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Abstract
Most facial expression recognition (FER) algorithms are based on shallow features, and
the deep networks tend to lose some key features in the expression, such as eyes, nose
and mouth. To address the limitations, we present in this paper a novel approach, named
CBAM-Global-Efficient Channel Attention-ResNet (C-G-ECA-R). C-G-ECA-R combines
a strong attention mechanism and residual network. The strong attention enhances the
extraction of important features of expressions by embedding the channel and spatial atten-
tion mechanism before and after the residual module. The addition of Global-Efficient
Channel Attention (G-ECA) into the residual module strengthens the extraction of key
features and reduces the loss of facial information. The extensive experiments have been
conducted on two publicly available datasets, Extended Cohn-Kanade and Japanese Female
Facial Expression. The results demonstrate that our proposed C-G-ECA-R, especially under
ResNet34, has achieved 98.98% and 97.65% accuracy, respectively for the two datasets,
that are higher than the state-of-arts.
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1 Introduction

Facial expression is the most intuitive and natural way to convey personal mental activi-
ties, thoughts, mental states, and judge emotions. Facial Expression Recognition (FER) has
been applied to many fields such as human-computer interaction, mental health assessment,
driver fatigue detection, and criminal lie detection. Traditional FER includes 3 steps: image
preprocessing, feature extraction, and feature classification. The methods like active shape
model (ASM) [16], active appearance model (AAM) [24], appearance feature based local
binary pattern (LBP) [32], and Gabor wavelet transform [15] are used for feature extrac-
tion, and hidden markov model (HMM) [4], bayesian classification (BN) [26], and support
vector machine (SVM) [25] for feature classification. To further increase the accuracy of
FER, in recent years, more and more researchers turn to deep learning, taking advantage of
its end-to-end learning and direct extraction of features through network training. Wu et al.
combined CapsNet [22] and Inception-ResNet-v1 to propose FaceCaps [30] that changes the
first layer of the convolutional layer in the original capsule network to Inception-ResNet-v1.
FaceCaps extracts the feature of facial expressions and then implements the final expres-
sion classification through the primary capsule, digital capsule routing, and fully connected
layer. Cao et al. proposed E2-Capsnet network [5] that embeds the AU-attention mechanism
to the VGG16 network and combines it with CapsulesNet. Arriaga et al. proposed a real-
time convolutional neural network (CNN) for the classification of expressions and achieved
good results [1].

To take a step further on feature extraction, especially those key features such as eyes,
nose, and mouth, CNNs have been combined with other advanced methods such as attention
mechanism, which imitates the human vision mechanism to obtain more useful informa-
tion. In 2014, Mnih et al. [17] used the attention mechanism on the RNN model for image
classification and focused on the key features of the image by assigning different weights to
the feature map. In 2018, Roy et al. proposed the squeeze-and-excitation-network (SE-Net)
channel attention mechanism [20] to learn the key feature connections between channels,
which significantly improved the performance of CNN. Woo et al. proposed a convolutional
block attention module (CBAM) attention mechanism [29] that combines channel attention
and spatial attention. CBAM improves the network’s capture of certain features and key
locations. In 2020, Wang et al. proposed a lightweight efficient channel attention network
(ECA-Net) [27] that has local cross-channel interaction capabilities to improve the perfor-
mance of image classification and target detection based on SE-Net. In 2021, Wang et al.
[28] used attention branches to extract important local information of facial expressions, and
Gera et al. [7] proposed an end to end architecture for FER through a novel spatio-channel
attention (SCAN) to capture features of per channel and spatial location.

However, the facial expressions extracted by most FER methods such as [6, 8] are insuf-
ficient because they do not pay strong attention to the key features, such as eyes, noses,
and mouth. As a result, the deeper network layers such as those in [31, 33] may easily lose
the distinctive key feature. [7, 28] used attention mechanism to strengthen the extraction
of important features of facial expression, and [30] redesigned a new network FaceCaps
to effectively extract expression features under the deep network according to the charac-
teristics of different networks. To address these issues, in this paper we propose a novel
framework that combines a strong attention mechanism with a residual network. ResNet
is used as the backbone due to its depth feature extraction ability. The strong attention
mechanism enhances the extraction of important features of facial expressions by embed-
ding the channel and spatial attention mechanism before and after the residual module,
and embeds Global-Efficient Channel Attention (G-ECA) proposed by us combines global
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and local attention mechanism inside the residual module of ResNet for comprehensively
focusing on the important features on channel dimension. To strengthen the attention of
facial expressions by different dimensions in different positions of the network, we also
integrate the framework with CBAM [29] that consists of the channel and spatial attention
mechanism, as shown in Fig. 1. Hence, we dub our framework as CBAM-Global-ECA-
ResNet (C-G-ECA-R). Within the framework, we propose the global attention including a
one-dimensional convolution with a 16-layer convolution kernel size of 1. Since the size of
the facial expression image does not change, the characteristics extracted after the 16-layer
one-dimensional convolution are more comprehensive. As a result, it is easy to extract the
key characteristics of facial expressions in-depth. Note that the information exchange in the
one-dimensional local cross-channel interactive convolution (LC-CI) of ECA, referred to as
local attention, is among the partial channels, and the extraction of the information is not
sufficient, so it needs to be fused with the global attention. To further explore the fusion
strategy of the global and local attention, two variants of G-ECA are proposed in the paper
and referred as G-ECA-1 and G-ECA-2. The difference between the two is the extraction
process of facial expression by global and local attention mechanisms. Our experiments
and ablation study have demonstrated that the proposed network structure has strengthened
the attention of facial expression characteristics, reduced information loss during training,
and improved the capture capabilities of key features. Consequently, the recognition rate
of facial expression has been increased, compared to the state-of-arts. The visualization of
the feature maps of facial expressions shows that among various combinations of attention
mechanism and ResNet, CBAM-Global-ECA-ResNet34 (C-G-ECA-R34) focuses on the
distinguishable key features in the facial expression and offers the best performance.

