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Abstract
Existing Siamese-based trackers deal with target deformation and occlusion by introducing
online updates. However, these trackers still suffer from model drift due to the cumula-
tive error in tracking results and the lack of a suitable model update strategy. To solve
this problem, we propose an online bionic visual siamese tracking framework based on the
mixed time-event triggering mechanism. In which, the bionic vision network introduces
the receptive field block and the blurpool, which improve the quality of feature extraction
while maintaining the translational invariance of the convolutional neural network. The for-
mer uses dilated convolution kernels with different dilation rates to fuse depth features,
which effectively increases the receptive field of the network. The latter uses low-pass fil-
tering to anti-alias before downsampling, reducing the negative impact of the downsampling
operation on the generalization ability of the network. In addition, to enable the model to
effectively capture target appearance variations, a template update strategy with the mixed
time-event triggering mechanism is designed. The strategy evaluates the quality of tracking
results via a quality assessment model, guided by the mixed time-event triggering mecha-
nism to adaptively weighted fusion of fixed and mutative templates. Numerous experiments
conducted on OTB100, VOT2016, VOT2018, UAV123, GOT-10k benchmarks show that the
proposed tracker outperforms the baseline tracker and achieves state-of-the-art performance.

Keywords Object tracking · Siamese network · Template-updating · Deep learning

1 Introduction

Visual target tracking is one of the most fundamental and challenging tasks in computer
vision. Given the bounding box of the target in the first frame of the video, the tracker locates
the target in all subsequent frames. Although visual target tracking has a large number of
applications in human-computer interaction and autonomous vehicle navigation, it is still
challenging to design target tracking algorithms in scenarios such as deformation, occlusion.
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To overcome the above challenges of tracking scenarios and obtain stable tracking perfor-
mance, researchers make efforts in visual tracking. However, most of the existing methods
[17, 27, 35, 40, 44] mainly focus on modeling the appearance of the target. Although these
siamese tracking algorithms have a balanced speed and accuracy, there is still an important
problem: most of these siamese tracking algorithms are not able to update the templates dur-
ing the tracking process. Their fixed target appearance model ensure high tracking speed,
but sacrifice the ability of the tracker to better adapt to the target appearance deformation.
These algorithms also have difficulty identifying objects in partially occluded scenes, due
to the dynamic nature of occlusion that causes occluded objects to take on different appear-
ances over time. As a result, the tracking is particularly prone to failure in the presence of
occlusion and deformation, as shown in Fig. 1.

During the tracking process, it is difficult for the static features of the target to reflect the
appearance change of the dynamic target in time, which is the main reason for the serious
performance degradation of the tracker in the deformation and occlusion scenarios. There-
fore, some researchers try to introduce a template update method or improve the tracking
network, to enable the algorithm to adapt to the change of target appearance in time. Xu
et al. [45] propose a template update network that consists of two independent networks: a
contour network and a detection network. The maximum response of the response map is
compared with a fixed threshold to determine whether to activate the template update net-
work. If the network is activated, a new appearance model is regenerated by selecting the
template with the highest confidence in the past. This method of updating templates with a
fixed threshold. In the early stage of tracking, a lot of computing power will be consumed,

Fig. 1 Compared with fDsst [6], SiamFC and SiamRPN [28], the proposed tracking algorithm performs well
in target deformation scenarios
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affecting the tracking speed, and the update frequency will be significantly reduced in the
later stage, affecting the tracking performance. Guo et al. [16] design a target appearance
variation transformation as a single network layer to adapt to target changes. The transfor-
mation uses the first frame template and the previous frame template to solve the linear
transformation matrix in the frequency domain. The calculated linear transformation matrix
is used in the target feature extraction branch of the static siamese network to dynamically
update the template feature. However, the algorithm is proposed under the assumption that
the target changes are smooth in time, so the adaptation of the algorithm to the tracking
scene is limited. Zhou et al. [52] propose an adaptive updating siamese network, which
includes two sub-networks. The first sub-network extracts target features, introducing chan-
nel and spatial attention modules, which can selectively amplify valuable features. The
second sub-network utilizes the first frame and the previous frame to generate two response
maps summed with fixed weights for localization and regression. This method requires fre-
quent feature extraction operations to maintain tracking performance, and the fixed weight
fusion method is not well suited to various tracking scenarios. Siamese block attention net-
work for online update object tracking is proposed by Xiao et al. [43], mainly for appearance
change and occlusion problems. This method proposes a Siamese block attention module,
which relies on the characteristics of max pooling and average pooling to generate channel
weights, enhance key features, and suppress irrelevant features. The method also proposes
a template update method that relies on the linear addition of the initial template, the pro-
cess template and the final tracking result with fixed weights. In short, the efforts of a large
number of researchers make these online update-based siamese algorithms achieve good
performance.

In the above algorithms, we summarize two common characteristics: First, most algo-
rithms extract target features to update templates by convolutional neural networks. Second,
most algorithms update strategy are single or too complex. For the first characteristic. We
analyze that the reason why these algorithms use convolutional neural networks is that the
feature quality of the same target extracted by convolutional neural networks is stable. How-
ever, the quality of features extracted by convolutional neural networks for the same target
at different locations can fluctuate greatly. The reason for this phenomenon is that convolu-
tional neural networks are not translation invariant [1, 49]. In the template update algorithm
relying on target features, the loss of translation invariance of the convolutional neural net-
work will lead to the extraction of low-quality target features. The low-quality target features
will gradually pollute the model and cause the tracking to drift or even fail. For the sec-
ond characteristic, we believe that the update requirements of target templates need to be
adjusted for different tracking situations. A single or overly complex update strategy will
always be difficult to balance the performance and speed of the algorithm, either consuming
a lot of computing power and affecting the tracking speed, or increasing the tracking speed
and affecting the tracking performance.

