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Abstract
Mammography technique is commonly used for diagnosing breast cancer, but mammog-
raphy images usually show low contrast which cause difficulties to clinical diagnosis.
Therefore, improving the visual quality of mammography images is an important issue.
This is a challenging problem, because every mammography image consists of rich tex-
tures, including bright areas, dark areas, and textural details. Inspired by bio-inspired neural
network, this paper proposes a Bidirectional Spiking Cortical Model (Bi-SCM) from the
perspective of neural information fusion to enhance the contrast of bright areas and dark
areas adequately, as well as textural details. This goal is achieved by utilizing the Bi-SCM
to first enhance a mammography image and its inverse separately. The enhanced results are
fused by a new fusion algorithm based on non-subsampled contourlet transform (NSCT)
to ensure that both of the contrast of bright areas and dark areas are adequately improved.
The textual details are then enhanced by an unsharp masking method which consists of
cubic filter and log-ratio operation. Sufficient experiments on mammography images are
conducted to evaluate the proposed approach. Experimental results show that the pro-
posed method outperforms state-of-the-art methods on both enhancing contrast and details.
Besides, over-enhancement and noise sensitivity are also significantly suppressed.
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1 Introduction

Breast cancer is one of the most common diseases and the leading cause of death among
women. Although it is hard to prevent the development of breast cancer, early detection of
tumors can significantly improve clinical cure rates [39]. There exists several imaging tech-
niques for breast exam, among which mammography (X-ray image) is the most common
technique for radiologists to detect and diagnose breast cancer [16]. If the mammography
images are noised during imaging or transmitting [5], they can be recovered by some denois-
ing methods [7–9]. But more seriously, mammography images are usually limited by X-ray
hardware systems and exhibit poor resolution and low contrast. Different from denoising,
effective enhancement approaches are desired to solve the problems of poor resolution and
low contrast. To this end, several enhancement algorithms have been proposed, such as the
multiscale representation [14, 20, 23], histogram equalization (HE) [3, 4, 17, 21, 22], and
unsharp masking (UM) [26, 27, 35, 36, 45].

1.1 Related works

Multiscale decomposition has been frequently employed in mammogram enhancement. The
main idea is to perform a multiscale computation framework, such as discrete wavelet trans-
form (DWT) [20], curvelet transform [14], or contourlet transform [23], on mammograms
followed by the modification of the transform coefficients in each subband of the multiscale
representation. Finally, performing the corresponding inverse transform on the modified
coefficients to get the enhanced mammograms. Besides enhancement, multiscale decompo-
sition is also widely used for medical images denoising. Manoj Diwakar et al. [6, 10, 11]
studied this problem deeply and proposed a variety of multiscale decomposition based med-
ical images denoising methods. However, it is argued that multiscale representation cannot
efficiently show edges and textured region in images [24].

Histogram equalization, which is known for its simpleness and the ability of improving
contrast, is a desirable technique for image enhancement. But conventional HE algorithms
may cause over-enhancement and the intensity saturation effects. So many improved algo-
rithms, such as the brightness-preservation HE algorithm [4, 22], histogram partitioning
method [3], and texture enhanced HE approach [17] have been proposed. Although the
brightness-preservation HE algorithm maintains a natural look and reduces saturation effect
in the output image, it also generates annoying side effects depending on the variation in
the gray-level distribution [17]. The histogram partitioning algorithm divides an image his-
togram into several subintervals and modifies each subinterval separately. However, pixels
with the similar intensity may belong to different intervals, producing over-enhancement
in some image regions [21]. The texture enhanced HE approach was proposed to avoid
the occurrence of over-enhancement and the intensity saturation effects, but the degree of
contrast enhancement is not significant.

Several algorithms have been developed for mammography image enhancement by using
unsharp masking. The traditional UMmethod is sensitive to noise and may generate ringing
artifacts. To rectify these limitations, various modified approaches have been suggested,
such as the rational UM (RUM) [36], cubic UM (CUM) [35], adaptive UM (AUM) [26],
HE based UM [45], and nonlinear UM (NUM) [27]. These algorithms attempt to enhance
image details, but usually result in different degrees of over-enhancement. Besides, they are
powerless in improving image contrast.