Fig. 1 Structure of C-G-ECA-R. The yellow and pink blocks are the channel and spatial attention in CBAM,
respectively. The blue block, G-ECA, is located inside the residual module in the box with dotted lines
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2 Methodology

2.1 C-G-ECA-R network structure

As shown in Fig. 1, the gray block is to preprocess input images. The expression image is
rotated to improve the training capabilities of the network during the training process, and
then the face area in the image is cropped out. The shallow feature map is obtained after
the first convolution, batch normalization, activation function, and max-pooling. Afterward,
the channel attention mechanism in the yellow block focuses on ’what’ is meaningful from
the input image, and the spatial attention mechanism in the pink block to pay attention to
’where’ the key parts such as eyes are. The channel and spatial attention together constitute
CBAM that can suppress trivial features, pay attention to the small number of channels and
the important information of larger expression feature map from the channel and spatial
dimensions, to obtain a new attention feature map. After entering the residual module, the
number of channels in the feature map is more and the size is smaller. It passes through the
first part of the convolution, batch normalization, and activation function. After the second
part of convolution and batch normalization. The feature map enters the blue block and
passes through the Global Average Pooling (GAP) layer, where the number of parameters
of the model and the occurrence of overfitting are reduced.

Then the feature map is divided into two branches for training, within the channel G-
ECA, i.e., the attention mechanism, as shown in the blue block of Fig. 1. In the first branch,
the feature map passes through Conv(16) that is a one-dimensional convolution using a
16-layer convolution kernel size of 1, where the feature map is not changed in size, and
the information of the feature map is extracted comprehensively and deeply. The global
map represented by the global attention is then obtained. In the second branch, the global
map passes through LC-CI, i.e., the local attention, that determines how many k adjacent
channels are involved in the prediction of attention. Though it does not guarantee that the
information exchange between all channels, the complexity of model is reduced. The global
and local attention mechanisms are fused to obtain a more comprehensive feature map by
adding the corresponding elements of the global and local feature maps. The feature map
after the residual module is supplemented with the key feature information from the channel
and spatial level through CBAM as an auxiliary before it is input into the classifier for
classification.

2.2 Attentionmechanism

2.2.1 Channel and spatial attention mechanism (CBAM)

CBAM [29] is proposed to imitate human visuals and used in FER to enhance the feature
extraction of facial expressions by focusing on important characteristics of expressions in
network training, such as eye, nose, mouth, and texture. CBAM consists of two parts: chan-
nel attention and spatial attention, as shown in the yellow and pink blocks in Fig. 1. CBAM
is a lightweight module that has the characteristics of fewer parameters and can reduce irrel-
evant feature information while paying attention to the representation of effective feature
information. The channel attention focuses on ’what’ feature of the feature map is more
meaningful, while the spatial attention focuses on ’location’ of the information in the fea-
ture map, a kind of supplement to the channel attention. The principle of CBAM is to update
the weights related to the key feature information so that the network learns the areas that
need to be focused on the input expression feature map.
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As shown in Fig. 1, the input of the CBAM is the feature map F ∈ R C×H×W of the
upper layer. To obtain channel attention feature map, the input feature map passes through
the max-pooling and average-pooling, and then through the multi-layer perceptron (MLP).
The channel attention map for element-wise summation is Mc ∈ R C×1×1. It is multiplied
by the input feature map F to obtain a new feature map F ′ ∈ R C×H×W , which is described
as

F ′ = Mc(F) ⊗ F (1)

F ′ C×H×W = Mc(F) C×1×1 ⊗ F C×H×W (2)

where Mc
C×1×1 is a one-dimensional channel attention map formed by channel attention,

and ⊗ represents the multiplication operation of feature map elements.
The new feature map F ′ is used as the input feature map of spatial attention, passing

through two pooling layers, to obtain two two-dimensional feature maps. The spliced feature
map is Ms ∈ R 2×H×W by the Cat operation, and then passed through a convolution layer
to reduce the dimensionality into one channel. The spatial attention map formed is Ms

′ ∈
R 1×H×W , and then multiplied by the input feature map F ′ ∈ R C×H×W to obtain the final
feature map F ′′ ∈ R C×H×W , which is described as

F ′′ = M ′
s(F

′) ⊗ F ′ (3)

F ′′ C×H×W = M ′
s(F

′) 1×H×W ⊗ F ′ C×H×W (4)

where M ′
s(F

′) 1×H×W is a one-dimensional spatial attention map formed by spatial
attention.

