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Abstract
Multiple object detection and tracking play a very crucial role in solving several elemen-
tary problems in real-time surveillance video analysis and computer vision. However, it is
a challenging problem because real-time surveillance videos are typically affected by a
variety of adverse environmental effects. In this work, we propose a novel surveillance
framework, called a unifocal motion tracking surveillance system (UMTSS), for multi-
object tracking in real-time videos. The proposed UMTSS combines two significant
steps. First, a Faster-RCNN with inception-v2 model is employed here to detect multi-
objects efficiently in each video frame. Then, a unifocal feature-based KLT (Kanade-
Lucas-Tomasi) method is proposed for tracking objects across the video frames based on
region proposals generated by the object detector in the previous phase. Also, we have
proposed a new tracking parameter, called dynamic tracking accuracy (DTA), to quantify
the performance of the tracking algorithms. The performance of our UMTSS has been
evaluated on five standard crowd video databases, namely CrowdHuman, PETS, UCSD,
AGORASET and CRCV, and compared with state-of-the-art methods in terms of
different qualitative and quantitative measures. It has been observed that our UMTSS
outperforms the state-of-the-art methods.
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1 Introduction

The crowd stampedes and terrorist attacks in public places have now become more serious
and dangerous threats due to the rapid increase in the population and scale of cities. Thus, in
the age of increasing security needs, crowd monitoring has become more important. Because
of the high generation risk, the security of crowd events has been a top priority for the
concerned authorities. Nowadays, all crowded public areas are under video surveillance to
prevent anomalous or abnormal activities. Each movement of an object, such as a person,
vehicle, or animal, is monitored thoroughly for 24 h by the security personnel. However, the
continuous monitoring of crowd events is a very difficult and tiresome task for humans, and
there may be a possibility of misrecognition. Therefore, automation of the surveillance system
is the need of the hour. As a result, research in this domain becomes popular, and much work
has been reported in the literature [34] in recent years.

The intelligent monitoring system must be efficient enough to detect crowd movements and
let the authorities know if any unintended situation is found. Typically, the functionalities of an
intelligent crowd surveillance system can be categorized into three main sections: crowd
detection, crowd movement tracking, and abnormal activities detection. Object detection in
videos is the first and foremost step of any intelligent surveillance system. After object
detection, the next task is to track and monitor the movement of the object in a given scenario.
Tracking an object allows us to generate an object’s trajectory over time by locating its
position in each frame of the video, which can then be used to analyse object behaviour. Over
the past years, various methods for object detection, tracking, and activity analysis of objects
have been proposed by researchers around the globe [23, 24, 26, 34, 49]. Despite these efforts,
developing an intelligence surveillance system remains a difficult task. The primary challenge
in object detection and tracking is accounting for target object appearance variation caused by
changes in illumination, deformation, and pose. Second, occlusion, motion blur, and camera
view angle make it difficult for algorithms to track target objects. Third, some frames may
have been missed or hampered due to noise or low video quality or to match the tracker’s
speed in a real-time scenario, which must be handled properly to track objects efficiently.
Furthermore, in spatio-temporal scenarios, there may be multiple CCTV cameras that must be
efficiently co-related by the object tracker.

Tracking an object in a video involves detecting the object in the first frame and predicting
its state in each subsequent frame of a video sequence. Therefore, every tracking method
necessitates an object detection mechanism, either in every frame or when the object first
appears in the video. Besides, an object tracker aims to generate the trajectory of an object over
time by locating its position in each frame of the video. Various handcrafted features and deep
learning-based methods have been developed in this domain over the years [23, 24, 26, 34,
49]. However, each method has its own set of benefits and drawbacks [23, 24, 26, 34, 49]. In
this work, we have combined both deep learning and handcrafted features, and proposed a
novel surveillance framework, called unifocal motion tracking surveillance system (UMTSS),
for multi-object tracking in real-time videos. A Faster-RCNN with inception-v2 model, named
Faster-RCNN Inception-v2 (FRI), is employed here to detect multi-objects efficiently in each
video frame. Here, we have innovatively used the Inception-v2 model [50] to improve the
object detection rate of Faster-RCNN. The most salient feature of the Inception-v2 model is the
several parallel convolutions supported by the model. This allows deep to be generated while
controlling the overfitting problem. Also, inception-v2 has a lower computational cost than
other top-performing successors which motivated us to use it as the backbone network of the
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Faster-RCNN to detect objects more efficiently. FRI generates region proposals (bounding
boxes) for each object, which are then used to track the object throughout the video. Here, a
unifocal feature-based KLT method, called unifocal feature-based object tracking using KLT
(UFOT-KLT), is proposed for object tracking. Typically, the traditional KLT method uses
multi-feature points to track objects across the frames which leads to an increase in the
execution cost and complexity of the tracking system. The proposed unifocal feature-based
KLT reduces the overhead of multipoint features, and also maintains the precision of unique
labeling of objects for the sequence of frames. Moreover, we have proposed a new tracking
parameter, called dynamic tracking accuracy (DTA), to quantify the performance of the
tracking algorithms. The system monitors a region of scenario acquired by real-time video
streams from a set of CCTV cameras. As we are working with real-time video, the speed of
video analysis should match the frames per second (fps) of the captured video. Thus, to get rid
of overflow problems, we have selected video frames that contain maximum information
without compromising the significant information. A keyframe extraction technique is imple-
mented here using a producer-consumer technique to make the system faster. Also, it helps to
maintain the balance between the flow of incoming continuous video frames and their analysis.
The performance of the proposed method and its components are validated separately on
challenging video sequences of four different datasets and compared with state-of-the-art
related methods. In particular, the key contributions of this paper can be outlined as follows.

& Proposed a novel surveillance framework, called unifocal motion tracking surveillance
system (UMTSS), for multiple objects tracking in videos.

& A Faster-RCNN with Inception-v2, named FRI, is employed here for detecting multiple
objects efficiently. By incorporating Inception-v2 as a feature extractor with Faster-RCNN
we are able to achieve a high detection rate.

