO play a
better optimization ability. For example, Mohamed Abd Elaziz [2] will combine fractional
calculus with MRFO to provide the direction of manta ray movement. CEC 2017 has verified
the feasibility of the algorithm and applied it to image segmentation with good results.
Mohamed H. Hassan [19] combines a gradient optimizer with MRFO to reduce the probability
that the algorithm will fall into a local optimum and has been successfully applied in single-
and multi-objective economic emission scheduling. Haitao Xu [51] uses adaptive weighting
and chaos to improve MRFO to efficiently handle thermodynamic problems. Essam H.
Houssein [25] uses reverse learning to initialize the population, enhances the diversity of the
population, and applies it to threshold image segmentation problems with good segmentation
quality. Bibekananda Jena [27] adds an attack capability to MRFO, which allows it to jump
out of local optimization and find a globally optimal solution. It is then applied to the image
segmentation problem of 3D Tsallis. Mihailo Micev [33] fuses SA with MRFO and applies it
to the PID controller, which is better than other algorithms. In addition, Serdar Ekinci [11] uses
a reverse learning and fusion simulated annealing algorithm to improve the convergence speed
of the algorithm. It has good control performance when applied to the FOPID controller.

Although the above work has achieved some results, there are still some problems: Firstly,
simple fusion can not show good results in different optimization environments. Secondly,
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adaptive strategy and reverse learning still have drawbacks in the face of high-dimensional
complex problems, and can not jump out of local optimum later.

3.3 Proposed algorithm

3.3.1 Saltation learning (SL)

In the process of searching for the MRFO, the individuals are connected and the location
update is only related to the optimal location, which results in a lack of learning ability and
monotonous searching methods. Therefore, an individual learning behavior needs to be
enhanced to improve the searchability of the algorithm in different environments.

Saltation learning is a new learning strategy proposed by Penghu et al. [38]. It can learn in
different dimensions. It calculates candidate solutions through the best location, the worst location,
and the randomly selected location, which increases the population diversity and has good
searchability. This reduces the chance of falling into a local optimum. SL is described as follows:

xtþ1
i; j ¼ xtbest;k þ r � xta;l−x

t
worst;n

� �
ð10Þ

In eq. (10), xtbest and xtworst represents the best and worst position of the t iterations, k, l, n are
three different integers selected from [1, D]. D is the dimension, r is the random number of
[−1,1], exploring positions in different directions by changing the sign. a is a random integer of
[1,P], and P is the population number. As shown in Fig. 1, assuming a dimension of 3,
individuals from three different dimensions guide the selection of the next location, which
accelerates information exchange within the population and improves search efficiency.

3.3.2 Gaussian mutation (GM)

A search chain is formed between individuals of the algorithm, which can perform a good
search, but it is small on local development problems. Individuals are lazy and cannot search
freely. Gauss mutation can solve this problem well and perform a good local search.

The Gauss variance comes from the Gauss distribution. Specifically, in the process of
performing the variance, the original parameter value is replaced by a random number that fits
the normal distribution of the mean μ and variance σ2 [16, 22]. The variance equation is:

mutaion xð Þ ¼ x 1þ N 0; 1ð Þð Þ ð11Þ
In the eq. (11), x is the original parameter value, and N (0,1) indicates the expected value is 0.
A random number with a standard deviation of 1; mutaion(x) represents the value after the
Gaussian mutation.

Fig. 1 SL Diagram
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From the characteristics of normal distribution, it can be seen that the Gaussian distribution
focuses on the local scope of the individual, carries out an efficient search, and improves the
local search ability of the algorithm. For function problems with many local extremum points,
it helps the algorithm to find global minimum points efficiently and accurately. it also
improves the robustness of the algorithm.

3.3.3 Tent disturbance (TD)

Later individual manta rays are prone to fall into the local optimum, so chaotic disturbance is
needed to make the algorithm jump out of the local optimum and improve the global
searchability and optimization accuracy of the algorithm.

Chaos represents a nonlinear phenomenon in nature, so chaotic variables have the characteris-
tics of randomness, ergodicity, and regularity, which can effectively improve the search efficiency
of the algorithm. At present, the sequence generated by Tent mapping is more uniform than that
generated by Logistic mapping. Therefore, using Tent mapping can effectively enable individuals
to find quality positions [50]. The mathematical expression of Tent mapping is as follows:

xnþ1 ¼
2xn; 0≤xn≤

1

2

2 1−xnð Þ; 1
2
≤xn≤1

8><
>: ð12Þ

The Tent mapping is expressed as follows after Bernoulli shift transformation:

xnþ1 ¼ 2xnð Þmod 1 ð13Þ
Therefore, the steps of introducing Tent disturbance are as follows:

Step 1, generate chaotic variable x according to xn + 1;
Step 2, apply chaotic variables to the solution of the problem to be solved:

X d ¼ mind þ maxd−mindð Þ � xnþ1 ð14Þ
mind and maxd are the minimum and maximum values of the d-th dimension x, respectively.

Step 3, make a chaotic disturbance to the individual according to the following equation:

newX ; ¼ X ; þ newXð Þ=2 ð15Þ
In the equation, X, represents the individual requiring chaotic perturbation, newX is the chaotic
variable generated, and newX, is the individual after chaotic perturbation.

3.3.4 Selection of mutation and disturbance

First, to minimize the objective function, assume that Fave is the average fitness value within
the population. If the fitness value of an individual is less than Fave, then clustering occurs.
Gauss mutation makes these individuals slightly dispersed and improves the local search
ability of the algorithm. Conversely, this means that individuals diverge, their current position
is unreliable and disturbances are needed to improve their quality. Individuals after mutation
and disturbance will change their position if they are better than those before, otherwise, the
position will not change. The specific behavior selection (BC) equation is as follows:
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xdi tð Þ ¼ GM ; if Fi < Fave

TD; if Fi≥ Fave

�
ð16Þ

xdi tð Þ represents the updated individual, Fi represents the fitness value of the i-th individual.

3.3.5 Fusion multi-strategy learning manta ray foraging optimization

To improve the local development and learning ability of the manta ray foraging optimization, this
paper proposes a multi-strategy learning manta ray foraging optimization algorithm. The algorithm
uses saltation learning to speed up the internal communication of the population and improve the
learning ability of the algorithm to adapt to different environments. Then a behavior selection
strategy is presented, which uses Tent disturbance and Gauss mutation to balance the global search
and local development capabilities of the algorithm by comparing the current and average fitness
values, thus improving the quality of each optimal solution. The algorithm flow is as follows:
Algorithm: The framework of the MSMRFO.

Input
M Maximum number of iterations
N Population 
Rand: Uniform random number of (0,1)
Output Xbest, fg
Initialize population
t=1;
While(t<M)
Execute SL according to equation (10)

For i=1 to N do
If rand<0.5 then  // Cyclone foraging

If t/M<rand then
Update the position of the individual according to equation (8)
Else
Update the position of the individual according to equation (7)
End if

Else  // Chain foraging
Update the position of the individual according to equation (6)
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3.3.6 Time complexity analysis

Time complexity is an important index to measure an algorithm, so it is necessary to balance
the optimization ability and time complexity of the algorithm in order to improve it effectively.
The basic MRFO consists of only three stages: chain foraging, spiral foraging, and somersault
foraging, in which chain foraging and spiral foraging are in the same cycle. Set the population
number to N, the maximum number of iterations to T, and the dimension to D, so the time
complexity of MRFO can be summarized as follows:

O MRFOð Þ ¼ O T O cyclone foraging þ chain foragingð Þ þ O somersault foragingð Þð Þð Þ
¼ O T NDþ NDð Þð Þ ¼ O TNDð Þ ð17Þ

MSMRFO can be summarized as:

O MSMRFOð Þ ¼ OðTðO cyclone foraging þ chain foragingð Þ þ O SLð Þ þ O somersault foragingð Þ
þO BCð Þ þ O somersault foragingð ÞÞÞ ¼ O TNDð Þ

ð18Þ

Therefore, it can be seen that the time complexity of MSMRFO has not changed radically.

3.3.7 Strategy effectiveness test

In order to test whether MSMRFO can really improve the optimization mechanism of the
original algorithm, this paper takes sphere function as an example, and tests on MRFO and
MSMRFO respectively. The population number is 50, the maximum number of iterations is 5,
the theoretical optimal value of sphere function is 0, and the location is x∗ = (0, …, 0). The
final individual distribution of the two algorithms is given as shown in Fig. 2.

As shown in Fig. 2, it is clear that MRFO does not find an optimal value and is in a
dispersed state, while MSMRFO has been clustered near the theoretical optimal value.
Therefore, MSMRFO has a very fast convergence rate and a high accuracy. It can be seen
that the introduction of multiple strategies significantly improves the optimization methods of
the MRFO algorithm, speeds up the population exchange speed, and improves the quality of
each solution obtained.
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Fig. 2 Algorithmic Personal Distribution Map (a)MRFO (b)MSMRFO
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4 Performance testing

To verify the optimization capability of the MSMRFO algorithm, this paper tests each
algorithm on the CEC 2017 test set, and compares eight algorithms with MSMRFO. The
population number is 100, the number of assessments is 100 × D, and D is the dimension. To
better reflect the effectiveness of the MSMRFO algorithm, this paper compares it with PSO,
whale optimization algorithm (WOA) [34], sparrow search algorithm (SSA) [52], naked mole-
rat algorithm (NMRA) [43], MRFO, Grey Wolf Optimizer (GWO) [35], and compares the two
algorithms proposed in recent years, FACL and ASBSO, which have a good performance on
the test set of CEC. PSO, GWO, andWOA are classical algorithms. SSA, MRFO, and NMRA
are new swarm intelligence algorithms proposed in recent years. Because the parameters of
some algorithms do not need special declaration and internal parameters do not need to be set,
the parameters of some algorithms are shown in Table 1 In this paper, the Wilcoxon rank test is
used to show whether there is a significant difference between each algorithm, which is tested
at 5% significant level. “+” means that MSMRFO has more optimization capabilities than
other algorithms, “-” conversely, “=“means that the optimization performance between the two
algorithms is equal, and “N/A” means that the values of the two algorithms are the same and
cannot be compared. Specific test results are shown in Tables 2 and 3 in the Appendix.

The results of 30 operations of each algorithm are counted, and the five indexes of each
algorithm, namely, optimal value, worst value, median, average value, and standard deviation,
are calculated. In addition, the rank of each algorithm in each function is calculated, and the
average rank is calculated to measure the universality of the algorithm. In order to clearly see
the stability and optimization interval of each algorithm, a box diagram of 30 times the results
of these functions in F3–6, F11–14, and F22–25 is given as shown in Fig. 3. These functions
represent different types.

From Tables 2 and 3 and Fig. 3, we can see that MSMRFO has a great advantage in
searchability and stability, especially in functions that show better searchability. Although
some functions do not show better performance indicators, most of them have shown better
search performance. Based on the fact that there is no free lunch theorem in the world, it is
impossible to find an algorithm that performs well on any optimization problem, so MSMRFO
is generally applicable. From the test results and average ranking, the average ranking of
MSMRFO in the two tables is 1.34 and 1.7241 respectively. NMRA, PSO, and MRFO are
second only to MSMRFO. And are the lowest ranking. MSMRFO has better advantages and is
more perfect than the algorithm proposed in recent years. From the box diagram, the
optimization effect of MSMRFO in each function is relatively stable, and the accuracy of
the solution is also high. Generally speaking, the saltation learning and behavior selection
strategy introduced by MSMRFO effectively avoids the phenomenon that the algorithm falls
into local optimum and greatly improves the searchability of the algorithm.