2.2.2 ECA-Net

The purpose of a lightweight ECA-Net [27] is to improve SE-Net [20], for SE-Net’s process
of adjusting the dimensionality of the feature map causes the loss of some feature map infor-
mation. To avoid the loss, ECA-Net uses an LC-CI instead of the squeeze-and-excitation
module in SE-Net, which retains the dimension of the feature. The key characteristics of
facial expressions are mainly achieved by fast one-dimensional convolution with a convo-
lution kernel size of k, where k represents the coverage of the LC-CI, indicating how many
adjacent channels participate in the key feature prediction and expand the weight of key
features in the expression. Because ECA-Net enables the information of the feature map to

Fig. 2 Architecture of ECA. The blue, red and yellow circles represent one-dimensional expression features,
padding elements and the generation features after LC-CI, respectively. The rectangles with gradient red
represent the one-dimensional attention feature after Sigmoid
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communicate between the partial channels, it avoids the computational complexity caused
by crossing all channels and effectively improves network performance. Figure 2 shows the
ECA attention mechanism structure.

As shown in Fig. 2, the blue circle represents image features after GAP. When the size
of the ECA attention convolution kernel is 5, the LC-CI range is also determined, as shown
in Fig. 2 with 5 straight lines of different colors. In order not to change the size of the
feature map, ECA determines the size of padding by subtracting 1 from k and dividing it by
2. When k=5, then padding=2, as shown in the red circle. The feature map after LC-CI is
shown in yellow circles. The characteristics of the image represented by the yellow circles
are passed through the Sigmoid function and multiplied by the input feature map to obtain
a new feature map that has an ECA attention representation.

2.2.3 Three attention mechanisms based on ECA-Net

Since the information exchange of the feature maps in the one-dimensional LC-CI of ECA-
Net is between the partial channels, the extraction of information is not sufficient. Therefore,
in this paper, we propose a one-dimensional convolution with a 16-layer convolution kernel
size of 1 to be global attention to combine local attention mechanisms, which is conducive
to extract the features of expression comprehensively.

To explore the effectiveness of fusion, three novel ECA structures are proposed in this
paper: G-ECA, G-ECA-1, and G-ECA-2, as shown in Fig. 3.

Figure 3(a) illustrates the structure of G-ECA that is shown in the blue block of Fig. 1.
The symbols F , F ′ and F ′′ represents feature maps while M and M ′′ represent weight
matrices. F ′ and F ′′ are fused by the addition of their corresponding elements. For instance,
when F ′ (global feature map) focuses on the facial expression and F ′′ (local feature map)
on the eyes, the fusion of F ′ and F ′′ will increase the weight of the eyes in the new feature
map. The function Expand as expands the feature map after fusion so that it has the same

Fig. 3 Three different fusion forms of global attention (1× 1 Conv(16)) and local attention (LC-CI), and the
new attention feature map formed after Sigmoid is through Expand as extends to the same dimension as the
input F

14292 Multimedia Tools and Applications (2023) 82:14287–14306



dimension as F . G-ECA aims to effectively improve the capture of key information in
feature maps. The weight matrix M can be computed as

M = Expand as(σ (C1D16(GAP(F)) ⊕ C1Dk(F
′))) (5)

where C1D16 are one-dimensional convolution with a 16-layer convolution kernel size of
1, C1Dk is LC-CI, ⊗ is the sum of corresponding elements of the feature map, and σ is the
Sigmoid activation function.

Figure 3(b) represents the structure of G-ECA-1. Its purpose is to verify whether adding
a global attention representation layer directly to the middle between GAP and LC-CI
enhances the attention to facial expression features. The weight matrix M can be computed
as

M = Expand as(σ (C1Dk(C1D16(GAP(F))))) (6)

Figure 3(c) represents the structure of G-ECA-2. The purpose of G-ECA-2 is to verify
whether the weight matrix M formed by the fusion of the F and F ′′ after global and local
attention can enhance the focus on the key features of facial expressions. The weight matrix
M can be computed as

M = Expand as(σ (F ⊕ C1Dk(C1D16(GAP(F))))) (7)

Multiplying M with the input feature map F gives us

M ′ = F ⊗ M (8)

The weight of LC-CI can be implemented through a fast one-dimensional convolution as

ω = (C1Dk(y)) (9)

where k is the convolution kernel size and determines the coverage of the adjacent chan-
nel. The one-dimensional convolution of size k is used to generate weights for each feature
channel to obtain the correlation between the feature channels. The channel dimension C

can be computed as
C = 2(γ ∗k−b) (10)

where γ and b are set to 2 and 1, respectively, which makes k have a larger interaction range.
k is computed as

k =
∣
∣
∣
∣

log2(C)

γ
+ b

γ

∣
∣
∣
∣
odd

(11)

where the odd indicates that the nearest odd number is selected, and different channels C

will generate a different interaction range k. Note that the (9), (10) and (11) are similar to
that presented in [27], where more details can be found.