& Proposed a unifocal feature-based object tracking method, called UFOT-KLT, to effi-
ciently track real-time objects.

& A new tracking parameter, called dynamic tracking accuracy (DTA), is proposed to
evaluate the performance of the tracking algorithms.

& The performance of the proposed UMTSS is validated in the presence of missing frames in
the given scenarios.

& To assess the performance of the proposed framework, we have used CrowdHuman,
PETS, UCSD, AGORASET, and CRCV datasets which are publicly available crowd
datasets for object detection and tracking problems. The obtained results outperform the
existing related methods.

The remainder of the paper is structured as follows. The related work in this context has been
discussed in Section 2. In Section 3, the problem statement is discussed. The methodology and
workflow of the proposed system have been described in Section 4. The experimental setups
and results have been discussed in Section 5. Finally, Section 6 concludes the paper.

2 Related study

This section presents a brief overview of various methods for multi-object detection and
tracking in real-time videos, both conventional and deep learning. Over the past years,
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significant works have been reported in the literature on object detection and tracking [25, 39,
40], which are briefly discussed in the following subsections.

2.1 Object detection

The method of object detection involves identifying the bounding box with the highest
detection score for the given input image or video. Typically, object detection methods can
be divided into three board categories: motion-based, appearance-based, and deep learning
(DL)-based. Motion-based approaches use a sequence of images for the detection of objects.
Besides, appearance-based methods use image processing techniques to identify objects
directly from images or videos. However, these methods usually fail in detecting objects in
complex scenarios. Deep learning (DL)-based methods use either motion features or appear-
ance features or both for object detection in images or videos. DL-based approaches for object
detection have gained much attention as compared to either appearance or motion-based
approaches. However, object detection using DL-based methods is mainly of two types:
two-stage detectors, and one-stage detectors. In the two-stage detection, objects are first
localized followed by their classification. Over the past years, various two-stage detectors
[10, 16–18, 21, 31, 32, 38, 41, 45, 53] have been reported in the literature. Among those,
RCNN [18], Fast RCNN [17], Faster RCNN [45], Mask RCNN [21], RFCN [10], FPN [31],
granulated CNN [38], and granulated RCNN [41] are the commonest. On the other hand, one-
stage detectors predict bounding boxes over the images, thus increasing the object detection
speed. Like two-stage detectors, various models of the one-stage detector, have also been
developed in recent years. These models include the YOLO [42–44], SSD [14, 32], RefineDet
[58], and DCN [11]. In addition to these methods, hybrid DL-based methods for object
detection have been getting attention these days. Hybrid deep learning is the term used to
describe a method that combines several DL models or DL models with traditional machine
learning techniques to improve the performance of a specific task. Recently, various hybrid DL
models [33, 37, 57] are developed for object detection in videos.

RCNN [18]is the first two-stage object detection model. Typically, it consists of four stages.
The first stage involves the generation of region proposals in the video frame. Then, a fixed-
length feature vector is extracted from each region proposal. The third stage is responsible for
the object classification task. The final stage is a bounding-box regressor for accurately
bounding box prediction. The RCNN shows significantly better results compared with tradi-
tional methods for object detection [18]. Fast R-CNN was suggested by Ross Girshick [17] a
year after R-CNN was first introduced. Fast R-CNN [17] takes the entire image as input,
extracts the features from it, and then passes the region of interest (RoI) pooling layer to obtain
fixed dimension features for the subsequent classification and bounding box regression over
the classified object. In comparison to RCNN, a large amount of calculation time is saved for
Fast R-CNN. Because it considers the location of pooling features as the possible regions and
is used for classification. Another distinction between RCNN and Fast RCNN is that the
former employs a multi-stage end-to-end training procedure, whereas the latter does it in a
single stage. Faster-RCNN [45] is another two-stage model for object detection which has
been developed after three months of the development of Fast-RCNN [17]. It is an improved
version of Fast-RCNN in terms of object detection accuracy and execution time. In Fast R-
CNN, region proposals are generated using a selective search method that makes the system
slow and takes the same amount of execution time as the detection network. Faster RCNN
replaces this module with a Region Proposal Network (RPN), which is a fully convolutional
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network and effectively predicts regions proposals with a broad variety of sizes and aspect
ratios. It requires less time to generate region proposals than Fast RCNN. This is because
Faster RCNN simultaneously shares with the detection network both the full image
convolutional features and a common set of convolutional layers. Anchors are set at each
convolution feature point to create region proposals of varying sizes. Anchors are spatial
windows of varying sizes and aspect ratios that are inserted at certain locations in the input
feature map. Faster RCNN employs anchor boxes with three distinct scales and aspect ratios.
Dai et al. [10] developed another two-stage object detector, named R-FCN, which is a
modified version of Faster RCNN. In general, R-FCN has been developed to address certain
issues in Faster RCNN. Feature pyramid network (FPN) [31] is another popular network for
object detection. Many object detection algorithms have implemented feature pyramids, which
are based on image pyramids, to increase scale invariance [13, 19]. However, this type of
technique requires a lot of training time and memory. This problem was effectively resolved
by FPN. In [21], He et al. proposed Mask R-CNN. It is an extension of Faster RCNN that
focuses primarily on segmentation tasks. In Mask RCNN, a ResNet-FPN [31] (feature pyramid
network) is combined with Faster-RCNN as a backbone to extract region-of-interest features
from various layers of the feature pyramid by their scale, thereby achieving high detection
accuracy and speed. Recently, granular computing-based CNNs [38, 41], like granulated CNN
[38], and granulated RCNN [41], are developed for object detection.