Table 1 Parameters of each algorithm

Algorithm SSA GWO PSO ASBSO FA-CL

Parameter DS= amax=2 c1=c2=1.429 K=5 α=0.01
0.2×N amin=0 w=0.729 βmin=0.2
ST= β=1
0.6×N γ=1
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5 Threshold segmentation process based on MSMRFO

Assuming a k-dimensional threshold segmentation of the image, the solution vector is T = [t1,
t2, ⋯, tk], which takes a positive integer and satisfies 0 < t1 < t2 < ⋯ < tn < L. Multi-
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threshold segmentation is the process of finding a set of thresholds [t1, t2, ⋯, tk] (K > 0) in
the image f(x, y) to be segmented according to a certain criterion and dividing it into K + 1
parts. In this paper, Kapur’s entropy is used as the segmentation criterion, MSMRFO is used to
optimize the selection among L gray levels in solution space, and the maximization of eq. (1) is
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Fig. 3 (continued)
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used as the objective function to solve. The multi-threshold segmentation process based on
MSMRFO is shown in Fig. 4, and the detailed process is as follows:

Step1, Read the image to be split (grayscale image);
Step2, Get gray histogram of read-in image;
Step3, Initialization of MSMRFO parameters and setting of segmentation threshold K;
Step4, Initialization of the manta ray population. The individual position of a manta ray
represents a threshold vector for image segmentation, and the component value of each
vector ranges from [0,255] to an integer;
Step5, Perform MSMRFO;
Step6, if the algorithm reaches the preset end condition, the algorithm finishes the
optimization and returns the best fitness of the bat location information. That is, the
optimal threshold segmentation, otherwise jump to step 5.
Step7, Segment gray-scale images by the optimal threshold vector obtained, and output it.

6 Threshold segmentation experiment

6.1 Evaluating indicator

It is impossible to see the difference between each algorithm in image segmentation by human
eyes. Therefore, three commonly used image segmentation indicators, PSNR, SSIM, and
FSIM, are selected to measure the quality of each algorithm.

Start

Read the image to be

segmented

Read in the gray histogram of the

image

Algorithm parameter

initialization

Random initialization of

populations

Execute MSMRFO

algorithm

End of

The optimal threshold is used for segmentation

Output the segmented

image

End

Yes

No

Fig. 4 MSMRFO-based threshold segmentation flowchart
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PSNR is mainly used to measure the difference between the segmented image and the
original image. The equation is as follows:

PSNR ¼ 20 � log10
255

RMSE

� 	
ð19Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑M

i¼1∑
Q
j¼1 I i; jð Þ−Seg i; jð Þð Þ2

M � Q

s
ð20Þ

In the equation, RMSE represents the root mean square error of the pixel; M × Q represents
the size of the image; I(i, j) represents the pixel gray value of the original image; Seg(i, j)
represents the pixel gray value of the segmented image. The larger the PSNR value, the better
the image segmentation quality.

SSIM is used to measure the similarity between the original image and the segmented
image. The larger the SSIM, the better the segmentation results. SSIM is defined as:

SSIM ¼
2μIμseg þ c1

� �
2σI ;seg þ c2
� �

μ2
I þ μ2

seg þ c1
� �

σ2
I þ σ2

seg þ c2
� � ð21Þ

In the equation, μI and μseg represent the average value of the original image and the
segmented image. σI and σseg represent the standard deviation between the original image
and the segmented image; σI, seg represents the covariance between the original image and the
segmented image; c1, c2 are constants used to ensure stability.

FSIM is a measure of feature similarity between the original image and the segmentation
quality, used to evaluate local structure and provide contrast information. The value range of
FSIM is [0,1], and the closer the value is to 1, the better the result is. FSIM is defined as
follows:

FSIM ¼ ∑l∈ΩSL Xð ÞPCm Xð Þ
∑l∈ΩPCm Xð Þ ð22Þ

SL Xð Þ ¼ SPC Xð ÞSG Xð Þ ð23Þ

SPC Xð Þ ¼ 2PC1 Xð ÞPC2 Xð Þ þ T1

PC2
1 Xð ÞPC2

2 Xð Þ þ T1
ð24Þ

SG Xð Þ ¼ 2G1 Xð ÞG2 Xð Þ þ T 2

G2
1 Xð ÞG2

2 Xð Þ þ T2
ð25Þ

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

x þ G2
y

q
ð26Þ

PC Xð Þ ¼ E Xð Þ
εþ ∑mAn Xð Þð Þ ð27Þ
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In the above equation, Ω is all the pixel areas of the original image; SL(X) is the similarity
score; PCm(X) is a measure of phase consistency; T1 and T2 are constant; G is a gradient
descent; E(X) is the size of the response vector at position X and the scale is n; ε is a very small
number; An(X) is the local size at scale n.

6.2 Experiment and analysis

To verify the effectiveness and feasibility of the MSMRFO algorithm, nine underwater image
test sets [26] are selected in this paper. The underwater environment is complex and has a lot of
debris, so the optimum performance of an algorithm can be tested most. At the same time, in
order to prove that MSMRFO is competitive, it is compared with ten algorithms: MRFO, PSO,
WOA, Teaching Learning Based Optimization (TLBO) [39], SSA, ISSA, GWO, BSA [32],
CPSOGSA [41], HHO-DE. These ten algorithms have been applied to threshold image
segmentation by researchers, so they are very persuasive. Each algorithm has experimented
with 4 thresholds from 2 to 5. Each algorithm has a population of 30 and a maximum number
of iterations of 100. A stop parameter of 10 is set in the experiment. If the solution found 10
times is the same in the optimization, it is assumed that the convergence has been completed.
The significance of this is to reflect the value of the algorithm and find an algorithm with
higher search efficiency. The experimental environment is Window10 64bit, the software is
matlab2019b, the memory is 16GB, and the processor is Intel(R) Core(TM) i5-10200H CPU
@ 2.40GHz. The MSMRFO algorithm segmentation image is shown in Fig. 5. The results of
each algorithm are shown in Tables 4, 5, 6 and 7 in the Appendix. If MSMRFO has the best
performance Indicators, the font will be bold. Among them, Table 4 shows the average fitness
value (F(th)) of each algorithm to verify the optimization ability of the algorithm, and Tables 5,
6 and 7 show the PSNR, SSIM and FSIM performance indicators of each algorithm to verify
the segmentation quality of the algorithm, respectively.

From Table 4, it can be seen that the number of optimal indicators of MSMRFO is higher
relative to other algorithms, which shows the stronger optimization ability of MSMRFO, on
the other hand, the indicators are not optimal in the case that its values are close to other
optimal indicators want. Taken together, MSMRFO is effective in optimizing Kapur’s Entropy
and has sufficient generalizability.

It can see from Fig. 5, the image after MSMRFO segmentation becomes clearer with the
increase of the threshold value, so MSMRFO has a good application value in threshold
segmentation. From Table 5, 6 and 7, we can see that there are more optimal indicators for
MSMRFO. In Test 05, the PSNR of each threshold segmentation is better than other
algorithms. In Test 08, the SSIM indicators of each threshold segmentation is the best. In
the individual images in Table 7, the FSIM indicators is optimal for MSMRFO with a
threshold of 3 or more categories. Other algorithms have optimal criteria, but they are small
in number and have better segmentation quality only at a certain threshold. Overall, MSMRFO
has better segmentation quality at high thresholds and generally worse at low thresholds.

In order to better show the quality of MSMRFO segmentation under each threshold, the
Friedman test [10] is applied to three performance indicators of each threshold, the ranking of
each algorithm under different thresholds is calculated, and the final average rank is calculated
to evaluate the segmentation effect of an algorithm. The test results are shown in Tables 8 and
9 in the Appendix. Table 8 shows the ranking results of MSMRFO and classical algorithms,
and Table 9 shows the ranking of MSMRFO and the new algorithms and variant algorithms
proposed in recent years. Similarly, if MSMRFO ranks best, its value will be bolded.
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Fig. 5 Threshold segmentation image based on MSMRFO

21841Multimedia Tools and Applications (2023) 82:21825–21863



It can be seen from Tables 8 and 9 that MSMRFO has a large number of optimal values,
indicating that MSMRFO has a better optimization effect than the classical algorithm or
compared with the algorithm proposed in recent years. At the same time, it also shows that
MSMRFO has good universality in threshold segmentation and can show good application
value in underwater images.

7 Conclusion

To better determine the optimal threshold in threshold segmentation, a Kapur’s entropy image
segmentation based on multi-strategy manta ray foraging optimization is presented. At the
same time, a multi-strategy learning manta ray foraging optimization algorithm is proposed to
improve the local development capability of the original algorithm and the probability of
falling into the local optimum. The algorithm uses saltation learning to communicate among
individuals, which accelerates the convergence speed of the algorithm. A new selection
behavior strategy is proposed to make a better judgment on the current optimization stage,
to prevent the algorithm from falling into local optimization and insufficient convergence, and
to improve the global search ability of the algorithm. Tests on CEC 2017 show that the
algorithm has good optimization ability and strong universality. Finally, nine underwater
image data sets are segmented by MSMRFO. According to the segmented indicators,
MSMRFO has better advantages and better quality in high threshold segmentation. From
the Friedman test, MSMRFO ranked the highest, indicating that MSMRFO is generally good
at segmentation in nine datasets.

8 Future work

Firstly, saltation learning has some randomness, so the final result is not maintained at a good
level. Secondly, in some functions, no theoretical optimal value is found. At the same time, the
fitness value does not yet achieve a certain advantage when optimizing the threshold. Thirdly,
in many image data collections, it is not guaranteed that the three evaluation indicators in the
same segmented image are optimal. For example, in Test 08, PSNR is not optimal with a
threshold of 3, but the values of the other two indicators are the best. Finally, poor segmen-
tation quality is common in low threshold processing. For example, in Test 02, none of the
three MSMRFO indicators with a threshold of 3 was optimal. Therefore, The next step is to
balance the optimization ability of the algorithm at high and low thresholds. In the aspect of
image segmentation, we need to balance the quality of one image to ensure that the three
indicators of image quality obtained at each time are excellent.
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Appendix

Table 2 Test results of each algorithm in CEC2017

F index PSO [31] MRFO [57] FA_CL [37] ASBSO [55] MSMRFO

F1(X) Best 1.00E+02 1.00E+02 8.21E+05 1.01E+02 1.00E+02
Worst 1.21E+04 1.76E+04 1.85E+06 1.56E+05 1.12E+04
Median 3.08E+03 1.44E+03 1.20E+06 2.08E+03 1.23E+03
Mean 3.45E+03 3.78E+03 1.28E+06 8.26E+03 2.96E+03
Std 3.27E+03 5.21E+03 2.96E+05 2.82E+04 3.66E+03
P 4.73E-01(=) 7.73E-01(=) 3.02E-11(+) 3.02E-11(+)
rank 2 3 5 4 1