2.3 Loss function

In this paper, we use the cross-entropy function to measure the difference between the true
probability distribution and the predicted probability distribution. The smaller the value of
cross-entropy, the better the model predicts. The cross-entropy function avoids the vanishing
gradient problem of the network, speeds up the training, and is suitable for facial expression
classification. The loss function is defined as

L = −
N

∑

i=1

y′
i log(yi) (12)

where N is the number of expression categories, y′
i is the variable (0 or 1). If the predicted

expression category is the same as the sample expression category, y′
i is 1, otherwise, it is 0.
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Fig. 4 Sample images in CK+

yi represents the predicted probability that the observed expression sample belongs to the
expression category i. A smaller L indicates that the predicted expression is closer to the
real sample expression.

3 Experiment and result analysis

3.1 Environment configuration

The implementation of the model is based on Pytorch, using Python 3.7. All the experiments
were carried out using a workstation with 11th Gen Intel(R) Core(TM)i5-1135G7 2.42GHz
and 16G RAM.

3.2 Dataset and data enhancement

The experiments choose two datasets publicly available in the FER research field: Extended
Cohn-Kanade (CK+), Japanese Female Facial Expressions (JAFFE). CK+ is expanded
based on the Cohn-Kanade Dataset, in which a total of 123 subjects participated, rang-
ing in age from 18 to 50 years old, including European and American, non-European, and
other races. The dataset contains seven types of expressions: happy (207), sadness (84), fear
(75), anger (135), disgust (177), surprise (249), and contempt (54) where the numbers in
parentheses denote the number of expressions for a particular type. CK+ is based on the
593 image sequences composed of the subjects, 327 sequences with markers are selected.
We selected three frames with peak formation from the labeled sequence and obtained 981
images. JAFFE contains 231 face images, and 7 expressions made by 10 female students
selected in Japan, including 6 basic ones: happy (31), sadness (31), fear (32), anger (30),
disgust (29), surprise (30), and one neutral expression (30). Sample images are shown in
Figs. 4 and 5, respectively.

We divide CK + and JAFFE datasets into three parts: training set, validation set, and test
set, with a division ratio of 6:2:2. To improve the generalization ability of the model and
reduce the over-fitting problem, first, we randomly rotate images 15 degrees. Then, to ensure
that most of the extracted features come from the face area and reduce the interference of
irrelevant factors, we crop the face area from the central area of the image, which is more

Fig. 5 Sample images in JAFFE
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Table 1 Performance
comparison with existing
methods on CK+

Methods Accuracy (%)

Lopes et al.(2017) [13] 95.75

Li et al.(2019) [10] 97.38

Sadeghi et al.(2019)[23] 95.11

OAENet(2020) [28] 98.65

Rao et al.(2021) [19] 98.68

SCAN(2021) [7] 97.31

NTF LRS(2021) [12] 95.77

DCNN(2021) [18] 96.79

C-G-ECA-R34 (Ours) 98.98

conducive to the analysis of expression features. Finally, the data is normalized before the
training and the Adam optimizer. With the normalization, the activation function have a
more reasonable value, the gradient can be spread well and the convergence speed of the
model can be accelerated. The initial learning rate is 0.001, and the batch size is 32. In this
paper, the training cycles for each experiment are 150.

3.3 Performance comparison and analysis

To verify the performance of C-G-ECA-R proposed in this paper, we compare it with several
existing network structures. We choose ResNet34 as the backbone of our network because
the experiments later show that C-G-ECA-R34 offers the optimal performance. Tables 1
and 2 present the classification results of various network structures on CK+ and JAFFE,
respectively.

Table 1 shows the comparison on CK+.

1) The performance of C-G-ECA-R34 is better than that of conventional methods. Sadeghi
et al. [23] utilized the Gabor filter to extract the expression features, but the model
requires human intervention, which is not entirely accurate, resulting in a poor recog-
nition on CK+. NTF LRS constructs tensor models to get the higher-order correlations
of the underlying multi-dimensional facial expression data, but ignores the global rela-
tionships between adjacent expression samples, failing to achieve the high accuracy of

Table 2 Performance
comparison with existing
methods on JAFFE

Methods Accuracy (%)

ARLCP(2019) [21] 94.41

SCNN(2019) [9] 93.02

Li et al.(Without LBP)(2020) [11] 96.53

Avani et al.(2020) [2] 97.48

SCAN(2021) [7] 56.33

HDG(2021) [3] 90.00

HDGG(2021) [3] 91.43

DCNN(2021) [18] 95.63

MFF-CNN(2021) [34] 96.52

C-G-ECA-R34 (Ours) 97.65
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recognition. On the contrary, our CNN-based model does not require human interven-
tion and achieves more efficient feature extraction through both the shallow and deep
parts of the network.

2) C-G-ECA-R34 outperforms the competitive CNN methods. Lopes et al. [13] pro-
posed a new method of CNN combined with preprocessing operations. However, the
CNN model is too simple to extract sufficient features. Similar to [13], the simple
CNN model used in [10] was unable to achieve optimal recognition rates, despite
the new expression cropping strategy proposed. DCNN [18] combines traditional fea-
ture extraction with deep learning. However, practical results show that this approach
is inferior to deep learning methods, as deep learning is stronger for shallow feature
extraction. Compared with the above methods, C-G-ECA-R34 utilizes an attention
mechanism to solves the problem of inadequate feature extraction while being able to
focus on the key features of expressions, such as eyes and mouth.