Redmon et al. proposed a one-stage object detector, called You Only Look Once (YOLO)
[42–44], after the development of Faster R-CNN [45]. The main contribution is real-time
object detection in full images and webcam. Later, many expanded versions of the YOLO
were developed. These models include YOLO-v2 [42], YOLO-v3 [43], YOLO-v4 [6], and
YOLO-v5 [9]. Typically, these improved YOLO networks were developed to address the
flaws in the earlier models. SSD (single-shot detector) [32] proposed by Liu et al. is another
one-stage object detector that can detect objects of multiple classes. In [14], a modified version
of SSD, called De-convolutional Single-shot Detector (DSSD), has been proposed. In this
model, both de-convolution and prediction models are added to SSD, and Res-Net 101 [20]
was as a backbone. RefineDet [58] is another kind of one-stage object detector that consists of
two interconnected stages, such as refinement, and object detection. These two stages are
interconnected through a transfer connection block. Deformable convolutional networks
(DCNs) [11] were developed to overcome the issues of regular CNN for object detection. It
has two varieties: DCNv1 and DCNv2.

Among the models mentioned above, Faster RCNN has received a tremendous amount of
attention from researchers for object detection in images or videos. This may be due to its high
accuracy and simplicity. However, in spite of these efforts, object detection in real-time videos
remains a challenging problem that needs to be properly addressed for detecting objects
efficiently.

2.2 Object tracking

Object tracking is a critical step in locating the moving objects in a video sequence. It is
accomplished by locating the target objects in consecutive frames of a video. Over the past
years, various methods have been developed in this regard [25, 39, 40]. In [7], a method for
face detection and tracking has been proposed. This has been done by using the Viola-Jones
face detector which extracts speed-up robust features (SURF) from detected objects. After that,
an improved KLT has been used with the Gradient Weighted Optical Flow (GWOF) to track
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static or moving objects. In [28], a robust multicast multi-object tracking algorithm has been
applied. Changing point detection algorithm is used to observe abnormal changes based on
spatio-temporal analysis and also a KLT-based motion detector is employed to track the
objects. Hamd et al. [4] propose a technique for adaptive block tracking using the Kalman
Filter. This approach is more suited for single object tracking in multiple video frames. Thus,
this couldn’t be used for multiple object tracking in video frames as it is unable to perform the
unique labelling achieved in our approach. Li et al. [29] proposes a simple yet effective
approach that exploits rich feature information from reliable patches based on the weighted
local sparse representation that takes into account the importance of each patch. To achieve
this, a reconstruction error-based weight function is also designed to determine patch reliabil-
ity. But this tracking approach leads to missing important patches which might contain
valuable data with respect to crowd tracking scenarios. The proposed approach works with a
holistic set of features, thus ensuring better information retrieval. In [54], the authors presented
a novel TrackletNet Tracker (TNT) that combines temporal information and appearance
information in the same framework. The tracker successfully identifies and deals with the
problem relating to fast motion and occlusions. However, measuring separate tracklets for a
single object makes the tracker unsuitable for performing real-time analysis in case of a
significantly dense crowd. In [48], a detailed comparative study has been done for tracking
using the KLT algorithm versus the Camshift algorithm. They have shown that KLT outper-
forms Camshift for object tracking in videos and especially in tasks involving crowd scenarios.
The method in [15], deals with a tracking algorithm based on structure similarity. The
performance of this approach is very high in complex scenarios. But it fails to provide
adequate veracity in case of videos having missing frames. Our approach performs unique
labelling of objects and tracks them efficiently even in the case of missing frames. Zhang et al.
[59] use a one-shot approach to obtain very high accuracy in multi-object tracking. They show
that a separate re-identification module is usually a heavy load for the system which in turn
degrades the tracking accuracy. However, this method is real-time, fast and lightweight but
fails to provide any further insight regarding the actions rendering it unsuitable to be used as a
part of a surveillance system. The authors of [56] have suggested a definitive approach to
better the performance of a deep learning-based multi-object tracker. The approach when
integrated with a Deep Hungarian Net (DHN) gives a significant boost in the accuracy.
However, these approaches are more aimed toward achieving high MOTA and MOTP scores.
These tracking parameters are insufficient to determine the performance of a tracker when used
specifically for surveillance purposes. Wang et al. [55] proposed a real-time approach for
efficient tracking that can identify detections and corresponding embedding at one go. But this
system particularly trades speed and accuracy with the details of a particular object that defies
the main purpose of a system with security as its main aim. In [27], the authors proposed a
novel tracking approach, in which the tracking has been done in 2 phases. The local periphery
of the object is segregated using the optical flow. More precise localization is done with the
multi-cue feature fusion around the centroid of the approximate outline obtained in the
previous step. In [30], the tracking has been done using two different networks, the tracking
and the inspecting networks. This algorithm shows high veracity for scarce distribution of
objects but fails in dense crowd scenarios because of the unnecessary overlap between the
networks of two or more objects. Recently, in [2], the authors have proposed a method o detect
and track multiple objects and address some of the challenges that prevent good results and
robust performance. Nuha et al. [1] have combined principal component analysis and a deep
learning model for object detection and tracking in real-time scenarios. They have shown that
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their method outperforms other related methods. Despite these efforts, tracking multiple
objects in a real-time video remains a difficult problem. Thus, researchers all over the world
are working on developing some robust object trackers to track multiple objects in the videos
of unconstrained scenarios.

3 Problem statement

Accurate object detection and tracking in a real-time video are observed to be a difficult and
stimulating tasks. Feature extraction of individual entities for object detection plays a crucial
role in the real-time scenario. It has to be more effective to determine the intention of the
crowd. The identification along with the unique labelling of individuals can also be a
challenge. This unique label for each individual can be persisted throughout the sequence of
frames in the given situation which massively help the exact object tracking task. The correct
unique labelling of the object can increase the potential of the tracker to track every object
across the sequence of frames in the given situation. That leads to identifying the movement of
the crowd, which in turn helps to detect the unusual or suspicious event if found. In this regard,
the accurate and efficient tracking of objects can be produced based on the precise motion flow
of the crowd. So, the displacement of the objects can be expressed as their motion feature for
the upcoming frames without losing their respective identification marks. This can be
expressed as their optical flow. As the video is a real-time scenario, it can contain some
missing frames. So, the proposed tracker has to deal with it where the missing frames cannot
affect the correctness of object tracking and the generation of crowd optical flow. Thus, based
on this information content, the displacement of each object needs to be taken into account.
This can be expressed mathematically in the case of the current frame with respect to our
previous frame of reference.