In this paper, we propose an online bionic visual siamese tracking framework based
on the mixed time-event triggering mechanism. The novel bionic visual network, which
exploits the receptive field block that mimics the human visual perceptual domain to expand
the perceptual field of the network and uses the blurpool that alleviates the loss of trans-
lational invariance, improves the stability and quality of feature extraction. Secondly, we
propose a template update strategy with the mixed time-event triggering mechanism, which
enables the model to adapt to target appearance variations timely, and ensures its perfor-
mance and speed balance. The template update strategy consists of a quality assessment
model, an adaptive template fusion mechanism and a mixed time-event triggering mecha-
nism. The quality assessment model evaluates the tracking quality and collects templates
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through an online updated classification network. The adaptive template fusion mechanism
adaptively weights the collected templates to obtain the latest target feature changes. The
mixed time-event triggering mechanism effectively regulates the performance and speed
of the tracker. Finally, to evaluate our proposed approach, we conducted extensive exper-
iments on publicly available benchmark datasets OTB100 [42], VOT2016 [13], VOT2018
[23], UAV123 [31], GOT-10k [21]. The experimental results show that our method plays an
important role in confronting the target deformation and occlusion problem.

The main contributions of this paper can be summarized as follows:

(1) We propose a novel bionic visual network that can effectively improve the quality
and stability of feature extraction, which combines the receptive field block that mim-
ics the human visual perceptual domain and the blurpool that alleviates the loss of
translational invariance.

(2) We propose a template update strategy with the mixed time-event triggering mecha-
nism to allow the tracker to adapt to the feature changes of the target in time. The
strategy consists of a quality assessment model, an adaptive template fusion mecha-
nism, and a mixed time-event triggering mechanism. The quality assessment model
relies on an online learning classification network to evaluate the prediction results.
The adaptive template fusion mechanism adaptively fuses the target and dynamic tem-
plates based on the evaluation values. The mixed time-event triggering mechanism
combines time and threshold to jointly regulate the update frequency of the template
update strategy.

(3) The method is extensively experimented on several publicly available benchmark
datasets and achieves better performance than several state-of-the-art trackers.

The rest of this paper is organized as follows: Section 2 reviews previous research in
the field of object tracking. Section 3 introduces the proposed online bionic visual siamese
tracking framework based on the mixed time-event triggering mechanism. In Section 4, we
present the experimental results and compare our method with other state-of-the-art tracking
methods. The conclusion of this paper is presented in Section 5.

2 Related work

In Siamese-based tracking, the search area is cropped from the current frame according to
the target tracking result of the previous frame, and the template is cropped from the initial
frame. In deformation or occlusion scenarios, the semantic information of the initial object
is not enough to match the current object, which is the main reason for the failure of track-
ing. Therefore, online update based siamese trackers are proposed. Most of these trackers
generate multiple response maps by adding an update template or template pools, and lin-
early adds multiple response graphs to locate targets. This method not only puts forward
higher requirements on the generalization ability of the network, but also requires a suit-
able update strategy to effectively balance speed and performance. In response to the above
requirements, the first contribution of this paper is the novel bionic visual network. By intro-
ducing two special network structures, the network not only weakens the loss of translation
invariance, but also expands the receptive field of the network. The network can extract tar-
get features stably and efficiently. The second contribution is the template update strategy
with the mixed time-event triggering mechanism. This strategy collects high-quality tem-
plates, adaptive fusion features, and a special update trigger mechanism during the tracking
process, which effectively balances the speed and performance of the tracker.
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Siamese network based trackers SiamFC approaches tracking modeling as a similar
learning problem, and uses a fully convolutional siamese network to extract the features of
the target template and the search region, then uses a simple intercorrelation operation to
perform a sliding window evaluation of the search region. SiamFC achieves speed beyond
real-time tracking, benefiting from a network trained offline and no need for online updates.
However, robustness and recognition capability of SiamFC are still insufficient under defor-
mation and occlusion scenarios. SiamRPN [28] introduces a region proposal network into
SiamFC, which gets rid of the traditional multi-scale testing, resulting in a certain perfor-
mance improvement in deformation scenarios, and the algorithm shows high performance
on multiple challenging datasets [23–25]. SiamMN [12] designs a new feature extraction
method based on SiamRPN. By fusing the template with the three-layer features of the
search area, SiamMN obtains deep features containing more semantic information, so that
the target can obtain a higher response on the score map. SAsiam [17] constructs a twofold
Siamese network, in which one branch learns semantic information and the other branch
learns appearance information, and combines the two to improve the localization accuracy
of the tracker. CFNet [39] introduces a correlation filter layer in the Siamese backbone
network, which is capable of end-to-end training. This way of constructing the network
reduces the amount of parameters without sacrificing accuracy. This method is also one of
the commonly used methods in subsequent online update algorithms. In the latest research
of some Siamese algorithms, various attention modules are often introduced in the feature
extraction network, and the localization accuracy of the tracker is improved. Zhu et al. [54]
add multiple attention mechanisms to the basic backbone network, and design a template
search collaborative attention module. This module obtains the context information of the
target through global average pooling and one-dimensional convolution, and uses it in com-
bination with the template feature to improve the accuracy of target positioning. Compared
with previous siamese-based trackers, we design the bionic vision network that can extract
object features stably and efficiently during tracking. Moreover, since the loss of transla-
tion invariance is alleviated, the network can stably extract high-quality target features. It
provides a solid foundation for the design of template update strategies and prevents tracker
degradation.