F3(X) Best 3.00E+02 3.00E+02 8.98E+02 3.04E+02 3.00E+02
Worst 3.00E+02 3.00E+02 5.10E+03 1.21E+03 3.00E+02
Median 3.00E+02 3.00E+02 1.91E+03 3.97E+02 3.00E+02
Mean 3.00E+02 3.00E+02 2.25E+03 5.01E+02 3.00E+02
Std 4.62E-05 6.45E-07 2.17E+01 2.36E+02 0
P 1.43E-08(+) 4.64E-03(+) 3.02E-11(+) 3.02E-11(+)
rank 3 2 5 4 1

F4(X) Best 4.00E+02 4.00E+02 4.68E+02 4.04E+02 4.00E+02
Worst 4.75E+02 4.72E+02 5.32E+02 5.13E+02 4.05E+02
Median 4.68E+02 4.04E+02 5.15E+02 4.73E+02 4.00E+02
Mean 4.45E+02 4.10E+02 5.06E+02 4.77E+02 4.02E+02
Std 3.19E+01 1.97E+01 2.17E+01 2.60E+01 1.97E+00
P 4.79E-07(+) 4.10E-01(+) 2.63E-11(+) 2.63E-11(+)
rank 3 2 5 4 1

F5(X) Best 6.24E+02 6.00E+02 6.36E+02 6.34E+02 5.61E+02
Worst 7.04E+02 7.75E+02 7.33E+02 7.37E+02 7.59E+02
Median 6.57E+02 6.51E+02 6.91E+02 6.96E+02 6.26E+02
Mean 6.58E+02 6.58E+02 6.84E+02 6.91E+02 6.32E+02
Std 2.12E+01 4.37E+01 2.59E+01 2.93E+01 4.68E+01
P 2.62E-03(+) 2.51E-02(+) 7.74E-06(+) 3.02E-11(+)
rank 3 2 4 5 1

F6(X) Best 6.21E+02 6.03E+02 6.28E+02 6.41E+02 6.00E+02
Worst 6.53E+02 6.56E+02 6.57E+02 6.67E+02 6.05E+02
Median 6.39E+02 6.16E+02 6.46E+02 6.51E+02 6.02E+02
Mean 6.39E+02 6.19E+02 6.45E+02 6.52E+02 6.02E+02
Std 7.10E+00 1.42E+01 9.34E+01 7.33E+00 1.31E+00
P 2.72E-11(+) 1.96E-10(+) 2.72E-11(+) 2.72E-11(+)
rank 3 2 4 5 1

F7(X) Best 8.35E+02 8.18E+02 8.86E+02 1.05E+03 7.71E+02
Worst 1.02E+03 1.19E+03 1.26E+03 1.40E+03 8.96E+02
Median 9.13E+02 9.64E+02 1.07E+03 1.17E+03 8.26E+02
Mean 9.18E+02 9.70E+02 1.07E+03 1.19E+03 8.37E+02
Std 4.15E+01 1.02E+02 9.34E+01 9.49E+01 2.47E+01
P 1.00E-09(+) 7.34E-09(+) 3.42E-11(+) 2.80E-11(+)
rank 2 3 4 5 1

F8(X) Best 8.66E+02 8.71E+02 8.74E+02 8.89E+02 8.65E+02
Worst 9.72E+02 9.91E+02 9.80E+02 9.80E+02 9.79E+02
Median 9.12E+02 9.37E+02 9.26E+02 9.28E+02 9.15E+02
Mean 9.12E+02 9.32E+02 9.23E+02 9.32E+02 9.19E+02
Std 2.38E+01 2.83E+01 2.42E+01 2.11E+01 2.56E+01
P 8.68E-03(−) 7.17E-01(+) 2.77E-01(=) 3.02E-11(+)
rank 1 5 3 4 2

F9(X) Best 2.65E+03 1.51E+03 2.27E+03 2.73E+03 9.07E+02
Worst 4.58E+03 5.89E+03 6.12E+03 5.26E+03 3.17E+03
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Table 2 (continued)

F index PSO [31] MRFO [57] FA_CL [37] ASBSO [55] MSMRFO

Median 3.27E+03 3.14E+03 4.53E+03 3.95E+03 1.47E+03
Mean 3.36E+03 3.17E+03 4.31E+03 3.91E+03 1.58E+03
Std 5.22E+02 1.07E+03 6.15E+02 6.06E+02 5.73E+02
P 3.10E-10(+) 2.79E-08(+) 1.18E-10(+) 2.95E-11(+)
rank 3 2 5 4 1

F10(X) Best 3.30E+03 3.22E+03 3.61E+03 4.67E+03 2.64E+03
Worst 6.11E+03 5.78E+03 6.19E+03 6.38E+03 5.76E+03
Median 4.71E+03 4.44E+03 5.19E+03 5.32E+03 4.49E+03
Mean 4.81E+03 4.54E+03 5.03E+03 5.42E+03 4.48E+03
Std 6.95E+02 6.22E+02 6.15E+02 4.91E+02 7.65E+02
P 1.09E-01(=) 8.77E-01(=) 4.86E-03(+) 3.02E-11(+)
rank 3 2 4 5 1

F11(X) Best 1.16E+03 1.12E+03 1.16E+03 1.16E+03 1.12E+03
Worst 1.25E+03 1.25E+03 1.32E+03 1.33E+03 1.17E+03
Median 1.19E+03 1.18E+03 1.22E+03 1.21E+03 1.16E+03
Mean 1.20E+03 1.18E+03 1.23E+03 1.22E+03 1.15E+03
Std 2.11E+01 3.44E+01 4.49E+01 4.37E+01 1.21E+01
P 3.06E-11(+) 7.12E-04(+) 1.23E-10(+) 2.26E-11(+)
rank 3 2 5 4 1

F12(X) Best 5.48E+03 7.64E+03 1.29E+06 4.76E+05 1.02E+04
Worst 4.48E+04 8.34E+04 9.36E+06 4.25E+06 5.54E+04
Median 2.02E+04 2.51E+04 3.59E+06 1.46E+06 3.61E+04
Mean 2.13E+04 3.27E+04 4.18E+06 1.56E+06 3.27E+04
Std 1.02E+04 2.01E+04 3.20E+04 7.72E+05 1.33E+04
P 1.06E-03(−) 6.31E-01(=) 3.02E-11(+) 3.02E-11(+)
rank 1 2 5 4 3

F13(X) Best 1.84E+03 1.36E+03 5.41E+04 1.62E+04 1.32E+03
Worst 6.09E+04 6.23E+04 2.11E+05 1.17E+05 3.91E+04
Median 1.10E+04 1.31E+04 1.19E+05 5.09E+04 7.12E+03
Mean 1.80E+04 2.30E+04 1.13E+05 5.66E+04 1.11E+04
Std 1.71E+04 2.21E+04 3.20E+04 2.86E+04 1.13E+04
P 5.55E-02(=) 4.36E-02(+) 3.02E-11(+) 3.02E-11(+)
rank 2 3 5 4 1

F14(X) Best 1.66E+03 1.50E+03 3.41E+03 1.79E+03 1.56E+03
Worst 1.70E+04 5.80E+03 5.26E+04 1.98E+04 1.26E+04
Median 3.52E+03 1.91E+03 2.86E+04 4.57E+03 2.59E+03
Mean 6.33E+03 2.38E+03 2.54E+04 5.92E+03 3.73E+03
Std 4.85E+03 1.06E+03 1.32E+04 4.41E+03 2.77E+03
P 3.51E-02(+) 8.31E-03(−) 2.87E-10(+) 3.02E-11(+)
rank 3 1 5 4 2

F15(X) Best 1.69E+03 1.52E+03 1.94E+04 1.21E+04 1.53E+03
Worst 4.38E+04 2.88E+04 6.21E+04 8.21E+04 8.88E+03
Median 5.70E+03 5.61E+03 4.36E+04 2.29E+04 1.80E+03
Mean 9.54E+03 6.94E+03 4.08E+04 3.02E+04 2.71E+03
Std 1.04E+04 6.19E+03 3.21E+02 1.90E+04 1.98E+03
P 7.55E-06(+) 6.45E-04(+) 2.86E-11(+) 2.86E-11(+)
rank 3 2 5 4 1

F16(X) Best 2.28E+03 1.86E+03 2.49E+03 2.61E+03 1.76E+03
Worst 3.31E+03 3.10E+03 3.68E+03 3.82E+03 2.86E+03
Median 2.73E+03 2.48E+03 3.07E+03 3.11E+03 2.31E+03
Mean 2.74E+03 2.48E+03 3.09E+03 3.14E+03 2.29E+03
Std 3.10E+02 2.94E+02 3.21E+02 3.24E+02 3.63E+02
P 2.24E-05(+) 7.70E-02(=) 1.04E-09(+) 2.92E-11(+)
rank 3 2 4 5 1

F17(X) Best 1.87E+03 1.80E+03 1.79E+03 1.99E+03 1.76E+03
Worst 2.79E+03 2.53E+03 2.54E+03 3.08E+03 2.39E+03
Median 2.16E+03 2.16E+03 2.08E+03 2.41E+03 2.07E+03
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Table 2 (continued)

F index PSO [31] MRFO [57] FA_CL [37] ASBSO [55] MSMRFO

Mean 2.23E+03 2.15E+03 2.13E+03 2.45E+03 2.07E+03
Std 2.65E+02 2.03E+02 2.40E+02 2.62E+02 1.75E+02
P 5.75E-02(=) 1.86E-01(=) 3.95E-01(=) 3.02E-11(+)
rank 4 3 2 5 1

F18(X) Best 1.45E+04 9.99E+03 5.21E+04 5.26E+04 1.99E+04
Worst 3.09E+05 1.80E+05 6.73E+05 3.76E+05 1.39E+05
Median 8.43E+04 5.01E+04 2.36E+05 1.23E+05 6.96E+04
Mean 9.43E+04 5.50E+04 2.47E+05 1.40E+05 6.95E+04
Std 7.60E+04 3.39E+04 5.79E+05 7.53E+04 3.18E+04
P 8.30E-01(=) 8.12E-04(−) 7.04E-07(+) 3.02E-11(+)
rank 3 1 5 4 2

F19(X) Best 1.97E+03 2.11E+03 2.16E+05 3.60E+04 1.92E+03
Worst 4.62E+04 4.93E+04 2.39E+06 2.52E+05 1.90E+04
Median 6.58E+03 7.09E+03 1.39E+06 1.44E+05 3.15E+03
Mean 1.05E+04 1.16E+04 1.32E+06 1.41E+05 5.26E+03
Std 1.15E+04 1.04E+04 5.79E+05 5.28E+04 4.57E+03
P 1.63E-02(+) 1.11E-03(+) 3.02E-11(+) 3.02E-11(+)
rank 2 3 5 4 1

F20(X) Best 2.25E+03 2.19E+03 2.26E+03 2.38E+03 2.07E+03
Worst 2.94E+03 2.80E+03 2.69E+03 3.06E+03 2.69E+03
Median 2.59E+03 2.39E+03 2.31E+03 2.79E+03 2.33E+03
Mean 2.60E+03 2.41E+03 2.37E+03 2.78E+03 2.36E+03
Std 1.48E+02 1.30E+02 1.20E+02 1.85E+02 1.70E+02
P 3.83E-06(+) 1.91E-01(=) 9.71E-01(=) 3.02E-11(+)
rank 4 3 2 5 1