Suppose, the input object for the first frame is I x; yð Þ at time t1. After the displacement of the
object in the next frame at time t2, the position has changed as H x1; y1ð Þ where

H x1; y1ð Þ ¼ I xþ u; yþ vð Þ ð1Þ

after t ¼ t2 � t1
Now, to generate the motion flow of the object, the displacement of the object ðu; vÞneeds to

be calculated.
However, object detection and tracking are frequently identified as difficult tasks in various

scenarios due to low visibility, poor image quality, or missing frames. Multiple streams of real-
time scenarios with high frame rates can be captured by several CCTV sources in an
environment. However, processing those frames with the equivalent low-speed data processing
module is a difficult task. Because of resource constraints, the video stream analyser may
compromise some frames many times in order to resolve the overflow problem. To match the
incoming frame rate and data processing frame rate, some frames of the captured videos need
to be dropped out. Our proposed model has addressed the aforementioned scenario. It
outperforms all related methods considering the missing frames that occur sometimes during
the tracing of objects. Thus, this work has aimed at establishing an efficient object detection
model that can be able to effectively detect human faces with maximum accuracy along with
unique labeling in heterogeneous real-time environments. The model can also be included with
an effectual object motion tracker that can correctly track individual objects in the video
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supported by an optical flow motion generator. This generator leads to detect the doubtful
movements of objects if needed.

4 Proposed system

In this section, we describe our proposed unifocal motion tracking surveillance system
(UMTSS), which is based on the sequential application of three techniques: a method for
multi-object detection, unifocal feature-based object tracking, and a method for keyframe
extraction. The proposed surveillance system can monitor the crowd events and investigate
their motion for further investigation. Figure 1 illustrates the functionality of the proposed
surveillance system.

4.1 Object detection using Faster-RCNN Inception-v2 (FRI) model

In this section, we present our proposed method for multi-objects detection in real-time videos.
As stated earlier, object detection in videos is one of the fundamental and challenging tasks of
any intelligent surveillance system. In this regard, deep learning (DL)-based techniques have
recently been widely adopted in the field of object detection [39]. This is because DL-based
methods can perform significantly better compared to handcrafted feature-based methods [39].
Thus, in this work, we employed a Faster-RCNN with Inception-v2 model, called Faster-
RCNN Inception-v2 (FRI), for detecting multiple objects in each frame of a video. In this
method, the Inception-v2 [50] model is innovatively combined with Faster-RCNN [45] in
order to achieve a high object detection rate. Figure 2 illustrates the layered architecture of FRI
model.

Faster-RCNN [45] is an enhanced version of Fast-RCNN [17] in terms of object detection
accuracy and execution time. In Fast R-CNN, region proposals are generated using a selective
search method that makes the system slow and takes the same amount of execution time as the
detection network. Faster RCNN, on the other hand, replaces this module with a Region
Proposal Network (RPN), which is a fully convolutional network and effectively predicts
region proposals with a broad variety of sizes and aspect ratios. In general, Faster-RCNN
consists of mainly three components: Convolutional neural network (CNN), Region proposal
network (RPN), and Classes and bounding box (BB) prediction. CNN is the backbone of the
Faster-RCNN used to extract feature maps from the input. Besides, RPN is a small neural
network sliding on the last feature map of the CNN for the generation of region proposals.
Finally, there is another fully connected neural network that takes regions proposed by RBN as
input and predicts object class and BBs. Typically, the quality of features determines the upper

Fig. 1 Block diagram of the proposed UMTSS
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bound of network performance. Thus, the choice of CNN plays a crucial role in the perfor-
mance of Faster-RCNN. The common CNNs used in this model are VGG-16 [52] and Alexnet
[18]. These CNNs, however, have a monolithic architecture. As a result, the computational
cost of these CNNs is very high. Besides, the Inception-v2 model has a lower computational
cost than VGG Net, Alexnet, and other top-performing successors. In an inception block,
several convolutional layers have been working parallelly, which contains a sparse architecture
that helps dimension reduction. This improves the complexity but makes better performance
compared to the monolithic architecture. Also, it controls the overfitting problem. In Inception-
v2 [50], an efficient approach has been followed to factorize layers with higher convolutions
into ones with lower convolutions for more efficient computation. This module makes the
convolution network going to be wider than deeper. It is a multi-layered model integrated with
the features of auxiliary classification and label smoothing. Label smoothing is a mechanism to
regularize the classifier by estimating the level of label dropout during training. Inception-v2
has three different types of filter banks, such as (a), (b), and (c) (see Fig. 2). The decomposition
of these three filter banks are shown in Fig. 3. The first filter bank (a), shown in Fig. 3,
replaced 5 × 5 convolutions to be 3 × 3 convolutions. This follows the principle said spatial
aggregation can be done over lower dimensional embedding without much or any loss in
representational power. By conducting the 3 × 3 convolutions, convolution performance has
been boosted. Factorizing convolutional filter size n� n into1� n and n� 1 convolutions, we
have found their method 33% cheaper than the single 3 × 3 convolutions. That has been

Fig. 2 Layered architecture of FRI model

Fig. 3 Decomposition of filter banks (a), (b), and (c) of Inception-v2 model
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shown in (b). Moreover, the filter has been expanded that follows the principle of higher
dimensional representations can be easier to process locally within a network. The expanded
module has been shown in (c).

It has been observed that input resolution can significantly impact detection accuracy. From
our experiments, we observe that decreasing resolution by a factor of two in both dimensions
consistently lowers accuracy (by 15: 88% on average) but also reduces inference time by a
relative factor of 27: 4% on average [50]. We have also performed the score conversion
function on the identified objects which represents the probability of detecting objects of being
human.