3) C-G-ECA-R34 is better than other CNN combined attention methods. Both SCAN and
OAENet contain global attention and local attention, and in common with them, C-G-
ECA-R34 is also designed for both global and local attention. Unlike them, C-G-ECA-
R34 adds effective attention at different positions of the residual module to strengthen
the extraction of important features of expression. As a result, C-G-ECA-R34 achieves
better recognition.

4) Rao et al. [19] proposed a novel multi-scale graph convolutional network. Based on
landmark maps extracted from facial images, a graph segmentation strategy was used to
construct a multi-scale GCN structure by exploring homogeneous subgraphs to change
the receptive fields. The approach achieves the accuracy of recognition as 98.68% that
is close to our C-G-ECA-R34, as shown in Table 1. However, it can extract only 98
facial landmarks, while more subtle facial expressions may be overlooked, as the for-
mation of expressions is a common result of the whole facial landmarks. As CK+
is laboratory data with higher quality, our model is more conducive to capturing the
features of expressions clearly through strong attention.

Table 2 represents the comparison on JAFFE.

1) The proposed C-G-ECA-R34 model outperforms conventional methods and CNN
methods. Conventional methods, such as ARLCP, effectively encoded significant infor-
mation of expressions by using histogram. HDG and HDGG used different Histogram
of Directional Gradient to distinguish expression features respectively. CNN based
methods, such as SCNN, automatically organized several features of facial expressions,
DCNN fused expression features through different branches, and a lightweight network
MFF-CNN fused multi-feature expressions to better extract features at different lev-
els of abstraction. It is worth noting that despite the high image quality of JAFFE, the
approaches ARLCP, HDG and HDGG are sensitive to image noise due to their using
histogram. Whereas SCNN, DCNN and MFF-CNN all use feature fusion strategies, it
is difficult to find the best features to fuse. Our model is less sensitive to noise by focus-
ing on the important features of expressions and amplifies the corresponding weights.
This approach outperforms the feature fusion strategy thus achieves better recognition
rates on JAFFE.

2) The proposed method is compared with CNN combined with attention and other com-
petitive strategies. The results show that our proposed model has strong attentional
capabilities to enhance the capture of effective features of expressions. The recognition
rate of SCAN is high under CK+ in Table 1, but low under JAFFE in Table 2, indicat-
ing the limitations of SCAN’s recognition capability. Li et al. [11] use attention as part
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Table 3 Performances on different layers of the proposed global attention. The dichotomy is used to verify
between 1 and 50 layers, and measured by multiple indicators in the table

Model name Epoch B Epoch Loss Val Acc Test Acc Param GFLOPs Time Continue

C-G-ECA 1-R18 150 37 0.001652 97.95 95.93 2.8M 2.1325 21.35
√

C-G-ECA 7-R18 150 77 0.001354 98.97 97.47 2.8M 2.1326 25.12 ×
C-G-ECA 13-R18 150 47 0.003690 97.95 97.76 2.8M 2.1328 24.56

√
C-G-ECA 14-R18 150 65 0.002979 97.65 97.72 2.8M 2.1320 24.25 ×
C-G-ECA 16-R18 150 33 0.000739 98.46 97.96 2.8M 2.1330 22.15

√
C-G-ECA 17-R18 150 77 0.003380 98.32 97.76 2.8M 2.1329 25.66 ×
C-G-ECA 19-R18 150 80 0.006610 98.26 97.55 2.8M 2.1327 25.79

√
C-G-ECA 22-R18 150 76 0.005210 97.27 96.77 2.8M 2.1332 26.55 ×
C-G-ECA 25-R18 150 69 0.002993 97.95 96.95 2.8M 2.1325 26.73

√
C-G-ECA 31-R18 150 83 0.001356 97.95 97.86 2.8M 2.1334 26.23 ×
C-G-ECA 37-R18 150 67 0.001438 97.95 97.77 2.8M 2.1330 30.41

√
C-G-ECA 43-R18 150 75 0.001532 98.43 97.72 2.8M 2.1335 42.00 ×
C-G-ECA 50-R18 150 70 0.016043 98.97 97.86 2.8M 2.1325 44.16

√

of the model, while we focus on different locations of attentiond placement as a way to
improve the performance of the model. Avani et al. [2] divide the face into four regions
and extract features separately. This sub-regional approach is more rigid and lacks deep
exploration of region partitioning.

3.4 Global attention experiment and comparison

In order to explore how many layers of one-dimensional convolution with a convolution
kernel size of 1 inside global attention gives the best performance, this experiment verifies
the dichotomy between the one-dimensional convolution with the convolution kernel size
of 1 from 1 to 50 layers, using C-G-ECA-R18 and CK+. ResNet18 is less complex than
ResNet34 or ResNet50, which makes the effect of layers of global attention more obvi-
ous. The results will be analyzed according to the Epoch, the best epoch (B Epoch), Loss,
the accuracy of the verification set (Val Acc), the accuracy of the test set (Test Acc), and
the number of parameters (Param), GFLOPs, Time(min) and Continue. Here the Continue
means whether or not the dichotomy operation is continuous. Table 3 shows the number
of one-dimensional convolutions with a convolution kernel size of 1 between 1-50 layers.
Figure 6 shows the specific process of the Continue operation.