F21(X) Best 2.38E+03 2.37E+03 2.37E+03 2.43E+03 2.34E+03
Worst 2.49E+03 2.50E+03 2.60E+03 2.57E+03 2.52E+03
Median 2.43E+03 2.42E+03 2.45E+03 2.49E+03 2.40E+03
Mean 2.43E+03 2.42E+03 2.45E+03 2.49E+03 2.41E+03
Std 3.00E+01 3.17E+01 9.25E-01 3.67E+01 3.65E+01
P 2.16E-03(+) 4.51E-02(+) 2.53E-04(+) 3.02E-11(+)
rank 3 2 4 5 1

F22(X) Best 2.30E+03 2.30E+03 2.31E+03 2.30E+03 2.30E+03
Worst 7.58E+03 2.30E+03 2.31E+03 8.37E+03 2.30E+03
Median 2.30E+03 2.30E+03 2.31E+03 6.66E+03 2.30E+03
Mean 4.01E+03 2.30E+03 2.31E+03 6.45E+03 2.30E+03
Std 2.17E+03 1.39E+00 9.25E-01 1.55E+03 1.06E+00
P 1.47E-05(+) 3.41E-01(=) 4.11E-12(+) 4.11E-12(+)
rank 4 2 3 5 1

F23(X) Best 2.90E+03 2.74E+03 2.82E+03 3.03E+03 2.69E+03
Worst 3.38E+03 3.00E+03 3.01E+03 3.50E+03 2.87E+03
Median 3.17E+03 2.81E+03 2.93E+03 3.34E+03 2.77E+03
Mean 3.17E+03 2.82E+03 2.92E+03 3.32E+03 2.77E+03
Std 1.04E+02 5.98E+01 5.79E+01 1.13E+02 4.67E+01
P 3.02E-11(+) 7.70E-04(+) 1.96E-10(+) 3.02E-11(+)
rank 4 2 3 5 1

F24(X) Best 3.11E+03 2.88E+03 2.94E+03 3.37E+03 2.88E+03
Worst 3.40E+03 3.14E+03 3.23E+03 3.74E+03 3.06E+03
Median 3.30E+03 2.97E+03 3.07E+03 3.53E+03 2.94E+03
Mean 3.28E+03 2.98E+03 3.07E+03 3.54E+03 2.95E+03
Std 9.40E+01 6.80E+01 2.19E+01 9.19E+01 4.68E+01
P 3.02E-11(+) 4.51E-02(+) 1.43E-08(+) 3.02E-11(+)
rank 4 2 3 5 1

F25(X) Best 2.88E+03 2.88E+03 2.89E+03 2.88E+03 2.88E+03
Worst 2.88E+03 2.94E+03 2.96E+03 2.95E+03 2.91E+03
Median 2.88E+03 2.89E+03 2.94E+03 2.89E+03 2.89E+03
Mean 2.88E+03 2.89E+03 2.93E+03 2.89E+03 2.89E+03
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Table 2 (continued)

F index PSO [31] MRFO [57] FA_CL [37] ASBSO [55] MSMRFO

Std 1.93E+00 1.48E+01 2.19E+01 1.40E+01 6.07E+00
P 3.02E-11(−) 4.20E-01(=) 1.07E-09(+) 3.02E-11(+)
rank 1 4 5 3 2

F26(X) Best 2.80E+03 2.80E+03 2.83E+03 6.66E+03 2.80E+03
Worst 9.27E+03 7.15E+03 7.86E+03 1.00E+04 6.64E+03
Median 6.86E+03 5.18E+03 4.81E+03 8.61E+03 5.11E+03
Mean 5.82E+03 4.86E+03 4.77E+03 8.57E+03 4.77E+03
Std 2.21E+03 1.47E+03 1.87E+03 6.99E+02 1.28E+03
P 1.18E-02(+) 8.47E-01(+) 8.42E-01(=) 2.92E-11(+)
rank 4 3 1 5 2

F27(X) Best 3.16E+03 3.22E+03 3.36E+03 3.41E+03 3.21E+03
Worst 3.90E+03 3.34E+03 3.67E+03 4.22E+03 3.34E+03
Median 3.18E+03 3.26E+03 3.47E+03 3.81E+03 3.26E+03
Mean 3.31E+03 3.27E+03 3.48E+03 3.81E+03 3.26E+03
Std 2.34E+02 2.99E+01 9.39E+00 1.71E+02 2.60E+01
P 1.95E-03(+) 8.19E-01(=) 3.02E-11(+) 3.02E-11(+)
rank 3 2 4 5 1

F28(X) Best 3.10E+03 3.10E+03 3.18E+03 3.10E+03 3.10E+03
Worst 3.21E+03 3.27E+03 3.21E+03 3.25E+03 3.25E+03
Median 3.10E+03 3.10E+03 3.20E+03 3.20E+03 3.10E+03
Mean 3.12E+03 3.13E+03 3.20E+03 3.19E+03 3.12E+03
Std 4.50E+01 5.67E+01 9.39E+00 4.15E+01 4.62E+01
P 4.40E-01(=) 7.48E-01(=) 3.57E-07(+) 7.88E-12(+)
rank 3 2 5 4 1

F29(X) Best 3.10E+03 3.33E+03 3.88E+03 3.89E+03 3.39E+03
Worst 3.21E+03 4.34E+03 4.84E+03 4.99E+03 4.21E+03
Median 3.10E+03 3.82E+03 4.34E+03 4.42E+03 3.76E+03
Mean 3.12E+03 3.80E+03 4.33E+03 4.40E+03 3.79E+03
Std 4.50E+01 2.66E+02 2.72E+02 2.85E+02 2.46E+02
P 1.54E-01(=) 9.47E-01(=) 1.70E-08(+) 3.02E-11(+)
rank 1 3 4 5 2

F30(X) Best 3.10E+03 5.53E+03 1.15E+06 9.21E+04 5.86E+03
Worst 3.21E+03 1.40E+04 4.46E+06 1.45E+06 1.70E+04
Median 3.10E+03 7.55E+03 2.21E+06 5.58E+05 7.64E+03
Mean 3.12E+03 8.16E+03 2.52E+06 6.45E+05 8.55E+03
Std 4.50E+01 2.31E+03 8.37E+05 3.53E+05 2.68E+03
P 2.57E-07(−) 4.46E-01(−) 3.02E-11(+) 3.02E-11(+)
rank 1 2 5 4 3
+/=/− 18/7/4 15/11/3 25/4/0 29/0/0
Average ranking 2.7241 2.3793 3.93 4.5862 1.34
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Table 3 Test results of each algorithm in CEC2017

F index SSA [52] NMRA [43] GWO [35] WOA [34] MSMRFO

F1(x) Best 1.00E+02 5.51E+04 8.91E+07 5.85E+05 1.00E+02
Worst 2.05E+04 1.80E+05 2.28E+09 7.23E+06 1.12E+04
Median 1.67E+03 1.02E+05 1.01E+09 1.90E+06 1.23E+03
Mean 4.16E+03 1.05E+05 9.65E+08 2.43E+06 2.96E+03
Std 5.78E+03 2.93E+04 6.71E+08 1.76E+06 3.66E+03
P 5.49E-01(=) 3.02E-11(+) 3.02E-11(+) 3.02E-11(+)
rank 2 3 5 4 1

F3(X) Best 3.91E+02 2.37E+04 1.40E+04 6.78E+04 3.00E+02
Worst 2.33E+03 4.23E+04 4.69E+04 3.94E+05 3.00E+02
Median 7.93E+02 3.27E+04 3.01E+04 1.62E+05 3.00E+02
Mean 9.66E+02 3.27E+04 2.92E+04 1.65E+05 3.00E+02
Std 4.97E+02 4.90E+03 9.29E+03 6.73E+04 0
P 3.02E-11(+) 3.02E-11(+) 3.02E-11(+) 3.02E-11(+)
rank 2 4 3 5 1

F4(X) Best 4.01E+02 4.02E+02 4.80E+02 4.74E+02 4.00E+02
Worst 5.17E+02 4.29E+02 6.44E+02 6.37E+02 4.05E+02
Median 4.86E+02 4.24E+02 5.40E+02 5.42E+02 4.00E+02
Mean 4.79E+02 4.22E+02 5.49E+02 5.45E+02 4.02E+02
Std 2.83E+01 5.59E+00 4.02E+01 4.06E+01 1.97E+00
P 2.30E-10(+) 1.06E-10(+) 2.63E-11(+) 2.63E-11(+)
rank 3 2 5 4 1

F5(X) Best 6.38E+02 6.59E+02 5.43E+02 6.31E+02 5.61E+02
Worst 8.03E+02 7.58E+02 6.38E+02 9.16E+02 7.59E+02
Median 7.48E+02 6.90E+02 5.84E+02 7.78E+02 6.26E+02
Mean 7.43E+02 6.98E+02 5.80E+02 7.83E+02 6.32E+02
Std 4.77E+01 2.75E+01 2.14E+01 7.47E+01 4.68E+01
P 4.18E-09(+) 3.81E-07(+) 2.88E-06(−) 1.07E-09(+)
rank 4 3 1 5 2

F6(X) Best 6.19E+02 6.46E+02 6.00E+02 6.48E+02 6.00E+02
Worst 6.60E+02 6.61E+02 6.10E+02 6.96E+02 6.05E+02
Median 6.40E+02 6.55E+02 6.04E+02 6.64E+02 6.02E+02
Mean 6.41E+02 6.55E+02 6.04E+02 6.67E+02 6.02E+02
Std 1.08E+01 3.40E+00 2.09E+00 1.05E+01 1.31E+00
P 2.72E-11(+) 2.72E-11(+) 4.75E-05(+) 2.72E-11(+)
rank 3 4 2 5 1

F7(X) Best 9.60E+02 9.87E+02 7.92E+02 1.01E+03 7.71E+02
Worst 1.34E+03 1.18E+03 9.80E+02 1.35E+03 8.96E+02
Median 1.24E+03 1.11E+03 8.25E+02 1.22E+03 8.26E+02
Mean 1.21E+03 1.11E+03 8.37E+02 1.20E+03 8.37E+02
Std 1.10E+02 3.76E+01 4.64E+01 9.50E+01 2.47E+01
P 2.80E-11(+) 2.80E-11(+) 1.41E-01(+) 2.80E-11(+)
rank 4 3 2 5 1

F8(X) Best 9.07E+02 9.08E+02 8.47E+02 8.92E+02 8.65E+02
Worst 1.03E+03 9.88E+02 9.78E+02 1.13E+03 9.79E+02
Median 9.79E+02 9.42E+02 8.73E+02 9.90E+02 9.15E+02
Mean 9.73E+02 9.44E+02 8.76E+02 9.91E+02 9.19E+02
Std 3.06E+01 1.70E+01 2.35E+01 5.78E+01 2.56E+01
P 7.74E-06(+) 3.03E-02(+) 2.03E-09(−) 8.29E-06(+)
rank 4 3 1 5 2

F9(X) Best 3.43E+03 4.55E+03 9.66E+02 5.06E+03 9.07E+02
Worst 5.58E+03 8.02E+03 2.33E+03 1.85E+04 3.17E+03
Median 5.38E+03 6.31E+03 1.19E+03 8.53E+03 1.47E+03
Mean 5.26E+03 6.28E+03 1.29E+03 9.10E+03 1.58E+03
Std 3.68E+02 7.91E+02 3.14E+02 3.53E+03 5.73E+02
P 2.95E-11(+) 2.95E-11(+) 1.83E-02(−) 2.95E-11(+)
rank 3 4 1 5 2
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Table 3 (continued)