Convolutional neural network It is well known that convolutional neural networks rev-
olutionize computer vision, allowing the fields of image recognition, target detection, and
target tracking to advance by leaps and bounds. In the research process of network architec-
ture, many complex deep architectures have appeared, such as VGGNet [37], AlexNet [26],
ResNet [18], etc. VGGNet uses a small-scale convolution kernel, reduces network param-
eters, and adjusts the network structure to facilitate parallel acceleration using hardware.
AlexNet adds the relu activation function, which improves the training speed, and uses the
dropout operation to alleviate overfitting. ResNet alleviates model degradation and deepens
the number of neural network layers through the residual structure. These networks facilitate
the development of vision algorithms. The key to the success of these vision algorithms is
the inductive bias of the method. In particular, the choice of convolution and pooling in the
convolutional neural network is motivated by the desire to endow the networks with invari-
ance to irrelevant cues such as image translations, scalings, and other small deformations.
For the Siamese-based tracker, the position of the object changes due to both displace-
ment and distortion, which requires the network to have translation invariance to ensure
the performance of the tracker. However, according to the recent research [1, 49], mod-
ern convolutional networks are not shift-invariant, as small input shifts or translations can
cause drastic changes in the output. The lost of translation invariance affects the quality of
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target features extracted by the network. Low-quality template features are detrimental to
the study of template update algorithms. To extract the target features stably and effectively,
this paper introduces blurpool and receptive field block into the convolutional neural net-
work. Unlike other convolutional neural networks for the task of improving performance,
the bionic visual network aims to alleviate the lost of translation invariance, improve the
quality of extracted features, and provide rationality for the template update strategy of the
tracking algorithm.

Template update Most trackers [3, 33, 55] do not update the initial template during the
tracking process. It is difficult for these trackers to perform well in deformation and occlu-
sion scenarios, due to the difficulty in obtaining recent feature changes of objects. To track
stably and continuously, some algorithms [4, 22, 36] update the target template during the
tracking process to improve the tracking accuracy. The most common of these template
update strategies is to update at a fixed frame interval or every frame. Zhao et al. [51] pro-
pose a template updating method via reinforcement learning, which is used to determine
whether each template in the template pool should be replaced by constructing an actor and
critic network. Multiple templates in the template pool and a search area obtain multiple
response maps to locate the current target position. The method updates the parameters of
the network at each frame during the tracking process. Wei et al. [41] introduce a squeeze-
and-excitation block in the Siamese backbone network, which enhance the network’s ability
to perceive the target, and introduce the template update mechanism of UpdateNet [48],
relying on accumulated templates and an offline trained network to predict the target fea-
ture. This method also requires frequent updating of the template feature during tracking.
These algorithms are easily affected by low-quality templates during tracking, which even-
tually lead to tracking failure, and the fixed update method also affects the speed of tracking.
Some researchers design template quality assessment methods to identify updated target
templates. Yuan et al. [47] introduce average peak-to-correlation energy (APCE) to deter-
mine whether to update the template. APCE mainly reflects the fluctuation degree of the
response map and the confidence level of the detection target. Yang et al. [46] employ a long
and short-term memory method that takes previously collected templates to estimate the
current template, but this model is a rather complex network structure and computationally
expensive. A single or overly complex update method is difficult to adapt to the changing
tracking environment, which requires the template update mechanism to change the update
strategy according to the tracking situation, effectively balancing the performance and speed
of the tracker. Therefore, we propose a template update strategy with the mixed time-event
triggering mechanism, which not only reduces the possibility of template contamination,
but also reduces the computational effort of frequently computing useless template features.
Through extensive experiments, we demonstrate that this strategy is effective.

3 The proposed approach

The goal of our approach is to address the problem that the tracker has difficulty adapting to
target appearance variations during target tracking. The flow chart of our proposed approach
is shown in Fig. 2, which illustrates the whole tracking process. It can be observed from
Fig. 2 that we first extract the initial template feature, search region feature, and X-frame
template feature with the bionic visual network. The initial template feature is convolved
with the search area features to obtain response map I. X-frame template feature is con-
volved with the search area features to obtain response map X. The response map I and
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Fig. 2 Flowchart of the proposed approach

response map X are fused to obtain the prediction result based on the fused response map.
Finally, the prediction result is input into the quality assessment model for quality evalu-
ation, and the mixed time-event triggering mechanism combines the evaluation value and
time to decide whether to update the template.

3.1 Basic tracker SiamFC

The Siamese-based trackers essentially find the region in the image which is most similar to
the given bounding box. SiamFC propose to exploit the Siamese network [38] to learn the
similarity measure function f . SiamFC applies an identical transformation φ to both inputs
respectively denoted by z and x and then compares the similarity of representations using
predefined metric function g according to f (z, x) = g (φ (x) , φ (z)). The function g is
fully convolutional with respect to the search image x , which enables unequal size between
z and x and allows the similarity function to be computed for all translated sub-windows
within x in one evaluation. The embedding function φ resembles the convolutional layers of
AlexNet. After training, for each new frame, SiamFC searches for the target in a region two
times the size of the initial annotated bounding box centered on the target position of the
previous frame and obtains the response map by intercorrelation. The maximum position
on the response map is identified as the new target position. This idea of treating tracking
as similar learning enables SiamFC to achieve good performance and speed. However, this
idea also leads to the template adaptability and feature expression of the target are key for
siamese-based trackers to localize targets by similarity evaluation.