After identifying the objects, the task of object labelling and tracking (see Subsection 4.2)
of the identified objects has been performed. Each of the identified objects can be labelled by
assigning a unique id, which remains specific to a particular object as long as it remains in the
frame of reference. In order to track the objects correctly across the frames, unique object
labelling plays a crucial role to keep the spatio-temporal data of individual moving objects
across the frames. We have considered the situation where some of the identified objects may
not be detected in a few consequent key-frames due to different postures or deteriorated image
quality. But as all of them have been already labelled by unique ids, those objects will again
correctly be tracked as soon as they appear in the next reference frames.

In this work, the pre-trained convolutional blocks and the weights of Inception-v2 model
are utilized in Faster-RCNN, which is further trained end-to-end using our experimental
datasets. Inception-v2 was originally trained on ImageNet dataset [46], which is a large dataset
consisting of near about 200 object classes. Here, we used the transfer learning strategy to fine-
tune our FRI model to detect multi-objects in videos. In the transfer learning stage, FRI model

is trained for 100 epochs for each training set at a learning rate of 10�3. The SGD optimization
function is used for backpropagation to minimize cross-entropy loss. The value of 0.99 is used
for the momentum decay rate. A 3.5 GHz AMD Ryzen 3 1300 quad-core processor with
128 GB memory and a Nvidia GeForce GTX 1060 6GB GPU were used to train the network.
Table 1 illustrates the hyper-parameters used to train our FRI network. The network is
implemented in Python using the tensorflow framework.

4.2 Object tracking

This section presents our proposed object tracking method. After the detection of objects using
the method stated above (See Subsection 4.1), they are need to track across the frames. In this
regard, we have proposed here a unifocal feature-based KLT method, called unifocal feature-
based object tracking using KLT (UFOT-KLT), for robust object tracking in real-time videos.
KLT [51] is a tracking algorithm which tries to find the shift of point of interest, that might
have taken. The framework is based on local optimization. When the movement is minor, it is

Table 1 Hyper-parameters and
their values used to train the FRI
model

Hyper-parameters Values

Loss Function Cross-entropy
Optimizer SGD
Initial Learning Rate 0.01
No. of Epochs 100
Batch Size 4
Momentum 0.99
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easy to follow the movement. But for real-time motion, it is difficult to figure out the features
that can be tracked. There are several challenges present while tracking the object in motion.
Some points may change their appearance over time due to rotation or moving into shadows.
Also, some points may appear or disappear at some point of time. Considering all the
aforementioned challenges, the KLT tracker tracks the feature points with some assumptions:

& Brightness Constancy- Projection of the same points looks like same in every possible
frame.

& Small Motion- Feature points do not move very far.
& Spatial Coherence- Feature points move like they are neighbours.

However, feature extraction plays an important role for a KLT-based object tracking. In this
regard, Shi-Tomasi [51] introduced some ‘good’ features points to track object motion using
Lucas-Kanade algorithm. Those feature points are extracted using eigen values of the second-
moment matrix (e.g. Haris Corner Detection). Those good feature points to track are the ones
whose motion can be estimated reliably. The KLT model tracks those features from frame to
frame with Lucas-Kanade algorithm [51]. The consistency of tracking has been checked by
affine registration to the first observed instance of the feature. For the larger displacements, the
affine model is more accurate. Compared to the first frame, it helps to minimize drift. It uses
intensity second-moment matrix and differences across frames to find displacement.

It is observed that, using KLT, the feature extraction of the individual object (human) is a
difficult task for a real-time crowded scenario. The extracted multi-feature points do not validate the
unique identity of individual objects. It leads to being a challenge for the tracker to get the precise
motion flow of every detected object uniquely across the frames without losing their respective
identification marks. In this regard, a distinctive monopoint feature identification technique is
introduced in the proposed tracking model. Each identified human face has been identified by
bounding boxes. The centre point of each face has been calculated and labelled by unique ids which
can be persisted throughout the sequence of frames. Based on this feature, we have proposed
UFOT-KLT. That extractedmonopoint featuremassively helps the unique object tracking task. The
multipoint feature extraction dependency moving down to unipoint distinctive features that exten-
sively decrease the overheads of multipoint features tracking techniques and also maintains the
precision of unique labelling of objects for the sequence of frames. Therefore, instead of multi-
tracking feature points, the tracker can trace the unique object trajectories depending on a single
unique point for each. So, this method also minimizes the execution cost and time of the tracking
system and also maintains the correctness of the required objectives. Another advantage of our
technique is that, since we are labelling the objects after the identification, we can successfully track
them even if their position changes over time. Even if the object has changed its orientation to some
other angle for which it cannot be detected, still the UFOT-KLTwill continue to track it throughout
the consecutive frames. It provides the discrete missing points of the movement of the pedestrian
that can help to produce the correct optical flow of the identified objects across the video. Amoving
object in a single frame at position p is represented as:

X
x

I w x : pð Þð Þ � T xð Þ½ �2
� �

ð2Þ

X
x

I w x : pð Þð Þ � T xð Þ½ �2
� �

ð3Þ
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Considering the object moves by p in the consequent frame, it can give by

X
x

I w x : pþΔpð Þð Þ � T xð Þ½ �2
� �

ð4Þ

Thus, the change in position or the update in the frame with respect to its predecessor is given
by:

� ¼
X
x

I w x : pþΔpð Þð Þ � T xð Þ½ �2 � I w x : pð Þð Þ � T xð Þ½ �2
� �

ð5Þ

where,wð:Þ represents the position of objects x in the given frame, Ið:Þ denotes the image where
the given frame belongs to, andT xð Þ represents the dynamic of the reference frame for object x.
Extrapolating it for k number of objects, the mean distance between the frames is represented
by � , where,

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

i¼1 �ið Þ2
q

k
ð6Þ

This added feature can be extensively helpful to evaluate the motion flow of the objects to
investigate the intention of the crowd. After tracking the unique identified objects, their
respective displacements can be expressed in terms of optical flow using the Lucas-Kanade
algorithm. Lucas-Kanade optical flow generation technique has some limitations. If the motion
is large or some intermediate frames have been lost due to noise, the movement of the distinct
object is estimated at an enormous precision risk. Thus, to fix this challenge, the mean shift
algorithm [32] is applied to the tracking model which can efficiently predict all the missing
points using the maxima of a density function. This mode–seeking algorithm can estimate each
lost point by applying the density function to the identified movements. The predictive key
points of the object can be obtained by taking into account both the previous as well as future
frame of reference of the distinct objects. So, the optical flow leads to generating self-reliant
movements of the objects without compromising their accuracy.