F index SSA [52] NMRA [43] GWO [35] WOA [34] MSMRFO

F10(X) Best 3.49E+03 3.76E+03 2.86E+03 4.46E+03 2.64E+03
Worst 6.12E+03 4.76E+03 7.36E+03 7.47E+03 5.76E+03
Median 5.12E+03 4.39E+03 3.90E+03 6.19E+03 4.49E+03
Mean 5.05E+03 4.38E+03 3.93E+03 6.13E+03 4.48E+03
Std 6.17E+02 2.36E+02 8.08E+02 6.89E+02 7.65E+02
P 4.43E-03(+) 6.00E-01(=) 7.70E-04(−) 2.67E-09(+)
rank 4 2 1 5 3

F11(X) Best 1.14E+03 1.17E+03 1.27E+03 1.31E+03 1.12E+03
Worst 1.40E+03 1.25E+03 3.79E+03 1.87E+03 1.17E+03
Median 1.25E+03 1.20E+03 1.40E+03 1.52E+03 1.16E+03
Mean 1.26E+03 1.20E+03 1.57E+03 1.53E+03 1.15E+03
Std 6.99E+01 2.04E+01 5.78E+02 1.63E+02 1.21E+01
P 9.60E-08(+) 2.26E-11(+) 2.26E-11(+) 2.26E-11(+)
rank 3 2 5 4 1

F12(X) Best 4.73E+04 1.87E+05 1.61E+06 1.35E+06 1.02E+04
Worst 4.96E+05 7.79E+05 2.65E+08 8.93E+07 5.54E+04
Median 1.45E+05 4.26E+05 1.76E+07 3.02E+07 3.61E+04
Mean 1.61E+05 4.75E+05 3.13E+07 3.52E+07 3.27E+04
Std 9.61E+04 1.58E+05 5.05E+07 2.29E+07 1.33E+04
P 7.39E-11(+) 3.02E-11(+) 3.02E-11(+) 3.02E-11(+)
rank 2 3 4 5 1

F13(X) Best 1.47E+03 1.31E+04 1.97E+04 9.26E+03 1.32E+03
Worst 6.58E+04 4.53E+04 2.47E+07 5.09E+05 3.91E+04
Median 1.26E+04 2.50E+04 6.89E+04 1.39E+05 7.12E+03
Mean 1.86E+04 2.69E+04 1.67E+06 1.64E+05 1.11E+04
Std 1.74E+04 9.26E+03 6.11E+06 1.07E+05 1.13E+04
P 5.01E-02(+) 3.83E-06(+) 3.16E-10(+) 1.96E-10(+)
rank 2 3 5 4 1

F14(X) Best 3.20E+03 2.93E+03 3.24E+03 3.54E+04 1.56E+03
Worst 2.54E+04 2.03E+04 1.30E+06 4.09E+06 1.26E+04
Median 9.98E+03 8.31E+03 4.21E+04 2.65E+05 2.59E+03
Mean 1.12E+04 9.43E+03 1.65E+05 8.19E+05 3.73E+03
Std 6.08E+03 4.62E+03 3.22E+05 1.05E+06 2.77E+03
P 6.53E-08(+) 2.20E-07(+) 6.12E-10(+) 3.02E-11(+)
rank 3 2 4 5 1

F15(X) Best 1.77E+03 3.53E+03 7.50E+03 8.50E+03 1.53E+03
Worst 4.18E+04 9.64E+03 3.65E+06 1.37E+05 8.88E+03
Median 7.01E+03 6.60E+03 2.98E+04 5.53E+04 1.80E+03
Mean 1.19E+04 6.61E+03 2.84E+05 6.39E+04 2.71E+03
Std 1.18E+04 1.62E+03 8.14E+05 3.56E+04 1.98E+03
P 7.38E-07(+) 4.91E-08(+) 3.50E-11(+) 3.17E-11(+)
rank 3 2 5 4 1

F16(X) Best 2.31E+03 2.08E+03 1.88E+03 2.95E+03 1.76E+03
Worst 3.54E+03 2.79E+03 3.17E+03 4.40E+03 2.86E+03
Median 2.81E+03 2.52E+03 2.28E+03 3.40E+03 2.31E+03
Mean 2.81E+03 2.49E+03 2.32E+03 3.47E+03 2.29E+03
Std 3.19E+02 1.75E+02 2.66E+02 3.47E+02 3.63E+02
P 1.70E-06(+) 4.04E-02(+) 7.50E-01(+) 2.92E-11(+)
rank 4 2 3 5 1

F17(X) Best 1.96E+03 1.90E+03 1.79E+03 1.99E+03 1.76E+03
Worst 2.97E+03 2.26E+03 2.42E+03 2.92E+03 2.39E+03
Median 2.40E+03 2.04E+03 1.96E+03 2.49E+03 2.07E+03
Mean 2.41E+03 2.05E+03 2.01E+03 2.47E+03 2.07E+03
Std 2.44E+02 8.95E+01 1.51E+02 2.42E+02 1.75E+02
P 4.80E-07(+) 5.11E-01(−) 1.49E-01(−) 1.25E-07(+)
rank 4 2 1 5 3

F18(X) Best 2.16E+04 3.73E+04 5.43E+04 9.08E+04 1.99E+04
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Table 3 (continued)

F index SSA [52] NMRA [43] GWO [35] WOA [34] MSMRFO

Worst 4.35E+05 2.45E+05 6.16E+06 1.12E+07 1.39E+05
Median 9.28E+04 1.07E+05 2.83E+05 1.83E+06 6.96E+04
Mean 1.36E+05 1.06E+05 6.37E+05 2.61E+06 6.95E+04
Std 1.06E+05 4.03E+04 1.12E+06 2.36E+06 3.18E+04
P 1.15E-01(=) 1.33E-02(+) 1.10E-08(+) 2.61E-10(+)
rank 2 3 4 5 1

F19(X) Best 2.05E+03 2.36E+03 4.05E+03 1.78E+05 1.92E+03
Worst 5.00E+04 7.29E+03 1.44E+06 8.73E+06 1.90E+04
Median 4.95E+03 4.70E+03 1.35E+05 1.99E+06 3.15E+03
Mean 1.17E+04 4.68E+03 3.13E+05 2.91E+06 5.26E+03
Std 1.42E+04 1.35E+03 4.42E+05 2.40E+06 4.57E+03
P 3.51E-02(+) 8.50E-02(=) 1.33E-10(+) 3.02E-11(+)
rank 3 2 4 5 1

F20(X) Best 2.13E+03 2.24E+03 2.17E+03 2.42E+03 2.07E+03
Worst 3.03E+03 2.67E+03 2.60E+03 3.21E+03 2.69E+03
Median 2.64E+03 2.46E+03 2.32E+03 2.82E+03 2.33E+03
Mean 2.63E+03 2.45E+03 2.32E+03 2.82E+03 2.36E+03
Std 2.16E+02 1.25E+02 8.77E+01 2.08E+02 1.70E+02
P 5.46E-06(+) 3.03E-02(+) 4.20E-01(=) 1.69E-09(+)
rank 4 3 1 5 2

F21(X) Best 2.39E+03 2.21E+03 2.34E+03 2.45E+03 2.34E+03
Worst 2.61E+03 2.50E+03 2.46E+03 2.70E+03 2.52E+03
Median 2.47E+03 2.43E+03 2.37E+03 2.58E+03 2.40E+03
Mean 2.48E+03 2.35E+03 2.37E+03 2.58E+03 2.41E+03
Std 5.61E+01 1.29E+02 2.49E+01 6.95E+01 3.65E+01
P 2.15E-06(+) 9.71E-01(=) 3.83E-05(−) 9.92E-11(+)
rank 4 2 1 5 3

F22(X) Best 2.30E+03 2.32E+03 2.34E+03 2.32E+03 2.30E+03
Worst 7.15E+03 6.27E+03 6.29E+03 8.81E+03 2.30E+03
Median 6.43E+03 2.33E+03 5.12E+03 6.87E+03 2.30E+03
Mean 5.58E+03 3.41E+03 4.84E+03 6.65E+03 2.30E+03
Std 1.88E+03 1.60E+03 1.16E+03 1.75E+03 1.06E+00
P 3.24E-09(+) 4.11E-12(+) 4.11E-12(+) 4.11E-12(+)
rank 4 2 3 5 1

F23(X) Best 2.77E+03 2.53E+03 2.69E+03 2.86E+03 2.69E+03
Worst 2.97E+03 3.06E+03 2.86E+03 3.25E+03 2.87E+03
Median 2.86E+03 2.96E+03 2.73E+03 3.04E+03 2.77E+03
Mean 2.86E+03 2.92E+03 2.74E+03 3.05E+03 2.77E+03
Std 5.76E+01 1.16E+02 4.27E+01 9.06E+01 4.67E+01
P 6.53E-08(+) 3.01E-07(+) 8.68E-03(−) 3.69E-11(+)
rank 3 4 1 5 2

F24(X) Best 2.94E+03 2.52E+03 2.86E+03 3.04E+03 2.88E+03
Worst 3.19E+03 3.24E+03 3.05E+03 3.41E+03 3.06E+03
Median 3.04E+03 2.61E+03 2.89E+03 3.22E+03 2.94E+03
Mean 3.05E+03 2.75E+03 2.90E+03 3.21E+03 2.95E+03
Std 7.07E+01 2.93E+02 4.76E+01 9.51E+01 4.68E+01
P 8.35E-08(+) 7.96E-03(−) 2.88E-06(−) 3.69E-11(+)
rank 4 1 2 5 3

F25(X) Best 2.88E+03 2.88E+03 2.91E+03 2.90E+03 2.88E+03
Worst 2.94E+03 2.88E+03 3.05E+03 3.00E+03 2.91E+03
Median 2.89E+03 2.88E+03 2.95E+03 2.94E+03 2.89E+03
Mean 2.90E+03 2.88E+03 2.96E+03 2.94E+03 2.89E+03
Std 1.72E+01 8.97E-01 3.32E+01 2.69E+01 6.07E+00
P 2.25E-04(+) 3.02E-11(−) 3.02E-11(+) 4.50E-11(+)
rank 3 1 5 4 2

F26(X) Best 2.80E+03 2.86E+03 4.00E+03 5.89E+03 2.80E+03
Worst 7.58E+03 2.94E+03 4.83E+03 1.00E+04 6.64E+03
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Table 3 (continued)

F index SSA [52] NMRA [43] GWO [35] WOA [34] MSMRFO

Median 6.02E+03 2.90E+03 4.36E+03 7.96E+03 5.11E+03
Mean 6.04E+03 2.90E+03 4.37E+03 7.85E+03 4.77E+03
Std 8.26E+02 2.03E+01 1.98E+02 1.09E+03 1.28E+03
P 2.32E-05(+) 8.74E-06(−) 8.26E-03(−) 1.06E-10(+)
rank 4 1 2 5 3