3.2 Architecture of the designed bionic visual network

In this paper, we introduce receptive field block and blurpool into AlexNet to construct a
bionic vision network. The network enables to provide a more comprehensive description
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for target feature extraction and alleviates the lost of translation invariance of convolutional
neural networks. The property that the network maintains the translational invariance of the
convolutional neural network also provides rationality for the subsequent template update
strategy.

Figure 3(a) depicts the network structure of SiamFC. In SiamFC, the feature maps
extracted by AlexNet are used for object location. However, the target features extracted
by AlexNet are not detailed and comprehensive enough. In the target deformation scenario,
it will cause a large difference between the target candidate frame and the target tem-
plate. Unlike AlexNet, the proposed bionic visual network adopts two novel modules: the
receptive field block and the blurpool, to improve location accuracy. The former exploits
dilated convolution of different sizes to capture information over larger regions and in
more contexts. This structure improves the distinguishability and robustness of the fea-
tures. The latter introduces classic anti-aliasing, which improves the translation invariance
of the convolutional neural network. The structure of the bionic visual network is shown in
Fig. 3(b).

3.2.1 The receptive field block

SiamFC uses the first five convolutional layers of AlexNet to extract the target features,
the deep low-resolution feature undergoes multiple convolutional operations to extract
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Fig. 3 Network architecture of the designed bionic visual network
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rich semantic information. However, due to excessive downsampling operations, a lot of
detailed information about the target is lost, making the model more robust but with reduced
localization accuracy.

To produce more discriminative and robust features, in our implementation, we keep the
convolution operation of AlexNet and add the receptive field block between the first and
second convolution layers of AlexNet.

The first step of the receptive field block employs 1∗1 convolutional layer in each branch
to reduce the number of channels in the feature map, then passes through n∗n convolutional
layers. The second step adds three different sizes of dilated convolutions, 1∗1, 3∗3 and 5∗5.
The feature maps are padded before the dilated convolution operation to ensure that the
three branches output the same feature size. Eventually, the feature maps of all the branches
are concatenated, merging into a spatial pooling or convolution array as in Fig. 3(b). The
receptive field block imitates the perceptual field structure of the human visual systems.
The dilated convolutions of different sizes capture multi-scale information about the target
and maintain some critical details. This allows the network to extract more discriminative
and robust features.

3.2.2 The blurpool

According to recent studies [1, 49], the convolutional neural network is not translation
invariant, which leads to a large change in the features of the same target in different
states extracted by the convolutional neural network. We believe that the lost translational
invariance of convolutional neural networks is one of the reasons, which results in the per-
formance degradation of some siamese-based trackers after the introduction of template
updates. Therefore, to alleviate the lost of translation invariance of the convolutional neu-
ral network, we introduce blurpool into the basic network. The blurpool integrates low-pass
filtering to anti-alias. In our implementation, the blurpool (stride=2) is combined with the
maxpool (stride=1) to replace all the maxpool (stride=2) in AlexNet as in Fig. 3(b). The
introduction of blurpool maintains the translation invariance of the convolutional neural net-
work and improves the generalization ability of the network. This provides rationality in the
subsequent design of the template update strategy.

3.2.3 Ground-truth and Loss

During the whole process of end-to-end training, the binary cross entropy loss is used for
classification loss. Let R denote the network output, which is obtained by convolution oper-
ation and sigmoid operation of the target template feature with the search region feature. V

denotes the sample label, the center point of this label is set to 1 within the radius of the
positive label, and the rest is set to 0 (in this work, radius = 16). W denotes the label weight,
which is determined by the number of positive and negative labels in V . The loss function
formula is as follows:

Lcls = −mean ((V × log (R )+ (1 − V )×log (1 − R ))×W) (1)

As shown in Fig. 4, we substitute the tracking network of the basic tracker with the
bionic visual network for tracking tests and visualize the response maps. These response
maps show a higher response at the center of the target.
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3.3 The template update strategy withmixed time-event triggeringmechanism

During target tracking, the appearance information of the template is the key to the tracking
results. The first frame of a tracking video sequence contains a lot of highly reliable target
appearance information. Therefore, most of the siamese-based trackers only use the tem-
plate given in the first frame for feature models. However, only the first frame is used as the
fixed template without updating the target template. When the target appearance changes
greatly, it is easy to lose the target. The recent frame is very related to the current state of
the target, which contains more useful information about the appearance changes of the tar-
get. However, if the recent frame is used directly as a template without quality assessment,
the tracking shift will occur in all subsequent frames when the recent frame is tracking drift.
Therefore, this paper proposes a template update strategy with the mixed time-event trig-
gering mechanism, which combines the quality-evaluated recent frame template with the
first frame template to generate the final response map, to improve the tracking robustness.
And to balance the performance and speed of the algorithm, the mixed time-event triggering
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mechanism is used to guide the template update. Next, we explain the template update strat-
egy in three parts, the quality assessment model, the adaptive template fusion mechanism,
and the mixed time-event triggering mechanism.

3.3.1 The quality assessment model

We adopt Mdnet [32] as our base quality assessment model. The model consists of three
convolutional layers and two fully connected layers. It crops the input image to 107∗107∗3
and outputs a single evaluation value S. The mdnet is trained online by long-short term
updates and collects a large number of positive and negative samples. These strategies result
in Mdnet to run at a very slow speed, only 5 frames per second. To maintain the real-time
nature of the algorithm, we replace the long-short update strategy with a fixed frame update
interval, (In this work, the value is 10). During the tracking process, the predicted result is
fed into the quality assessment model, and when the evaluated value is greater than the set
threshold γ , (in this work, γ = 0.6), it is further decided by the mixed time-event triggering
mechanism whether to update the dynamic template.