It can be known from Table 3 that when the number of one-dimensional convolutional
layers is 16, C-G-ECA-R18 is optimal compared with other layers. This is reflected in the
fact that the best number of Epoch appears earlier, indicating that the network has better
training capabilities. Moreover, the loss is the smallest, and the results for both the verifi-
cation set and test set are good, as shown in Table 3. Although the Param and GFLOPS for
different layers are not much different, it can be clearly seen that when the number of layers
is 16, the time used for network training is the least. This shows that G-ECA proposed in
this paper through one-dimensional convolution with a 16-layer convolution kernel size of
1 has better performance on the C-G-ECA-R18 network than convolutions with other lay-
ers in Table 3. Figure 6 shows the complete dichotomy operation process intuitively based
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Fig. 6 Process of continuing the dichotomy operation between 1-50 layers. The number of experiments are
11, and the one-dimensional convolution with a convolution kernel size of 1 inside global attention is 16

on the results in Table 3. The blue circle indicates the initial 1 and 50 layers, the red indi-
cates that the dichotomy operation can continue, and the yellow circle indicates that the
dichotomy operation is stopped. It can be seen that when the one-dimension convolution
with a convolution kernel size of 1 is in 16 layers, the effect is optimal.

3.5 Ablation study

To verify the effectiveness of the proposed strong attention mechanism combined with the
residual network structure, we conducted an ablation study with 4 experiments on CK+
and JAFFE and compared the performance of G-ECA and ECA. The network performance
was measured by the recognition rate of the verification set (Val Acc (%)) and the test
set (Test Acc (%)). Using ResNet18 and ResNet34 as the backbone, we compare a few
network structures, including (1) +Head CBAM (H Attention): the experiment adds CBAM
before the residual module; (2) +Tail CBAM (T Attention): the experiment adds the CBAM
after the residual module; (3) +G-ECA, +G-ECA-1, +G-ECA-2: the experiment put the
corresponding attention mechanism inside the residual module.

Experiment 1 Based on the ResNet18, the effects of the various modules on the
experimental results are compared, as shown in Table 4.

It can be seen from Table 4 that compared with ResNet18, +H Attention increases the
accuracy of the verification set and the test set by 1.50% and 1.87%, respectively, prov-
ing that the addition of attention mechanism improves the attention of the key parts of
the expression feature map. The results of +H Attention + ECA indicate that the ECA
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Table 4 Comparison of the accuracy of models with different structures under ResNet18 (CK+)

Model name Val Acc (%) Test Acc(%)

ResNet18 95.45 94.04

+H Attention 96.95 95.91

+H Attention + ECA 97.95 96.95

+H Attention + ECA + T Attention 97.44 97.46

+H Attention + G ECA + T Attention (C-G-ECA-R18) 98.46 97.96

module can improve the attention of facial expressions. Note that while the accuracy of
+H Attention + ECA + T Attention (C-ECA-R18) for the verification set drops by 0.51%,
its accuracy on the test set increases by 0.51%. The results prove that the effect of adding
CBAM after the residual network is not large, but it can be used as an auxiliary role to focus
on the characteristics of expression. For +H Attention + G ECA + T Attention, we can see
that the accuracy for both the verification set and test set has been improved significantly,
with an increase of 1.02% and 0.50%, respectively. On the whole, C-G-ECA-R18 network
with ResNet18 as the main framework has improved the performance of the CK+ dataset
significantly.

Experiment 2 Different from the previous experiment above, we use ResNet34 to compare
the performance of various network structures, as shown in Table 5.

It can be seen from Table 5 that as the number of network layers increases, the overall
performance of the network also improves. The recognition rate of +H Attention + ECA
under ResNet34 for the verification set is relatively not changed compared to that under
ResNet18, and the recognition rate of the test set is increased by 1.01%. The recognition
rates of C-ECA-R34 in the verification set and test set are improved by 1.02% and 1.01%,
respectively, compared with C-ECA-R18. The recognition rates of the C-G-ECA-R34 in the
verification set and test set are increased by 0.51% and 1.02%, respectively, compared with
C-G-ECA-R18.

To see how the network performance changes when the network layers deepen, the
accuracy curves of C-G-ECA-R18 and C-G-ECA-R34 are shown in Fig. 7.