F27(X) Best 3.22E+03 3.16E+03 3.21E+03 3.24E+03 3.21E+03
Worst 3.34E+03 3.20E+03 3.26E+03 3.51E+03 3.34E+03
Median 3.26E+03 3.19E+03 3.23E+03 3.33E+03 3.26E+03
Mean 3.26E+03 3.19E+03 3.23E+03 3.35E+03 3.26E+03
Std 3.07E+01 1.43E+01 1.45E+01 8.02E+01 2.60E+01
P 6.73E-01(+) 3.02E-11(−) 6.28E-06(−) 6.53E-07(+)
rank 4 1 2 5 3

F28(X) Best 3.10E+03 3.23E+03 3.27E+03 3.23E+03 3.10E+03
Worst 3.26E+03 3.30E+03 3.42E+03 3.41E+03 3.25E+03
Median 3.10E+03 3.29E+03 3.33E+03 3.31E+03 3.10E+03
Mean 3.13E+03 3.29E+03 3.34E+03 3.31E+03 3.12E+03
Std 5.89E+01 1.98E+01 3.54E+01 3.58E+01 4.62E+01
P 1.39E-05(+) 1.20E-11(+) 7.88E-12(+) 1.08E-11(+)
rank 2 3 5 4 1

F29(X) Best 3.61E+03 3.31E+03 3.43E+03 3.83E+03 3.39E+03
Worst 4.84E+03 3.66E+03 3.93E+03 6.03E+03 4.21E+03
Median 4.08E+03 3.49E+03 3.63E+03 4.86E+03 3.76E+03
Mean 4.09E+03 3.50E+03 3.65E+03 4.85E+03 3.79E+03
Std 2.89E+02 8.66E+01 1.60E+02 4.46E+02 2.46E+02
P 2.53E-04(+) 2.00E-06(−) 2.92E-02(−) 1.96E-10(+)
rank 4 1 2 5 3

F30(X) Best 5.38E+03 3.54E+03 7.45E+05 1.69E+06 5.86E+03
Worst 2.05E+04 9.38E+03 1.22E+07 2.67E+07 1.70E+04
Median 8.33E+03 5.39E+03 3.03E+06 1.07E+07 7.64E+03
Mean 1.04E+04 5.64E+03 3.72E+06 1.16E+07 8.55E+03
Std 4.04E+03 1.52E+03 2.92E+06 7.50E+06 2.68E+03
P 6.57E-02(+) 8.20E-07(−) 3.02E-11(+) 3.02E-11(+)
rank 3 1 4 5 2

+/=/− 26/3/0 27/2/0 19/3/7 17/1/11 29/0/0
Average ranking 3.4213 2.3793 2.8966 4.7586 1.7241

21850 Multimedia Tools and Applications (2023) 82:21825–21863



Table 4 Average fitness values of each algorithm

F index GWO [35] ABC [30] BSA [32] WOA [34] PSO [31] MSMRFO

Test 01 2 18.1101 17.9494 18.3995 18.4464 18.3691 18.4485
3 22.6513 22.4544 23.3874 23.3871 23.3874 23.3841
4 26.7138 26.5454 27.6898 27.6816 27.6905 27.6954
5 30.2374 30.0912 31.6001 31.6047 31.5786 31.5846

Test 02 2 17.6492 17.4204 17.7055 17.7046 17.7055 17.7056
3 21.8508 21.6544 21.9905 21.9904 21.9839 21.9909
4 25.6895 25.4713 26.1013 26.1449 26.0824 26.1054
5 29.3596 29.0889 30.2662 30.2629 30.0546 30.1439

Test 03 2 17.5255 17.5164 18.2076 18.1835 18.2077 18.2077
3 21.9828 21.8330 22.9753 23.0088 23.0103 23.0106
4 25.8697 25.8889 27.4243 27.3860 27.4262 27.4288
5 29.4551 29.5242 31.5425 31.5478 31.5653 31.5651

Test 04 2 18.4149 18.1109 18.5691 18.5682 18.5691 18.5678
3 22.6638 22.4539 23.2504 23.2475 23.1506 23.2556
4 26.6622 26.5595 27.5072 27.5080 27.5094 27.5074
5 30.3128 30.3428 31.4583 31.4495 31.4594 31.4595

Test 05 2 17.7205 17.6568 18.0427 18.0458 17.9774 18.0332
3 22.3560 22.2336 22.8406 22.8352 22.8480 22.8337
4 26.3894 26.2441 27.2503 27.2466 27.2519 27.2607
5 30.1993 29.9985 31.3208 31.3072 31.3263 31.3016

Test 06 2 16.1128 16.0053 16.3351 16.3550 16.2957 16.3552
3 20.2269 20.0573 20.8345 20.8941 20.8422 20.8473
4 24.1351 23.9378 25.2907 25.3052 24.9314 25.3862
5 27.6020 27.3745 29.2108 29.2551 28.6900 29.5505

Test 07 2 18.6188 18.4072 18.8369 18.8368 18.8370 18.8370
3 23.1494 22.8151 23.4743 23.4740 23.4744 23.4745
4 27.0966 26.7883 27.8066 27.8057 27.8072 27.8059
5 30.7232 30.4228 31.8692 31.8659 31.8700 31.8620

Test 08 2 17.3229 17.2089 17.4145 17.4144 17.4145 17.4145
3 21.7001 21.5035 21.8792 21.8793 21.8778 21.8803
4 25.4711 25.4801 26.1594 26.1480 26.1613 26.1738
5 29.3334 29.0700 30.2529 30.1606 30.1912 30.2286

Test 09 2 17.9269 17.6498 17.9952 17.9951 17.9953 17.9953
3 22.0809 21.9220 22.5624 22.5578 22.5506 22.5626
4 25.9091 25.7722 26.6971 26.6728 26.6772 26.6977
5 29.3907 29.1290 30.5459 30.5006 30.5242 30.5407

F index MRFO [57] SSA [52] ISSA [49] HHO-DE [7] CPSOGSA [41] MSMRFO
Test 01 2 18.4485 18.4516 18.4516 18.4468 18.4184 18.4485

3 23.3842 23.3875 23.3874 23.3873 23.3875 23.3841
4 27.6869 27.6903 27.6904 27.6871 27.6906 27.6954
5 31.5932 31.6174 31.5945 31.5954 31.6013 31.5846

Test 02 2 17.7056 17.7056 17.7056 17.7055 17.7056 17.7056
3 21.9894 21.9775 21.9880 21.9975 21.9838 21.9909
4 26.1053 26.1301 26.1492 26.1811 26.1462 26.1054
5 30.1369 30.2911 30.3708 30.2575 30.3799 30.1439

Test 03 2 18.2077 18.2077 18.1858 18.1858 18.2077 18.2077
3 23.0104 23.0103 23.0104 22.9992 22.9757 23.0106
4 27.4288 27.3964 27.4286 27.3903 27.3645 27.4288
5 31.5675 31.4759 31.5456 31.4514 31.4550 31.5651

Test 04 2 18.5679 18.5691 18.5691 18.5690 18.5691 18.5678
3 23.2527 23.2555 23.2555 23.2530 23.2540 23.2556
4 27.5058 27.5071 27.5031 27.4887 27.4970 27.5074
5 31.4583 31.4615 31.4575 31.4470 31.4555 31.4595

Test 05 2 18.0332 18.0476 18.0476 18.0458 18.0476 18.0332
3 22.8337 22.8481 22.8481 22.8379 22.8480 22.8337
4 27.2314 27.2530 27.2526 27.2473 27.2535 27.2607
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Table 4 (continued)

F index GWO [35] ABC [30] BSA [32] WOA [34] PSO [31] MSMRFO

5 31.3034 31.3264 31.3249 31.3103 31.3254 31.3016
Test 06 2 16.3542 16.3151 16.3366 16.3773 16.2707 16.3552

3 20.8486 20.8442 20.8504 20.9515 20.8778 20.8473
4 25.2327 25.3353 25.5625 25.3660 25.6049 25.3862
5 29.5035 29.4032 29.4851 29.2299 29.5019 29.5505

Test 07 2 18.8370 18.8370 18.8370 18.8370 18.8370 18.8370
3 23.4745 23.4743 23.4743 23.4743 23.4745 23.4745
4 27.8063 27.8072 27.8072 27.8063 27.8074 27.8059
5 31.8663 31.8702 31.8679 31.8683 31.8713 31.8620

Test 08 2 17.4145 17.4145 17.4145 17.4145 17.4145 17.4145
3 21.8803 21.8801 21.8754 21.8802 21.8803 21.8803
4 26.1628 26.1691 26.1696 26.1479 26.1727 26.1738
5 30.2410 30.2413 30.2063 30.2037 30.1660 30.2286

Test 09 2 17.9953 17.9953 17.9953 17.9952 17.9953 17.9953
3 22.5626 22.5626 22.5626 22.5614 22.5625 22.5626
4 26.6973 26.6541 26.6791 26.6420 26.6975 26.6977
5 30.5539 30.5439 30.5699 30.5347 30.5644 30.5407
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Table 5 PSNR segmentation effect table for each algorithm

F index GWO [35] ABC [30] BSA [32] WOA [34] PSO [31] MSMRFO

Test 01 2 14.1803 14.0587 12.3746 11.2399 12.7880 11.1263
3 16.7337 15.7164 17.2737 17.3199 17.2774 17.2753
4 18.3546 18.2210 18.6832 18.6859 18.6832 18.6793
5 19.8822 18.1557 20.1518 19.4918 21.1081 21.5110

Test 02 2 16.0865 15.4078 16.3965 16.4054 16.3979 16.3979
3 18.3544 17.9259 18.7061 18.6257 19.0349 18.8173
4 19.5056 18.6846 19.8795 18.9183 20.3492 20.3948
5 20.7001 19.8701 20.2189 19.1859 21.5220 21.5763

Test 03 2 12.8387 12.0857 13.7890 13.6424 13.7890 13.7890
3 14.1635 14.0040 14.7236 14.6674 14.7294 14.7347
4 16.4136 16.4447 19.2432 18.3385 19.2584 19.2777
5 17.7218 17.4951 20.5206 20.4337 20.6286 20.6549

Test 04 2 15.3100 14.0352 15.8161 15.8127 15.8169 15.8172
3 17.2739 14.9589 16.1557 16.1441 16.8639 16.1971
4 18.8683 17.9608 18.6589 18.6297 18.6485 18.6733
5 19.0889 19.6792 21.0923 20.7651 20.9791 21.7326

Test 05 2 15.8803 14.4865 12.8845 12.8089 13.7240 12.8459
3 17.1297 16.5005 17.7448 17.4570 17.7475 17.7525
4 19.1481 17.2081 18.9640 18.8785 19.0056 19.2697
5 20.6216 19.4558 19.9697 19.9815 20.3037 20.6769

Test 06 2 13.2103 13.9442 10.6537 9.9618 11.7544 10.0089
3 15.9608 15.9494 16.1631 14.7534 16.8000 16.8165
4 18.7178 18.0346 17.2448 16.3797 17.9103 17.0892
5 19.4732 19.0989 19.3032 17.7794 21.2510 21.3203

Test 07 2 14.8035 14.2125 13.9569 13.9623 13.9540 13.9540
3 17.0767 16.4539 17.6745 17.6768 17.6726 17.6743
4 18.7913 17.6074 18.8777 18.8693 18.8842 18.9149
5 18.9929 18.5958 19.7324 19.7559 19.7156 19.9672