3.3.2 The mixed time-event triggeringmechanism

The template update based target tracking algorithm still has many problems, due to the fact
that each time the acquirement of target features needs to be computed by the convolutional
network. If we only rely on the fixed threshold to determine whether the algorithm template
is updated, which often consumes a lot of computational power and results in a decrease
in tracking speed. However, to improve the tracking speed, an update strategy using fixed
interval frames is chosen, which makes the tracker unable to obtain some feature changes of
the target in time. It is a key issue to balance the performance and speed of the tracking algo-
rithm. Therefore, we design the mixed time-event triggering mechanism, which achieves a
finer balance between the performance and speed of the algorithm during tracking.

Before introducing the mixed time-event triggering mechanism, we first describe the
definition of time trigger mechanism and event trigger mechanism respectively. In the oper-
ation of dynamic systems, event triggering is updated at the moment of the next evaluation
event, and time triggering is updated using a fixed length of time. The use of event trig-
gering can provide timely and accurate response to the trust relationship of entities. Time
triggering updates the system by a fixed length of time. If event triggering is initiated fre-
quently, it will lead to a large amount of wasted computational power. While time triggering
can fully adjust the time step for updating, this way has a certain delay, but the load of the
system is less. To obtain the advantages of both triggering mechanisms, the mixed time-
event triggering mechanism splits the template update problem and uses different update
models for different tracking situations, which are in turn processed according to switching
rules between these update models. Next, we describe in detail the mixed time-event trig-
gering mechanism. For a tracking system without template updates, the construction of an
input-output system is represented as:

Bi = f1 (B1, im) (2)

where Bi denotes the target template, which is not updated during the tracking process. B1
denotes the predicted result. im denotes the search region.

For our tracking system, the input-output system is constructed as follows:

Bi, Si = f2
(
B1, Btk , Sj , im

)
(3)
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where Btk denotes the dynamic template. Sj denotes the evaluation value of the dynamic
template. Si denotes the evaluation value of the predicted result.

Before describing the template update switching rule, the predicted results sequence is
set as follows: {B1, B2,B3,...} .

Set the sequence of dynamic templates to be used for each frame as follows:{
Bt1 , Bt2 ,Bt3 ,...

}
.

The template update rule is to replace Bti with Bti+1 , where t i+1 is defined as follows:

ti+1 = Inf
{
k > ti, Stk − Sti � α or tk − ti � β

}
(4)

where α denotes the event trigger factor. β denotes the time trigger factor. (In this work,
α = 0.1, β = 5.)

During the tracking process, the tracking system determines the dynamic template by
the mixed time-event triggering mechanism after the tracking result is obtained for each
frame. The mixed time-event triggering mechanism, by mixing dynamic tracking system
with discrete event regulation, is able to increase the tracking speed with less increase in
system load.

3.3.3 The adaptive template fusion mechanism

In the research of template update strategy, some tracking methods adopt the simplest aver-
aging strategy to update the target appearance model, which gives the same weight to each
target template. However, this update strategy treats each template equally, making the
tracker unable to obtain the feature changes of the target timely. Another part of researchers
introduces a linear update strategy to update the target appearance model, which is a func-
tion that decays exponentially with time to assign weights to different templates. Due to
its acceptable performance, it has long been a widely adopted strategy for online updat-
ing. However, these template update strategies tend to make the tracker lose the first frame
of template information, which is undoubtedly the most reliable. Therefore, we propose an
adaptive template fusion mechanism. The formula is expressed as follows:

Rnew
i =

(
1 − w

)
×SX × RX

i + w × RI
i (5)

Where w is a predefined hyperparameter. RI
i is the current frame response map generated

from the first frame template. RX
i is the current frame response map generated from the X-

frame template. Rnew
i is the final response map. SX is the evaluation value of the X-frame

template.

4 Experiment

This section presents the results of our algorithm on multiple benchmark datasets, with
comparisons to the state-of-the-art tracking algorithms. Ablation studies are also provided
to analyze the effects of the components in the proposed networks.

4.1 Implementation details

Training. The experiment is conducted on a PC with Intel (R) Core (TM) i7-9700K CPU
3.60GHZ and NVIDIA Quadro RTX 4000. Our novel bionic visual network and template
update strategy are implemented based on the Pytorch framework for Python with OpenCV

15210 Multimedia Tools and Applications (2023) 82:15199–15222



4.5. The training image pairs for our algorithm are collected from the ImageNet VID dataset
[28]. The size of an exemplar image is 127 ∗ 127 pixels, while the size of a search image
is 255∗255 pixels. The network parameters are initialized with the normal distribution. We
use stochastic gradient descent (SGD) to train the network from scratch, with momentum
set to 0, weight decay set to 0, and initial learning rate set to 0.01. The learning rate is
dynamically adjusted by StepLR, with the decay rate set to 0.1 and the step size set to 25.
The model is trained for 30 epochs with a mini-batch size of 32. The loss curve during the
training process is shown in Fig. 5.

4.2 Experiments on the tracking benchmark

4.2.1 Experiment on the GOT-10k dataset

GOT10K is a large-scale single-object tracking benchmark consisting of 10k video
sequences, covering most of 563 object classes and 87 motion patterns, and is the most
abundant motion trajectory dataset. This dataset contains more video sequences with defor-
mation and partial occlusion than OTB. Results of GOT-10k testset need to be uploaded to
the official website for analysis. The provided evaluation indicators include average overlap
(AO) and success rate (SR). The AO represents the average overlaps between ground-truth
boxes and estimated bounding boxes. The SR0.5 is the rate of successfully tracked frames
that overlap more than 0.5, while SR0.75 is the rate of successfully tracked frames that
overlap more than 0.75.