4.3 Keyframe extraction

The continuous unique object labelling and tracking across the frames is a vital task. Otherwise, the
object information can be missed and generate incorrect motion details. As we are working with
real-time videos, the speed of coming videos must match the frames per second. Otherwise, the
overflow of video frames can happen. To address this issue, a keyframe extraction technique [36] is
employed in this work. In [36], the intensity level entropy difference between consecutive frames
was used to extract the keyframe. The frames with a difference greater than a certain threshold value
are considered keyframes for the given scenario. Using this technique keyframes are effectively
selected from all the incoming videos and used for further analysis.

In the present work, an efficient producer-consumer technique using Kafka has been
implemented for the method [36] to maintain the balance between the speed of the incoming
real-time video and the process of frames per second. In the Kafka implementation, the
selected keyframes are converted into JSON for light-weighted data transmission. Data has
been transmitted efficiently using the producer-consumer method. On the producer end, the
video stream has been continuously generated through different sources like CCTV and on the
consumer end, the data will consume accordingly and converted back to the image. In between
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these functions, the broker plays the role of a mediator which will protect the system from any
data overflow situations. The broker keeps the JSON data until the consumers are up to
consumption. The consumer has been trained with object detection and a unique labelling
algorithm. If any object is found, then it will store the relevant information of the identified
object. In Fig. 4, the proposed key frame extraction technique using Kafka has been depicted.
For this implementation, we have used the OpenCV platform in python programming.

5 Experimental result

In this section, the details of the experimental results of our proposed system have been
presented. The targeted situation relevant to the work includes tracking multiple objects/people
in real-time videos. Thus, we have considered different crowded scenarios taken from different
publicly available standard datasets. The videos contain various acts like war scenes, the state
of busy road crossing, disturbed crowds at crossroads, and the running of the bulls scenario. In
Subsection 5.1 of this section, the database used for experimentation is described. The
quantitative evaluation of object detection and tracking modules of UMTSS is demonstrated
in Subsections 5.2 and 5.3. In Subsection 5.4, the performance evaluation on keyframe
extraction-based object tracking is presented.

5.1 Databases for surveillance

The proposed UMTSS is evaluated on challenging video sequences taken from the
CrowdHuman [47] dataset, Performance Evaluation of Tracking and Surveillance (PETS)
dataset [12], University of California San Diego (UCSD) Pedestrian Dataset [35],
AGORASET: A dataset for crowd video analysis [3], and CRCV: Centre for Research in
Computer Vision- Tracking in High-Density crowd dataset [22]. CrowdHuman is a large
human object detection dataset that contains over 25,000 images. It has been expertly
annotated and covers a wide range of scenes. It has more complex and crowded scenes,
making conventional duplicate removal difficult. The average number of people in an image is

Fig. 4 Keyframe extraction of real-time video using Kafka implementation technique
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23. The DV cameras wear used to film all datasets (except CrowdHuman) with frame rate ~ 7.
Camera models used are Axis 223 M, and PTZ Axis 233D, with the resolution used, and Sony
DCRPC1000E 3xCMOS, and Canon MV-1 1xCCD with the resolution used. PETS dataset
consists of video sequences of the medium-density crowd, high-density crowd and sparse
crowd. It has 5 subsets. Each subset contains several sequences and each sequence contains
different views. UCSD dataset contains 98 sparse to very high crowd videos with five well-
defined abnormal categories. Consisting videos have been categorized into two subsets where
each scene video footage is sliced into clips of 120–200 frames. The videos have been
captured by stationary cameras with a resolution of 740� 280 at 30 fps. AGORASET dataset
consists of simulation-based crowd videos composed of 8 scenes. All the videos correspond to
various situations like the stress of the crowd, viewing angles etc. The disposal of the same
scene with and without genuine visual effects allows the user to detect disruption to the
analytical procedure by light conditions. The images were captured with the parameters of sc
ale ¼ 4 and pixel format ¼ 422p. CRCV dataset contains three categories of subsets. These
are: the crowd counting dataset, crowd segmentation data set, and tracking in high-density
crowd dataset. All those videos have been taken from FLICKR, the Getty Images website and
the BBC motion library. The dataset consists of extremely high-density crowd videos. The
sequence length of the frames varies from 120 to 492 frames on an average.

5.2 Object detection performance evaluation

The efficacy of the FRI model has been evaluated on the CrowdHuman dataset [47] concern-
ing various performance measures. The CrowdHuman is a commonly used dataset for object
detection performance evaluation. It consists of the largest number of persons per image and
the largest number of pairs of intersecting bounding boxes among all datasets for human
detection [47]. Thus, we consider this dataset to evaluate the efficacy of our FRI model. The
performance of FRI model is compared against Fast-RCNN [17], and different backbone
CNNs with Faster-RCNN concerning three standard performance metrics. These metrics
include precision [49], recall, and F1-score [49] with criteria Intersection-over-Union (IoU)
[49] threshold of 0.5. The idea of IoU is used to assess localization correctness. Typically, it
computes the ratio of an overlapping region between model predicted and ground truth
boundaries to the total or region of union between the two boundaries. Figure 5 demonstrates
some examples of objects detected in images of the CrowdHuman test dataset. It can be
observed that FRI model detected almost all objects in images.