Test 08 2 15.2174 14.9128 15.3116 15.2992 15.3116 15.3116
3 17.5928 17.1629 19.1314 19.1320 19.0193 19.1258
4 19.1003 17.9907 19.3640 19.1296 19.5244 19.6154
5 19.6034 18.9588 19.6539 19.7929 21.0066 20.6399

Test 09 2 15.8102 14.9023 16.0311 16.0298 16.0316 16.0316
3 17.6721 16.3706 17.1911 17.1692 17.2385 17.1961
4 18.9335 18.2247 20.0008 19.8943 19.9113 20.1072
5 19.4005 19.2759 20.7092 20.0857 20.9816 21.0635

F index MRFO [57] SSA [52] ISSA [49] HHO-DE [7] CPSOGSA [41] MSMRFO
Test 01 2 11.1263 11.1263 11.1263 11.2311 11.9196 11.1263

3 17.2748 17.2748 17.2751 17.2701 17.2748 17.2753
4 18.6795 18.6718 18.6792 18.6710 18.6759 18.6793
5 20.3771 19.6039 20.5458 20.2242 20.2492 21.5110

Test 02 2 16.3979 16.3979 16.3979 16.3993 16.3979 16.3979
3 18.7839 19.3045 18.8261 18.0234 18.7486 18.8173
4 19.9755 19.6042 19.4820 18.6514 19.6419 20.3948
5 20.9798 20.5485 20.2183 19.4613 19.8442 21.5763

Test 03 2 13.7890 13.7890 13.6751 13.6751 13.7890 13.7890
3 14.7318 14.7334 14.7318 14.7286 14.7441 14.7347
4 19.2777 19.1231 19.2765 18.4135 18.9737 19.2777
5 20.5847 20.3922 20.5260 20.0765 20.3175 20.6549

Test 04 2 15.8177 15.8169 15.8169 15.8161 15.8169 15.8172
3 16.1957 16.1961 16.1956 16.1757 16.1800 16.1971
4 18.6692 18.6640 18.6952 18.6939 18.7269 18.6733
5 20.7606 20.1720 21.0018 20.6099 20.7340 21.7326

Test 05 2 12.8459 12.8459 12.8459 12.7748 12.8459 12.8459
3 17.7525 17.7530 17.7525 17.4752 17.7482 17.7525
4 19.2622 19.0092 18.9981 18.9504 18.9725 19.2697
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Table 5 (continued)

F index GWO [35] ABC [30] BSA [32] WOA [34] PSO [31] MSMRFO

5 20.1705 20.1240 20.4218 20.0308 20.1818 20.6769
Test 06 2 10.0089 11.3063 10.6502 9.9340 12.6206 10.0089

3 16.1373 16.6054 16.8058 14.2333 16.1392 16.8165
4 17.2536 17.5048 16.9434 15.9115 16.4504 17.0892
5 18.6747 19.6095 19.4061 18.5579 18.2094 21.3203

Test 07 2 13.9575 13.9540 13.9557 13.9528 13.9557 13.9540
3 17.6730 17.6652 17.6681 17.6775 17.6741 17.6743
4 18.9042 18.8782 18.8801 18.8750 18.8761 18.9149
5 19.8936 19.7562 19.8538 19.7559 19.7142 19.9672

Test 08 2 15.3116 15.3116 15.3116 15.3116 15.3080 15.3116
3 19.1258 19.1282 18.9080 19.1310 19.1266 19.1258
4 19.5037 19.4326 19.4168 19.2724 19.3998 19.6154
5 20.0871 20.0994 20.6185 19.5154 19.6849 20.6399

Test 09 2 16.0316 16.0316 16.0316 16.0320 16.0316 16.0316
3 17.1975 17.1961 17.1968 17.1776 17.1922 17.1961
4 19.9788 19.6102 19.8321 19.3824 19.9990 20.1072
5 20.7528 20.7228 20.6128 19.8072 20.4033 21.0635
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Table 6 SSIM segmentation effect table for each algorithm

F index GWO [35] ABC [30] BSA [32] WOA [34] PSO [31] MSMRFO

Test 01 2 0.4722 0.4773 0.3640 0.2733 0.3762 0.2647
3 0.6378 0.5795 0.6810 0.6808 0.6808 0.6812
4 0.7083 0.6996 0.7233 0.7220 0.7231 0.7234
5 0.7621 0.6876 0.7653 0.7466 0.7906 0.8074

Test 02 2 0.5707 0.5288 0.5702 0.5697 0.5703 0.5703
3 0.6557 0.6401 0.6764 0.6750 0.6853 0.6809
4 0.7099 0.6654 0.7106 0.6811 0.7256 0.7209
5 0.7515 0.7067 0.7234 0.6897 0.7688 0.7577

Test 03 2 0.5072 0.4762 0.6196 0.6090 0.6196 0.6196
3 0.6035 0.5885 0.6691 0.6716 0.6719 0.6719
4 0.6897 0.6888 0.7991 0.7758 0.7995 0.8004
5 0.7393 0.7364 0.8431 0.8403 0.8460 0.8467

Test 04 2 0.7082 0.5923 0.7153 0.7139 0.7156 0.7159
3 0.7751 0.6285 0.7320 0.7308 0.7605 0.7315
4 0.8303 0.7882 0.8334 0.8328 0.8331 0.8330
5 0.8329 0.8488 0.8914 0.8839 0.8885 0.8931

Test 05 2 0.5071 0.4052 0.2888 0.2822 0.3494 0.2856
3 0.6014 0.5590 0.6380 0.6189 0.6376 0.6379
4 0.7135 0.6013 0.7110 0.7074 0.7130 0.7269
5 0.7832 0.7234 0.7511 0.7523 0.7603 0.7612

Test 06 2 0.2896 0.3535 0.0784 0.0193 0.1702 0.0252
3 0.5204 0.5207 0.5367 0.4208 0.5889 0.5899
4 0.6923 0.6338 0.6187 0.5540 0.6583 0.6102
5 0.7211 0.7039 0.7183 0.6444 0.7995 0.7347

Test 07 2 0.5331 0.5183 0.4760 0.4763 0.4757 0.4757
3 0.6736 0.6377 0.6927 0.6916 0.6924 0.6932
4 0.7475 0.6843 0.7321 0.7319 0.7317 0.7330
5 0.7475 0.7403 0.7524 0.7538 0.7508 0.7603

Test 08 2 0.6653 0.6369 0.6696 0.6692 0.6696 0.6696
3 0.7622 0.7348 0.7933 0.7937 0.7904 0.7937
4 0.8093 0.7647 0.8037 0.7954 0.8090 0.8095
5 0.8291 0.8016 0.8484 0.8399 0.8582 0.8602

Test 09 2 0.6598 0.6130 0.6553 0.6550 0.6554 0.6554
3 0.7233 0.6636 0.7130 0.7122 0.7144 0.7129
4 0.7644 0.7346 0.8050 0.8026 0.8003 0.8051
5 0.7765 0.7687 0.8164 0.7954 0.8214 0.8229

F index MRFO [57] SSA [52] ISSA [49] HHO-DE [7] CPSOGSA [41] MSMRFO
Test 01 2 0.2647 0.2647 0.2647 0.2730 0.3278 0.2647

3 0.6812 0.6812 0.6812 0.6806 0.6812 0.6812
4 0.7234 0.7232 0.7234 0.7226 0.7233 0.7234
5 0.7712 0.7504 0.7760 0.7674 0.7681 0.8074

Test 02 2 0.5703 0.5703 0.5703 0.5702 0.5703 0.5703
3 0.6801 0.6910 0.6791 0.6453 0.6779 0.6809
4 0.7148 0.6992 0.6980 0.6670 0.7029 0.7209
5 0.7479 0.7379 0.7236 0.6963 0.7103 0.7577

Test 03 2 0.6196 0.6196 0.6095 0.6095 0.6196 0.6196
3 0.6720 0.6721 0.6720 0.6666 0.6698 0.6719
4 0.8004 0.7961 0.8004 0.7778 0.7918 0.8004
5 0.8450 0.8385 0.8431 0.8301 0.8361 0.8467

Test 04 2 0.7156 0.7156 0.7156 0.7150 0.7156 0.7159
3 0.7316 0.7315 0.7316 0.7323 0.7325 0.7315
4 0.8331 0.8336 0.8342 0.8361 0.8355 0.8330
5 0.8833 0.8685 0.8898 0.8812 0.8830 0.8931

Test 05 2 0.2856 0.2856 0.2856 0.2792 0.2856 0.2856
3 0.6379 0.6379 0.6379 0.6193 0.6376 0.6379
4 0.7249 0.7126 0.7122 0.7108 0.7111 0.7269
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Table 6 (continued)

F index GWO [35] ABC [30] BSA [32] WOA [34] PSO [31] MSMRFO

5 0.7559 0.7564 0.7663 0.7487 0.7594 0.7612
Test 06 2 0.0252 0.1325 0.0779 0.0159 0.2419 0.0252

3 0.5335 0.5731 0.5890 0.3761 0.5342 0.5899
4 0.6223 0.6298 0.5998 0.5143 0.5606 0.6102
5 0.6883 0.7307 0.7216 0.6788 0.6735 0.7347

Test 07 2 0.4760 0.4757 0.4758 0.4755 0.4758 0.4757
3 0.6931 0.6915 0.6920 0.6922 0.6931 0.6932
4 0.7325 0.7319 0.7318 0.7323 0.7319 0.7330
5 0.7573 0.7519 0.7560 0.7533 0.7510 0.7603

Test 08 2 0.6696 0.6696 0.6696 0.6696 0.6695 0.6696
3 0.7927 0.7927 0.7883 0.7935 0.7930 0.7937
4 0.8089 0.8045 0.8054 0.7966 0.8035 0.8095
5 0.8526 0.8518 0.8570 0.8390 0.8463 0.8602

Test 09 2 0.6554 0.6554 0.6554 0.6553 0.6554 0.6554
3 0.7130 0.7130 0.7130 0.7128 0.7130 0.7129
4 0.8050 0.7910 0.7994 0.7866 0.8051 0.8051
5 0.8179 0.8156 0.8151 0.7938 0.8105 0.8229
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Table 7 FSIM segmentation effect table for each algorithm

F index GWO [35] ABC [30] BSA [32] WOA [34] PSO [31] MSMRFO

Test 01 2 0.7148 0.7032 0.6850 0.6856 0.7009 0.6857
3 0.7791 0.7506 0.7902 0.7899 0.7901 0.7903
4 0.8153 0.8046 0.8301 0.8288 0.8301 0.8303
5 0.8393 0.8053 0.8580 0.8470 0.8732 0.8663

Test 02 2 0.7406 0.7253 0.7408 0.7406 0.7409 0.7409
3 0.7958 0.7848 0.8140 0.8133 0.8191 0.8170
4 0.8281 0.8039 0.8346 0.8153 0.8462 0.8397
5 0.8560 0.8293 0.8437 0.8226 0.8733 0.8664

Test 03 2 0.6801 0.6750 0.7162 0.7163 0.7162 0.7162
3 0.7519 0.7395 0.7756 0.7765 0.7755 0.7753
4 0.7853 0.7793 0.8419 0.8323 0.8426 0.8434
5 0.8213 0.8159 0.8787 0.8772 0.8808 0.8813