It can be seen that from the 100th cycle after the training, the accuracy of C-G-ECA-
R18 becomes stable and stops increasing; but for C-G-ECA-R34, the recognition rate is still
slowly rising. This also proves that C-G-ECA-R can achieve a significant increase in atten-
tion to key features even when the number of network layers increases. Through the above
experiments, it is clear to know that the network with G-ECA is better than the one with
ECA. To further verify the effectiveness of the proposed network structure, we conducted a

Table 5 Comparison of the accuracy of models with different structures under ResNet34 (CK+)

Model name Val Acc (%) Test Acc(%)

ResNet34 96.53 95.02

+H Attention 97.23 96.37

+H Attention + ECA 97.95 97.96

+H Attention + ECA + T Attention 98.46 98.47

+H Attention + G ECA + T Attention (C-G-ECA-R34) 98.97 98.98
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Fig. 7 (a) accuracy of C-G-ECA-R18 under ResNet18. (b) accuracy of C-G-ECA-R34 under ResNet34

similar experiment on C-ECA-R34 and C-G-ECA-R34, but under the JAFFE dataset. The
results are given in Table 6, showing that the recognition accuracy of C-G-ECA-R34 is
higher than C-ECA-R34.

Experiment 2.1 Performance measurement.
To prove that G-ECA in this paper is better than ECA, we further analyze the confusion

matrix of C-ECA-R34 and C-G-ECA-R34 network under CK+ and JAFFE datasets and the
corresponding Precision, Recall, and Specif icity, ROC curve, and visualization of
feature maps. The following equations show the calculation of these values, where TP, TN,
FP, and FN are true positive, true negative, false positive, and false negative respectively.
Precision is the measure to identify the number of relevant facial expressions among the
classified ones. It is also the ratio of the correct predictions to the total predictions.

Precision = T P

T P + FP
(13)

The Recall calculates the correctly classified facial expression images over all the facial
expression images in the dataset.

Recall = T P

T P + FN
(14)

The Specif icity is also for true expressions, but it represents the proportion of negatives
that the facial expressions correctly predict among all real negatives.

Specif icity = T N

T N + FP
(15)

Table 6 Comparison of the accuracy of models with different structures under ResNet34 (JAFFE)

Model name Val Acc (%) Test Acc(%)

+H Attention + ECA + T Attention (C-ECA-R34) 94.92 94.53

+H Attention + G ECA + T Attention (C-G-ECA-R34) 97.69 97.65
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Fig. 8 Confusion matrix under CK+. Diagonals represent the correct number of different expressions

With the above three evaluation criteria, the confusion matrices for C-ECA-R34 and C-
G-ECA-R34 are calculated under CK+, as shown in Fig. 8. Tables 7 and 8 give a comparison
of two networks in Precision, Recall, and Specif icity.

The T rue Labels in Fig. 8 represent the real expression, and Predicted Labels represent
the predicted expression. Both figures have one false prediction of the real Anger. From
the Precision of Tables 7 and 8, the Anger under C-ECA-R34 is 95.6521%, and C-G-
ECA-R34 is 100%. The Precision for Disgust is 97.2973% for C-ECA-R34 and 100% for
C-G-ECA-R34, respectively. In total, there are three prediction errors in C-ECA-R34 and
only two errors in C-G-ECA-R34. It is worth noting that both (a) and (b) consider Fear to
be Sadness, indicating that the two types of expressions are more difficult to distinguish. In
fact, as shown in Fig. 4, there is some similarity between the two.

From the Recall of Tables 7 and 8, the Recall of C-G-ECA-R34 is 100%, better than
97.2578% under C-ECA-R34 for Disgust. The Specif icity has reached 100% for Anger
and Disgust. Obviously, we can see that the effect of C-G-ECA-R34 in the CK+ dataset is
superior to C-ECA-R34.

For intuitive observation of C-G-ECA-R34 recognition capabilities for different expres-
sions, the performance of the experiment is displayed on the CK+ and JAFFE datasets by

Table 7 Precision, Recall, and Specificity under C-ECA-R34 (CK+)

7 Classes Precision (%) Recall (%) Specificity (%)

Anger 95.6521 95.7569 99.4252

Contempt 100 100 100

Disgust 97.2973 97.2578 99.3788

Fear 100 92.3679 100

Happy 100 100 100

Sadness 94.1176 100 99.4327

Surprise 100 100 100
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Table 8 Precision, Recall, and Specificity under C-G-ECA-R34 (CK+)

7 Classes Precision (%) Recall (%) Specificity (%)

Anger 100 95.6521 100

Contempt 100 100 100

Disgust 100 100 100

Fear 100 92.3076 100

Happy 100 100 100

Sadness 89.7736 100 98.8888

Surprise 100 100 100

the ROC curve shown in Fig. 9. The continuous line indicates the ability to identify dif-
ferent categories. The interrupted lines are Micro-Average Roc Curve and Macro-Average
Roc Curve. The higher the two, the better classification a network achieves.

As shown in Fig. 9, there is a good performance on Micro-Average Roc Curve and
Macro-Average Roc Curve. On the CK+ dataset, only one type of expression recognition
effect has not reached the highest level. On the JAFFE dataset, only three types of expression
recognition have a slight deviation, but the overall recognition rate of C-G-ECA-R34 has
reached a very high level. From the confusion matrix, Precision,Recall, and Specif icity,
and the ROC curve, G-ECA has a significant improvement in the performance of C-G-
ECA-R34 compared to ECA, which proves that the G-ECA proposed in this paper has a
good effect, and the C-G-ECA-R34 network has good performance in FER.