We evaluate our algorithm on GOT-10k testset and compare it with trackers such as
SiamFC, SiamRPN, C-COT [9], KCF [19], ECO [5], Staple [2], MEEM [23], Mdnet, DTDU
[29], MFESiam [11], DCANet [30] and ESiamFC [20]. As shown in Table 1, our tracker is
ranked 1st in all indicators except HZ indicator. Among these algorithms, classical Siamese
algorithms (SiamFC and SiamRPN) usually fail to track in the challenges of deformation,
occlusion or fast motion, mainly due to the difficulty in adapting to the feature changes of
the target. Our tracker handles these situations well due to the online update strategy. For the
classic correlation filtering based trackers (KCF, Staple and ECO), the frequency domain
computation method greatly improves the speed of the tracker. But compared with the deep
features used in our algorithm, its generalization ability is insufficient, and it is prone to
tracking failure. Tracking algorithms based on classification ideas (MEEM and MDnet)
have high requirements for training samples, and it is difficult to maintain tracking perfor-
mance in complex tracking environments. The latest siamese-based algorithms (MFESiam,

Fig. 5 Loss curve of the bionic visual network
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Table 1 Details about the state-of-the-art trackers in GOT-10K

Tracker AO SE0.50 SR0.75 HZ

SiamRPN 0.367 0.425 0.103 47.10

Siamfc 0.348 0.353 0.098 44.15

C-COT 0.325 0.328 0.107 0.68

ECO 0.316 0.309 0.111 2.62

Mdnet 0.299 0.303 0.099 1.52

MEEM 0.253 0.235 0.068 20.59

Staple 0.246 0.239 0.089 28.87

KCF 0.203 0.177 0.065 96.66

DTDU 0.375 0.416 0.133 44.0

MFESiam 0.389 0.400 0.143 –

DCANet 0.403 0.466 0.150 28.06

ESiamFC 0.381 0.435 0.132 26.36

Our 0.425 0.467 0.307 30.67

The best and second best values are highlighted in bold and underlined

DTUD, DCANet and ESiamFC), the innovations of these algorithms include multi-feature
fusion, online update, special attention structure, and new construction of a backbone net-
work. They all have good performance in tracking performance, but our algorithm considers
the problem of tracker performance degradation caused by the loss of translation invari-
ance of the neural network when designing the online update strategy. And considering the
practical application of the target tracking algorithm, we introduce the mixed time-event
triggering mechanism into the online update strategy, which can effectively balance the
performance and speed of the algorithm. Therefore, our tracker has good performance and
speed.

4.2.2 Experiment on the UAV123 dataset

UAV123 contains 123 fully annotated HD video sequences over 110K frames. Acquired by
low-altitude UAVs, this dataset provides an aerial point of view video sequences that are
inherently different from traditional temporal tracking benchmarks such as OTB and VOT.
This dataset contains video sequences such as viewpoint changes, drastic object appearance
changes, complete occlusions and partial occlusions. Objects in the dataset have large scale
differences in the early and late stages. Due to the movement of the camera and objects can
be seen fast movement, occlusion and other difficulties, which makes tracking with this data
set challenging.

As shown in Table 2, we evaluate the proposed method with several representative
methods including SiamRPN, DaSiamRPN [55], ECO, SiamFC, DeepSRDCF [7], Sta-
ple, MEEM, A3CT [10], FF-Siam-CA [14], SiamFF-AV [15], SiamRPN++ [27]. In the
algorithm comparison of this dataset, DeepSRDCF is a deep features based algorithm,
which shows good performance in the early simple tracking environment. Other algorithms
(SiamRPN++, DaSiamRPN, FF-Siam-CA, SiamFF-AV and A3CT.), most of these algo-
rithms try to improve the quality of target modeling, the methods used include multi-layer
feature fusion, deepen the network, depth reinforcement learning methods, etc. However,
most tracking networks contain a large number of down-sampling operations, which results
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Table 2 Details about the
state-of-the-art trackers in
UAV123

Tracker ARE AOR

SiamRPN 0.710 0.577

DaSiamRPN 0.724 0.569

ECO 0.688 0.525

Siamfc 0.648 0.485

DeepSRDCF 0.627 0.463

Staple 0.614 0.450

MEEM 0.570 0.412

A3CT 0.622 0.471

FF-Siam-CA 0.708 0.505

SiamFF-AV 0.700 0.497

SiamRPN++ 0.745 0.551

Our 0.746 0.564
The best and second best values
are highlighted in bold and
underlined

in the inability of the tracker to improve target localization. Since our algorithm solves this
problem, it performs well in localization accuracy.

4.2.3 Experiment on the OTB100 dataset

OTB100 contains one hundred videos with eleven attributes, focusing on testing and
analyzing the tracker’s ability to handle different scenes, such as illumination variation,
deformation, occlusion, fast motion, etc. It is widely used to track literature. The pro-
posed method is compared with different algorithms, the correlation filters based trackers,
SRDCF [8], Staple, fDSST, the Siamese network based trackers, SiamDW [50], SiamRPN
and SiamFC. Figure 6 shows the DP and AUC score of OTB100 datasets. The results show
that our method greatly outperforms the correlation filter-based tracking method. Compared

Fig. 6 Success and precision plots on the OTB-100 dataset
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with the tracking algorithm based on the Siamese network, our algorithm shows a good
performance. This indicates that the proposed method can effectively improve the target
representation to achieve better robustness.