Test 04 2 0.8454 0.7788 0.8476 0.8468 0.8477 0.8478
3 0.8734 0.8077 0.8708 0.8708 0.8806 0.8703
4 0.9010 0.8849 0.9235 0.9238 0.9234 0.9231
5 0.9029 0.9153 0.9480 0.9454 0.9471 0.9514

Test 05 2 0.7780 0.7318 0.6869 0.6836 0.7150 0.6857
3 0.8233 0.7995 0.8429 0.8374 0.8431 0.8431
4 0.8741 0.8246 0.8849 0.8831 0.8860 0.8912
5 0.9021 0.8759 0.9055 0.9051 0.9093 0.9116

Test 06 2 0.6605 0.6753 0.6092 0.5810 0.6359 0.5973
3 0.7240 0.7222 0.7418 0.7026 0.7565 0.7565
4 0.7950 0.7701 0.7676 0.7429 0.7991 0.7690
5 0.8137 0.8028 0.8230 0.7807 0.8672 0.8155

Test 07 2 0.8144 0.8028 0.8043 0.8044 0.8042 0.8042
3 0.8740 0.8559 0.8854 0.8851 0.8852 0.8855
4 0.8978 0.8759 0.9098 0.9098 0.9095 0.9098
5 0.9011 0.8954 0.9209 0.9216 0.9201 0.9236

Test 08 2 0.7601 0.7354 0.7656 0.7653 0.7656 0.7656
3 0.8241 0.7962 0.8455 0.8451 0.8450 0.8458
4 0.8444 0.8238 0.8540 0.8455 0.8589 0.8594
5 0.8645 0.8436 0.8910 0.8797 0.8925 0.8924

Test 09 2 0.7502 0.7240 0.7528 0.7526 0.7528 0.7528
3 0.7836 0.7612 0.8090 0.8086 0.8084 0.8090
4 0.8170 0.8066 0.8435 0.8416 0.8428 0.8457
5 0.8320 0.8197 0.8599 0.8468 0.8658 0.8665

F index MRFO [57] SSA [52] ISSA [49] HHO-DE [7] CPSOGSA [41] MSMRFO
Test 01 2 0.6857 0.6857 0.6857 0.6855 0.6852 0.6857

3 0.7903 0.7903 0.7903 0.7899 0.7903 0.7903
4 0.8303 0.8301 0.8303 0.8294 0.8303 0.8303
5 0.8615 0.8493 0.8646 0.8593 0.8599 0.8663

Test 02 2 0.7409 0.7409 0.7409 0.7409 0.7409 0.7409
3 0.8166 0.8217 0.8153 0.7934 0.8142 0.8170
4 0.8379 0.8282 0.8271 0.8063 0.8307 0.8397
5 0.8606 0.8524 0.8434 0.8244 0.8352 0.8664

Test 03 2 0.7162 0.7162 0.7163 0.7163 0.7162 0.7162
3 0.7754 0.7755 0.7754 0.7708 0.7759 0.7753
4 0.8434 0.8410 0.8433 0.8321 0.8388 0.8434
5 0.8802 0.8750 0.8788 0.8716 0.8733 0.8813

Test 04 2 0.8477 0.8477 0.8477 0.8474 0.8477 0.8478
3 0.8703 0.8703 0.8704 0.8714 0.8710 0.8703
4 0.9232 0.9232 0.9233 0.9236 0.9235 0.9231
5 0.9456 0.9402 0.9469 0.9431 0.9447 0.9514

Test 05 2 0.6857 0.6857 0.6857 0.6822 0.6857 0.6857
3 0.8431 0.8431 0.8431 0.8381 0.8430 0.8431
4 0.8917 0.8856 0.8854 0.8843 0.8849 0.8912
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Table 7 (continued)

F index GWO [35] ABC [30] BSA [32] WOA [34] PSO [31] MSMRFO

5 0.9083 0.9074 0.9113 0.9038 0.9089 0.9116
Test 06 2 0.5973 0.6231 0.6075 0.5741 0.6533 0.5973

3 0.7403 0.7518 0.7557 0.6915 0.7417 0.7565
4 0.7784 0.7763 0.7624 0.7277 0.7487 0.7690
5 0.8136 0.8290 0.8230 0.7950 0.8014 0.8155

Test 07 2 0.8043 0.8042 0.8042 0.8042 0.8042 0.8042
3 0.8855 0.8850 0.8852 0.8852 0.8855 0.8855
4 0.9096 0.9097 0.9096 0.9099 0.9097 0.9098
5 0.9226 0.9204 0.9221 0.9214 0.9202 0.9236

Test 08 2 0.7656 0.7656 0.7656 0.7656 0.7655 0.7656
3 0.8458 0.8458 0.8441 0.8454 0.8457 0.8458
4 0.8581 0.8545 0.8545 0.8478 0.8529 0.8594
5 0.8926 0.8916 0.8922 0.8824 0.8878 0.8924

Test 09 2 0.7528 0.7528 0.7528 0.7528 0.7528 0.7528
3 0.8090 0.8090 0.8090 0.8088 0.8090 0.8090
4 0.8436 0.8397 0.8421 0.8362 0.8435 0.8457
5 0.8613 0.8608 0.8577 0.8429 0.8552 0.8665
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Table 8 Ranking results of MSMRFO with other algorithms

F index GWO ABC BSA WOA PSO MSMRFO

Test 01 2 2.8000 3.0111 3.7500 4.0333 3.3222 4.0833
3 3.2444 5.0778 3.2333 3.0611 3.3611 3.0222
4 3.6667 4.5222 2.9000 4.0278 3.3722 2.5111
5 3.7667 5.1222 3.1056 4.1889 2.4500 2.3667

Test 02 2 3.2667 4.7444 3.2111 3.4889 3.1444 3.1444
3 3.7667 4.4778 3.3278 3.9056 2.4778 3.0444
4 3.3444 4.7444 3.1667 4.6889 2.4056 2.6500
5 2.8444 4.2444 4.0889 5.2778 2.5222 2.0222

Test 03 2 4.7111 5.1333 2.7444 2.9222 2.7444 2.7444
3 4.4111 4.8333 3.0333 2.8500 2.9333 2.9389
4 5.2667 5.2222 2.4833 3.9556 2.1389 1.9333
5 5.3667 5.5444 2.8111 3.4333 1.9722 1.8722

Test 04 2 2.7444 5.3667 3.1889 3.7000 3.0333 2.9667
3 2.1556 4.8444 3.5611 4.0389 2.8333 3.5667
4 3.9333 4.7000 3.0500 3.2500 3.0667 3.0000
5 4.8889 4.7000 2.7778 2.8278 2.9056 2.9000

Test 05 2 1.8667 2.8333 4.1056 4.4722 3.5333 4.1889
3 3.8333 4.5222 2.7389 4.1778 2.9222 2.8056
4 3.0556 4.9333 3.4500 4.1111 3.4444 2.0056
5 3.0000 4.2556 3.7778 4.0667 3.0000 2.9000

Test 06 2 2.6889 2.5000 3.9278 4.6556 3.9722 3.2556
3 3.5889 3.7111 3.0111 4.1944 3.2500 3.2444
4 2.6333 3.1333 3.8667 4.8222 2.5556 3.9889
5 3.6111 3.6778 3.4667 4.7333 1.7667 3.7444

Test 07 2 2.4000 3.3000 3.7722 3.6611 3.9333 3.9333
3 5.2000 4.7111 2.7500 3.0556 2.7222 2.5611
4 3.5000 5.0222 3.2056 3.2389 3.2833 2.7500
5 4.4000 4.7444 3.1778 3.0722 3.6167 1.9889

Test 08 2 3.3444 4.6222 3.1556 3.5667 3.1556 3.1556
3 4.6444 5.1000 2.6611 2.8111 2.9222 2.8611
4 3.0667 4.6556 3.2722 4.6111 2.5389 2.8556
5 3.6556 4.7333 3.3667 4.2111 2.3222 2.7111

Test 09 2 3.8667 5.3556 2.8500 3.3611 2.7833 2.7833
3 3.3222 4.9000 3.1833 3.5778 3.0056 3.0111
4 4.9222 5.5889 2.4333 3.1611 2.4944 2.4000
5 4.4778 5.0222 2.6611 4.2778 2.4167 2.1444

21859Multimedia Tools and Applications (2023) 82:21825–21863



Table 9 Ranking results of MSMRFO and algorithms in recent years

F index MRFO SSA ISSA HHO-DE CPSOGSA MSMRFO

Test 01 2 1.0889 3.9611 3.9611 4.3389 3.6889 3.9611
3 3.4389 3.4389 3.4389 3.8889 3.4389 3.3556
4 2.8889 3.6722 3.0444 4.2222 3.1500 4.0222
5 2.8889 4.4778 3.2222 3.9889 3.8111 2.6111

Test 02 2 3.4944 3.4944 3.4944 3.5278 3.4944 3.4944
3 3.2889 2.2222 3.2778 4.7389 3.9000 3.5722
4 2.8833 3.3278 3.9278 5.0500 3.3500 2.4611
5 2.5000 3.1889 3.8833 4.9444 4.5389 1.9444

Test 03 2 3.4889 3.4889 3.5222 3.5222 3.4889 3.4889
3 3.2667 3.1778 4.2556 3.7111 3.2556 3.3333
4 3.0500 2.9500 3.0833 5.7333 3.3333 2.8500
5 2.8111 3.5444 3.2111 4.5667 4.6389 2.2278

Test 04 2 3.4222 3.4556 3.4556 3.8556 3.4556 3.3556
3 3.5556 3.5611 3.5167 3.4444 3.4056 3.5167
4 3.5611 3.7389 3.5833 3.2556 3.1222 3.7389
5 3.3111 4.3222 3.0667 3.5222 3.3889 3.3889

Test 05 2 3.3667 3.3667 3.3667 4.1667 3.3667 3.3667
3 3.3389 2.3889 3.3389 5.3333 3.2611 3.3389
4 1.8056 4.1944 4.2722 4.5056 4.4611 1.7611
5 3.1944 4.5778 2.7611 4.1444 3.3556 2.9667

Test 06 2 3.3667 3.1833 3.4333 5.1833 2.4667 3.3667
3 3.6389 3.2167 3.5222 4.9000 2.2111 3.5111
4 2.8333 2.8389 3.3944 4.4333 4.0333 3.4667
5 3.7056 2.7278 2.9333 4.3778 3.7944 3.4611

Test 07 2 3.3500 3.5500 3.4500 3.6500 3.4500 3.5500
3 3.2500 3.8333 3.8333 3.7333 3.1889 3.1611
4 3.2333 3.7000 3.6833 3.5389 3.8000 3.0444
5 2.6444 4.4000 3.2444 3.9111 4.6444 2.1556

Test 08 2 3.4833 3.4833 3.4833 3.4833 3.5833 3.4833
3 3.5444 3.6389 3.6611 3.1500 3.4722 3.5333
4 2.3167 3.5111 3.5222 4.9611 4.0056 2.6833
5 2.9778 3.1833 2.9778 4.9889 3.9722 2.9000

Test 09 2 3.4889 3.4889 3.4889 3.5556 3.4889 3.4889
3 3.2444 3.3056 3.2778 4.3056 3.5056 3.3611
4 3.1333 3.7333 3.8000 4.0222 3.1000 3.2111
5 2.9667 2.9556 3.3000 5.3833 3.6889 2.7056
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