Table 2 shows precision, recall, and, F1-scores for FRI, and three other models mentioned
earlier at an IoU of 0.5. It can be seen that the FRI model consistently retained significant
improvement over the other models. FRI model improves precision by more than 1.2%, recall
by 2.56%, and F1-score by 1.84% with respect to the other models listed in Table 2. Also, a
higher IoU threshold, i.e., 0.7, is used to examine how the model adapts when more
localization is needed. Table 3 shows precision, recall, and F1-scores at an IoU threshold of
0.7 for FRI, and three other models. As can be observed, FRI still outperformed other models.

5.3 Tracking performance evaluation

In this section, the tracking performance of the proposed UMTSS has been evaluated. The
tracking performance of UMTSS is evaluated on video sequences of four standard publicly
available datasets: PETS, UCSD, AGORASET, and CRCV, discussed in Section 5.1. Figure 6
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shows the optical flow of objects in video frames from the PETS, UCSD, AGORASET, and
CRCV datasets using our proposed method. Also, we compared our method with six state-of-
the-art related methods. The state-of-the-art methods considered for comparison are Kalman
Tracker [4], conventional KLT [51] Tracker, FAIR-MOT [59], JDE [55], DEEP-MOT [56],
TNT [54], AVFOT [2], and PCA-DLM [1]. For the sake of fair comparison, all these methods
are implemented according to the description specified in the respective original papers. The
state-of-the-art tracking algorithms used in crowd detection are Kalman Tracker [4] and the
conventional KLT [51] Tracker. These algorithms are well known for mass object tracking.
But, the results are unsatisfactory in the case of random motion of the dense crowd and do not
yield accurate results when the video frames passed are non-consecutive. The unique identi-
fication of the objects is also not possible in the Kalman tracker. However, the proposed
UMTSS can overcome all those limitations. This is a major advantage of performing tracking
after object detection, which we have obtained in our work. The corresponding coordinates of
the detected objects can be derived from each frame which can provide a more meaningful
insight regarding the displacement of the detected objects and also aiding us in finding the
trajectories.

As UMTSS deals with real-time crowd scenarios, thus in this experiment, the system
performance has been measured on two parameters- Track length of the pedestrian [56], and
dynamic tracking Accuracy.

Fig. 5 Examples of objects detected in images of CrowdHuman test dataset

Table 2 Performance comparison
of different models at an IoU
threshold = 0.5

Methods Precision Recall F1-score

Fast RCNN 81.79 86.91 84.27
Faster-RCNN VGG-16 83.47 89.38 86.32
Faster RCNN Inception-v1 85.28 89.59 87.38
FRI 86.48 92.15 89.22
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& Track Length (TL): Tracking length [8] is a measure parameter that is used to compare
trackers in tracking length. The role of this measure is to report the number of successfully
tracked frames from the tracker’s initialization to its (first) failure. The importance of
tracking length is significantly high, especially in a surveillance system. However, there
are various methods for automating the failure criterion, which affects the comparison
results. Usually, this is accomplished by applying a threshold to the centre error or the
overlap region. However, when the problem is the simultaneous detection of multiple
objects across real-time video frames, it is inefficient [8]. Hence, in this work, the threshold

for each frame has been determined using the following metric No:ofcorrectlydetectedobjects
Totalno:ofobjectsintheframe .

Tracking length serves as a crucial aspect to bolster the claim for the performance of our
tracker. The virtue of being able to track a labelled object for a higher number of frames
gives an opportunity for better feature extraction and behaviour analysis.

& Dynamic Tracking Accuracy (DTA): The most commonly used parameter to observe the
tracking accuracy of any state-of-the-art tracker is MOTA (multi-object tracking accuracy)
[5]. This quantification is usually achieved on large annotated video datasets. However,
this parameter alone is not enough to form a conclusion about tracking systems specifically
for surveillance purposes. The objective of a surveillance system is not merely to observe
the trajectory of each identified entity but also to monitor them. Hence, in this work, we
proposed a new parameter, called dynamic tracking accuracy (DTA), that measures the
tracking accuracy in a dynamic manner. It is dependent on the factors stated below:

– The ratio of total objects detected in a frame to the actual number of objects present.
– Number of common objects in one particular frame and its following frame.

Table 3 Performance comparison
of different models at an IoU
threshold = 0.7

Methods Precision Recall F1-score

Fast RCNN 55.19 60.31 57.63
Faster-RCNN VGG-16 57.77 63.68 60.58
Faster RCNN Inception-v1 61.88 66.29 64
FRI 62.98 68.55 65.64

(a) (b)

(c) (d)

Fig. 6 Optical flow of objects using the proposed UMTSS. Frames taken from a PETS dataset, b UCSD dataset,
c AGORASET dataset, and d CRCV dataset
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– Count of new objects entering the frame of reference and being detected.
– Count of old objects leaving the frame of reference.

The proposed DTA is defined as follows. First, we have calculated DTA for a single frame
transition (i.e., DTA (iþ 1; i)), which is defined as:

DTA iþ 1; ið Þ ¼ no: of new trackids generated
2� no: of new object in the frame

þ no: of trackids lost
2� no: of object left in the frame

ð7Þ

Table 4 Performance evaluation of
UMTSS against KLT and Kalman
tracker

Index Dataset Parameter KLT
tracker

Kalman
tracker

UMTSS

1 PETS TL 0.382 0.411 0.639
2 PETS DTA 0.563 0.521 0.844
3 UCSD TL 0.322 0.213 0.672
4 UCSD DTA 0.568 0.379 0.871
5 AGORASET TL 0.289 0.315 0.663
6 AGORASET DTA 0.474 0.452 0.855
7 CRCV TL 0.261 0239 0.550
8 CRCV DTA 0.313 0.262 0.608

Table 5 Performance evaluation of
UMTSS with other related methods Index Dataset Tracking Algorithm TL DTA

1 PETS FAIR-MOT 0.489 0.884
JDE 0.623 0.831
DEEP-MOT 0.596 0.832
TNT 0.572 0.764
AVFOT 0.611 0.803
PCA-DLM 0.625 0.831
UMTSS 0.639 0.844