4.2.4 Experiment on the VOT2016 dataset

VOT2016 contains 60 challenging public videos. This challenge has been held every year
since 2013, and many trackers are tested on it. The test criteria of VOT2016 is different
from other datasets, the tracker is reset using ground-truth after 5 frames of tracking fail-
ure. Therefore, a robustness index is included in the evaluation criteria, which is calculated
based on the number of tracking failures. For the assessment on VOT2016, we report the
performance of some of the best non-siam-based trackers for reference, including Mdnet,
ECO-HC [5], Staple, and EBT [53]. And compared with other siam-based trackers, such as
SiamRPN, SiamAN [23], SiamRN [23]. The EAO curve evaluated on VOT2016 is presented
in Table 3 and 7 other state-of-the-art trackers are compared. Table 3 shows the results of the
proposed tracker are on par with that of the state-of-the-art algorithms and are the best with
an Accuracy score of 0.610 and a Robustness score of 0.545. The first tracker, SiamRPN,
is much better than our tracker in terms of EAO, while much lower in terms of Accuracy
and Robustness, suggesting that the bionic vision network and template update mechanism
introduced improves tracking performance.

4.2.5 Experiment on the VOT2018 dataset

VOT2018 contains 60 video sequences, VOT2018 and VOT2016 have 10 different video
sequences, and the tracking dataset is also more challenging. We compare the proposed
tracker with 7 state-of-the-art tracking algorithms on VOT2018 dataset. These trackers are:
SiamFC, Staple, DAT [34], SiamLM [23], MEEM, KCF and Dsiam [16]. We evaluate the
proposed method on VOT2018, and report the results in Table 4. As shown in Table 4, our
method achieves the best accuracy score of 0.577 and the EAO score of 0.209. Notably, our
method sets a new state-of-the-art by improving 0.022 absolute value, i.e., 2.2% relative
improvement, compared to SiamFC, indicating that the bionic vision network and template
update mechanism can significantly decrease the tracking failure.

Table 3 Details about the state-of-the-art trackers in VOT2016

Tracker EAO Accuracy Robustness

SiamRPN 0.344 0.56 1.08

SiamRN 0.277 0.55 1.37

SiamAN 0.235 0.53 1.65

Mdnet 0.257 0.54 1.2

ECO-HC 0.322 0.53 1.08

Staple 0.295 0.54 1.35

EBT 0.291 0.47 0.9

Our 0.258 0.610 0.545

The best and second best values are highlighted in bold and underlined
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Table 4 Details about the
state-of-the-art trackers in
VOT2018

Tracker EAO Accuracy Robustness

SiamFC 0.187 0.503 0.585

Staple 0.169 0.530 0.688

DAT 0.144 0.435 0.721

SiamLM 0.230 0.500 0.297

MEEM 0.193 0.463 0.534

KCF 0.134 0.477 0.773

Dsiam 0.196 0.512 0.646

Our 0.209 0.577 0.693
The best and second best values
are highlighted in bold and
underlined

4.3 Qualitative evaluation

Figure 7 shows some results of the top-performing tracker: SiamDW, SiamRPN, SiamFC,
GradNet and fDsst on 7 challenging sequences (from top to down: Bird2, Bolt2, Box,
DragonBaby, Ironman, MotorRolling, Skater2, respectively). These video sequences con-
tain deformation and occlusion challenges.

In the Bird2 and Bolt2 sequences, the scene contains the motion of many objects and the
frequent deformation of the target. We can observe that when the target is deformed, these
trackers drift and fDsst even fails to track. However, our tracker can maintain good tracking
performance. This is due to the fact that the bionic visual network alleviates the loss of
translation invariance and enlarges the receptive field. The target positioning capability of
the tracker is guaranteed.

In the Box and Ironman sequences, the tracked objects are often occluded due to the
complexity of the scene. SiamDW, SiamRPN, SiamFC, these siamese-based trackers rely
on static template matching and their performance degrades severely in this scenario. Our
algorithm enables the tracker to acquire the feature changes of the target in time due to the
template update strategy with mixed time-event triggering mechanism.

In the DragonBaby, Skater2 and MotorRolling sequences, although GradNet can update
templates online, due to the lack of a template evaluation mechanism, the tracking perfor-
mance is degraded due to the used of low-quality templates during the tracking process.
And our tracker includes a quality assessment model to ensure the effective operation of the
template update strategy.

In summary, these tracking sequences contain occlusion and deformation challenges,
which prove that the tracker proposed in this paper can handle these challenges well.

4.4 Ablation study

In this section, we perform an ablation analysis of the bionic visual network and the tem-
plate update strategy with the mixed time-event triggering mechanism. To more intuitively
illustrate the effectiveness of our proposed network and strategy, we experiment with an
evaluation to analyze the algorithms in the UAV123 dataset. The average pixel error (ARE),
average overlap rate (AOR), floating-point operations per second (FLOPs) and Params are
shown in Table 5. Siambase represents the basic tracker SiamFC. BV represents the bionic
vision network. Update represents the template update strategy with the mixed time-event
triggering mechanism. As can be seen from Table 5, the introduction of the bionic visual
network results in a 5.5% increase in the ARE of the algorithm performance compared to
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Fig. 7 Qualitative experiments

Siambase, while the AOR decreases by 0.6% compared to Siambase. The algorithm per-
formance is further improved by introducing the template update strategy with the mixed
time-event triggering mechanism, with a 4.3% increase in ARE and a 7.9% increase in AOR
compared to Siambase. Further, we analyze the algorithm’s precision plots and success
plots on each challenging tracking attribute of OTB100. Compared with the basic tracker,
our algorithm shows a large improvement in each challenge scenario. Details are shown in
Fig. 8.