To show key features in the expression that are noted through C-G-ECA-R34, the visu-
alization maps in partial layers during the training process of the CK+ dataset are shown in
Fig. 10. The figure shows the visual feature map of the intermediate process of FER based
on the C-G-ECA-R34. The yellow and green areas indicate the salient features of facial
expressions. As shown in (a)-(c), C-G-ECA-R34 pays good attention to the salient areas of
facial expressions, such as the eyes, nose, and mouth areas. It can be seen from (d)-(g) that
although the feature map is getting more and more blurred, the yellow and green blocks are
still concentrated in the salient area of facial expressions, and other marginal feature ranges
can also be learned.

Fig. 9 The micro-average pays more attention to the expression with more samples, and the macro-average
pays attention to the category with less samples. The classes 0-6 stand for Anger, Contempt, Disgust, Fear,
Happy, Sadness, and Surprise, respectively
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Fig. 10 Visualization of the facial expression characteristics of C-G-ECA-R34

Experiment 3 To verify the network performance of C-G-ECA-R will continue to increase,
or stabilize with the increase in the number of network layers, in this experiment, we com-
pare the performance of our proposed networking using ResNet50 and ResNet101 as the
backbone. Table 9 gives the accuracy of C-G-ECA-R50 and C-G-ECA-R101 under the
verification set and test set of CK+.

It can be seen from Table 9 that when the network deepens, the performance of C-G-
ECA-R slightly declines, compared with C-G-ECA-R34 in Table 5, but the recognition rate
of the verification set and the test set are relatively close, which proves that the overall per-
formance of the C-G-ECA-R is still stable. As shown in DCANet [14], the effect of the
attention mechanism in large network is not as good as that in small network. This observa-
tion has been demonstrated from Tables 9 and 5 that C-G-ECA-R achieves the optimization
of performance when ResNet34 is used as the backbone.

Table 9 Comparison of network accuracy under ResNet50, ResNet101

Model name Val Acc (%) Test Acc(%)

+H Attention + G-ECA + T Attention (C-G-ECA-R50) 97.95 97.96

+H Attention + G ECA + T Attention (C-G-ECA-R101) 97.75 97.56
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Table 10 Performance comparison of G-ECA, G-ECA-1, and G-ECA-2 (CK+)

Model name Val Acc (%) Test Acc(%)

+H Attention + G-ECA + T Attention (C-G-ECA-R34) 98.97 98.98

+H Attention + G ECA-1 + T Attention (C-G-ECA-1-R34) 97.95 99.49

+H Attention + G ECA-2 + T Attention (C-G-ECA-2-R34) 98.46 98.47

Experiment 4 Based on the above experiments, this attention placement structure of
C-G-ECA-R34 is optimal. Therefore, in this experiment, we explore and compare the per-
formance of G-ECA, G-ECA-1, G-ECA-2 under R34. The results are shown in Tables 10
and 11.

It can be seen from Tables 10 and 11 that C-G-ECA-R34 not only has a high recog-
nition rate on the verification set and test set of CK+ and JAFFE, but also the results of
the verification set and test set are closer, showing the network performance is stable. For
CK+, C-G-ECA-1-R34 is 0.51% higher than the C-G-ECA-R34 in the test set. Moreover,
the results show that the verification set accuracy and test set accuracy of C-G-ECA-R34
are closer, proving its stability. C-G-ECA-2-R34 has a slightly lower effect on JAFFE than
the other two networks. From the ablation study, it can be concluded that the three network
structures combining the strong attention mechanism and the residual network proposed in
this paper have a good ability to capture the key information of facial expression features.
And among the three network structures, C-G-ECA-R34 achieves the best performance.

4 Conclusion

This paper proposes a C-G-ECA-R network structure for facial expression recognition
which can strengthen the capture of key information and improve the recognition rate of
facial expressions. C-G-ECA-R first adds channel and spatial attention mechanism before
the residual module to extract the key features of expressions, and then adds the G-ECA
attention module inside the residual module. The motivation of G-ECA is the weighted
fusion of global and local features to enhance the focus on key features of expressions, and
it is embedded inside the residual module. CBAM has been added again after the residual
module to assist in capturing key expression features. The entire network structure exhibits
a strong attentional effect, which is to continuously increase the attention to the salient
information in the facial features. Experimental results prove that the C-G-ECA-R improves
the recognition rate of facial expressions. Due to the effect of the attention mechanism is
decreasing slightly with the increase of the number of network layers, the effect of improv-
ing the attention mechanism is challenging in the deeper network. Further ongoing research

Table 11 Performance comparison of G-ECA, G-ECA-1, and G-ECA-2 (JAFFE)

Model name Val Acc (%) Test Acc(%)

+H Attention + G-ECA + T Attention (C-G-ECA-R34) 97.69 97.65

+H Attention + G ECA-1 + T Attention (C-G-ECA-1-R34) 97.65 97.63

+H Attention + G ECA-2 + T Attention (C-G-ECA-2-R34) 98.43 96.09
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will focus on improving the stability of G-ECA in-depth C-G-ECA-R and other network
structures to achieve a better recognition effect on facial expression.
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