2 UCSD FAIR-MOT 0.537 0.921
JDE 0.674 0.842
DEEP-MOT 0.649 0.825
TNT 0.651 0.810
AVFOT 0.612 0.860
PCA-DLM 0.662 0.863
UMTSS 0.672 0.871

3 AGORASET FAIR-MOT 0.618 0.872
JDE 0.594 0.856
DEEP-MOT 0.627 0.852
TNT 0.601 0.839
AVFOT 0.605 0.833
PCA-DLM 0.633 0.859
UMTSS 0.663 0.855

4 CRCV FAIR-MOT 0.438 0.631
JDE 0.522 0.534
DEEP-MOT 0.532 0.611
TNT 0.511 0.572
AVFOT 0.512 0.588
PCA-DLM 0.550 0.594
UMTSS 0.558 0.608
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Now, the final DTA for a tracking video is defined as:

DTA ¼
PN�1

i¼1 DTA iþ 1; ið Þ
N � 1

ð8Þ

where, N= total number of frames.

Table 4 shows the performance of the proposed UMTSS, Kalman tracker and KLT tracker
concerning Track Length and DTA. It can be observed that our UMTSS outperforms the
conventional tracking methods listed in Table 4 with a significant margin.

Table 5 shows a comprehensive comparison of the proposed method and six other related
methods like FAIR-MOT, JDE, DEEP-MOT, TNT, AVFOT, and PCA-DLM concerning TL
and DTA measures, where the best result is shown in bold font. It can be seen that our
proposed UMTSS outperforms all the methods in terms of TL measure for all datasets.
Besides, FAIR-MOT achieved the highest score in terms of DTA for all datasets, whereas
our method achieved the second highest score for all datasets. However, it can also be
observed the DTA score of our method is very close to FAIR-MOT. These results ensure that
the performance of our method is consistent and credible compared to the other related
methods listed in Table 5.

Table 6 Performance evaluation of
UMTSS with other related methods
on missing frames

Index Dataset Tracking Algorithm TL DTA

1 PETS FAIR-MOT 0.185 0.389
JDE 0.215 0.328
DEEP-MOT 0.241 0.319
TNT 0.194 0.264
AVFOT 0.310 0.344
PCA-DLM 0.324 0.372
UMTSS 0.338 0.385

2 UCSD FAIR-MOT 0.246 0.429
JDE 0.317 0.421
DEEP-MOT 0.299 0.458
TNT 0.291 0.341
AVFOT 0.316 0.469
PCA-DLM 0.363 0.474
UMTSS 0.374 0.482

3 AGORASET FAIR-MOT 0.293 0.471
JDE 0.217 0.391
DEEP-MOT 0.252 0.452
TNT 0.317 0.420
AVFOT 0.285 0.443
PCA-DLM 0.317 0.470
UMTSS 0.327 0.476

4 CRCV FAIR-MOT 0.125 0.329
JDE 0.163 0.282
DEEP-MOT 0.172 0.341
TNT 0.155 0.283
AVFOT 0.124 0.315
PCA-DLM 0.162 0.332
UMTSS 0.211 0.356
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5.4 Performance evaluation on key-frame extraction-based object tracking

In this section, the performance of the proposed system is evaluated in the missing frames
scenario. In this experiment, we performed a keyframe extraction technique, as described in
Section 4.3, on given datasets and merged the video from the extracted key-frames. After that,
the experiment has been performed using UMTSS and other six related methods mentioned
earlier (see Section 5.3). Table 6 shows the performance of the proposed method and other
related state-of-the-art methods in missing frames scenarios concerning TL and DTA. It can be
observed that the proposed UMTSS outperforms other related methods concerning TL
measure by a significant margin for all datasets. Also, it can be seen that our method performs
notably better compared to other methods in terms of DTA measure for UCSD, AGORASET,
and CRCV datasets. However, for PETS dataset, our method achieved the second highest
DTA score, which is very close to the highest DTA score obtained by the FAIR-MOTmethod.
From these results it can be conclude that our method can also performs significantly better on
missing frames.

6 Conclusion and future work

In real-time surveillance video analysis and computer vision, multiple object tracking is crucially
significant in resolving a number of elementary issues. The approach of tracking an object in a video,
however, entails identifying the object in the first frame and determining its state in each subsequent
frame. In this work, we have proposed a novel surveillance framework coined as a unifocal motion
tracking surveillance system (UMTSS), for multi-object tracking in real-time videos. The proposed
UMTSS combines two significant steps. First, a deep learning-basedmodel, called FRI, is employed
to detect multiple objects efficiently in each video frame. Then, a proposed unifocal feature-based
KLT method is applied for tracking objects in each frame of the video based on region proposals
generated by the object detector in the previous phase. Also, a new tracking parameter, called
dynamic tracking accuracy (DTA), is proposed to quantify the performance of the tracking
algorithms. The performance of our UMTSS has been evaluated on various standard crowd video
databases, and compared with state-of-the-art related methods concerning different qualitative and
quantitative measures. It has been observed that our UMTSS outperforms the state-of-the-art
methods.

Although our approach obtains concrete results in the detection, labelling and tracking
domains, there are a few areas that can be improved further. As the initial tracking points are
identified by a trained neural network model, the accuracy diminishes greatly when handling
objects from different orientations in the frame of reference. However, object detection and
tracking are necessary in the presence of multiple CCTV cameras at times. The image
resolutions or image quality of each of those cameras may differ. Thus, object detection and
tracking across multiple CCTV cameras of varying quality is a significant future improvement
opportunity for us. Further, in the crowd scenario, the tracking fails in case of high occlusion.
Thus the accuracy of labelling of each object has been obtained at the cost of a minute error in
the trajectory of the same object. Another major future improvement of our process lies in the
high interdependency of the detecting, labelling and tracking modules, i.e. failure in one
module will reflect an adverse effect on the others. So, the future direction of the work is to
overcome all the mentioned limitations that will significantly increase the performance and
precision of UMTSS.
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