We compare the FLOPs and Params of the above three trackers. As shown in Table 5. The
input tensor of the backbone network is 1 ∗ 3 ∗ 255 ∗ 255. According to data analysis, the
introduction of BV not only reduces the FLOPs and Params of the original feature extraction
network, but also improves the performance of tracker target localization. This proves that
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Table 5 The algorithm complexity analysis of all trackers are compared on ARE, AOR, HZ, FLOPs (MB),
Params (MB) on the UAV123 dataset

Tracker ARE AOR FLOPs (MB) Params (MB)

Siambase 0.648 0.485 1989.31 2.34

Siambase+BV 0.703 0.479 1698.43 2.31

Siambase+BV+Update 0.746 0.564 1822.72 6.74

the operations of alleviating the loss of translation invariance and expanding the receptive
field are effective in improving network performance. Among them, we analyze that the
reason for the reduction of FLOPs and Params is to set the output channel to 16 in the
first layer of the convolution operation of the network, and enlarge it to 96 by the receptive

Fig. 8 Comparison of precision plots and success plots on challenging attributes for tracking, including scale
variation, motion blur, out of view, in-plane rotation, low resolution, occlusion, fast motion, and deformation
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Table 6 Influence of the parameters α, β tuning on tracking performance

β = 1 β = 5 β = 10 β = 15

AO HZ AO HZ AO HZ AO HZ

α = 0 0.437 15.19 0.429 26.67 0.426 24.7 0.409 23.46

α = 0.1 0.437 15.19 0.425 30.67 0.419 28.55 0.409 25.00

α = 0.2 0.437 15.19 0.423 32.15 0.420 31.04 0.412 29.89

α = 0.3 0.437 15.19 0.420 35.84 0.421 35.38 0.418 35.38

field block. The dilated convolution operation in the receptive field block greatly reduces
the rise in network complexity. After the introduction of the template update strategy, the
FLOPs of the tracking algorithm increased slightly, and the Params increased significantly.
Among them, the rise of Params is mainly due to the three-layer fully connected layer of
the quality assessment model. But from the performance point of view, the template update
strategy helps the tracker to get a good improvement in both evaluation metrics (ARE and
AOR).

In addition, we conduct experiments on the parameters α, β of the mixed time-event trig-
gering mechanism and the parameter w of the adaptive template fusion mechanism. These
experiments are conducted out on the GOT10k dataset, based on two metrics, AO and HZ.
The AO represents the average overlaps between ground-truth boxes and estimated bound-
ing boxes. The HZ represents the tracking speed of the tracker. The parameter influence is
shown in Table 6. According to the data in Table 6, with the increase of β related to the
time triggering mechanism, the AO gradually decreases. This is because the event-triggering
mechanism is not always activated. The longer the time interval, the less frequently the
update template mechanism is triggered, resulting in degraded tracker performance. As the
α associated with the event-triggered mechanism increases, the total number of times the
event-triggered mechanism is activated decreases, reducing the number of template updates.
So the speed metric of the tracker has improved. With the increase of w, the proportion of
the response map generated by the first frame template in the final response map increases,
and the AO increases and then decreases. This is due to the fact that the static template can-
not reflect the target feature changes, which leads to the performance degradation of the
tracker. The parameter w has little effect on HZ, and in a limited number of trials, the speed
of the tracker is keeping at around 30 frames (Fig. 9).
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Fig. 9 Influence of the parameters w tuning on tracking performance
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5 Conclusions

In this paper, we first introduce the definition of target tracking and the development of
tracking algorithms. Then, we analyze the reasons why the siamese-based trackers lead
to severe performance degradation in target deformation and occlusion scenarios: most
siamese-based trackers extract target features only in the first frame, and generate response
maps in subsequent frames only by the static features of the target. After that, we find
that in many online update based tracking algorithms, it is desirable to obtain high-quality
templates to prevent the degradation of tracker performance. Therefore, these algorithms
introduce a large number of attention modules into the network structure to fuse the features
of each layer or design a special update mechanism, however, the impact of the transla-
tion invariance of the network on the online update-based tracking algorithm is ignored.
The quality of features extracted by convolutional neural networks for the same target at
different locations fluctuates widely.

This paper is based on the existing research on network characteristics, an online bionic
visual siamese tracking framework based on the mixed time-event triggering mechanism is
designed. The bionic vision network that combines the dilated convolutions to expand the
perceptual field and blurpool to mitigate the loss of translation invariance to improve the
stability and quality of extracted features. The template update strategy with a mixed time-
event triggering mechanism is proposed to improve the accuracy of the tracker in target
deformation scenarios. In the experimental section, five mainstream single-target tracking
datasets (GOT-10k, UAV123, OTB100, VOT2016, VOT2018) are used to evaluate the per-
formance of the tracker proposed in this paper, and these tracking datasets contain multiple
challenging scenarios such as deformation and occlusion. We also analyze in detail the
reasons why the tracker achieves the advantage in specific scenarios through qualitative
experiments. Extensive quantitative and qualitative experiments show that alleviating the
lost of translation invariance of the network can improve the performance of the tracker in
occlusion and deformation scenarios. Therefore, the online bionic visual Siamese tracker
based on mixed time-event triggering mechanism has better competitive performance and
tracking speed in the tracking scene including deformation and occlusion.

Although the proposed tracking approach achieves better performance than several state-
of-the-art trackers, it cannot handle the problem of similar object interference well. In the
future, we will investigate the redetection component to recover the tracked target in case of
tracking failure caused by similar object interference.
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