12082 Multimedia Tools and Applications (2023) 82:12081–12098



1.2 Contributions

Micro-calcifications and masses are the main abnormalities in mammography images,
which are important basis for the diagnosis of breast cancer. Micro-calcifications are tiny
calcium deposits in breast tissue. They appear in images as bright, 100-um dots or clusters
of dots, which are difficult to detect. Breast masses are bright spots on the image. Most of
the masses have blurred boundaries and low contrast, which are easy to be confused with
the normal tissues of the breast. Because of the limitations of X-ray hardware systems, the
hypothesis of this paper is that the visual quality of mammography images is low because
of poor resolution and low contrast. In order to overcome the problems in the detection of
micro-calcifications and masses, this paper proposes a bidirectional spiking cortical (Bi-
SCM) method to improve contrast as well as enhance details of mammography images. The
goal of this paper is to highlight the lesion area without losing image details and introduc-
ing background noise, so as to assist doctors in diagnosis and provide technical support for
computer aided mammography detection system. The main contributions of this paper can
be briefly summarized as follows.

1. A Bi-SCM framework is proposed from the perspective of neural information fusion
to enhance the contrast of bright areas and dark areas adequately, as well as textural
details.

2. Based on the proposed Bi-SCM framework, neural spiking model is utilized to enhance
a mammography image and its inverse, and then a NSCT based fusion method is pro-
posed to fuse the primarily enhanced results, ensuring both contrasts of bright areas and
dark areas are adequately improved.

3. Wemade the first attempt to further enhance the textual details of the NSCT-fused mam-
mography image with an adaptive unsharp masking method which consists of cubic
filter and log-ratio operation.

4. Sufficient experiments on real mammography images are conducted to prove that the
proposed method outperforms state-of-the-art methods on both enhancing contrast and
details.

The novelties of the proposed method are as follows. First, Bi-SCM framework is pro-
posed from the perspective of neural information fusion to enhance mammography images.
By taking into account both intensity distribution and spatial structure information, Bi-SCM
can enhance lesions while suppressing background noises. Secondly, an original fusion rule,
named weighted region energy, is proposed to fuse the two SCM-enhanced results while
avoiding information loss. By using the directive contrast as weighting factor, more details
in mammograms can be preserved. The rest of this paper is organized as follows. Section 2
presents the framework and details of the proposed Bi-SCM method. Experimental results
on real mammography images are reported and analyzed in Section 3, followed by Section 4
which gives a overall conclusion of the paper.

2 Methodology

2.1 Bidirectional spiking cortical model

In the late 1980s, Eckhorn et al. [13] studied the mechanism of cat visual cortex, and found
that the binary images produced by the midbrain in an oscillating manner are distinctive rep-
resentations of visual features. Based on this discovery, a a feedback neural network model
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entitled pulse coupled neural network (PCNN) [37], which consists of a feedback field, a
modulation field and a pulse generation field was proposed. In our previous work [47], a
modified version of pulse coupled neural network (PCNN) model entitled spiking corti-
cal model (SCM), was proposed for invariant texture retrieval. The SCM is mathematically
described by

Uij [n] = f Uij [n − 1] + Sij

∑

kl

WijklYkl [n − 1] + Sij , (1)

Eij [n] = gEij [n − 1] + hYij [n − 1] , (2)

Yij [n] =
{
1,
0,

Uij [n] > Eij [n]
otherwise

, (3)

where n denotes iteration times, and Nij denotes the neuron in the position (i, j). Neuron
Nij has internal activity Uij [n] and dynamic threshold Eij [n], which retain the previous
states by decay factors f and g, respectively.W is the synaptic weight, denoting influence of
neighboring neurons, Sij denotes input stimulus, and Yij is the output of neuronNij . Internal
activity Uij [n] is compared with the dynamic threshold Eij [n] to judge whether neuron
Nij fires (Yij [n] = 1) or not (Yij [n] = 0 ). Subsequently, if neuron Nij fires, the dynamic
threshold would increase by amplitude h suddenly, otherwise the dynamic threshold would
decay by a factor g. In addition, Ykl [n − 1] denotes the output of neighboring neuron in the
previous iteration.

Although SCM can enhance low contrast images, it processes contrast varying with
intensities. When SCM is used to enhance images, bright areas would be processed more
coarsely than dark areas [47]. It is therefore not suitable for mammogram enhancement,
because both bright and dark areas provide important information in mammograms. In this
paper, we proposes an improved the Bi-SCM model to overcome this problem. A graphical
illustration of our approach is shown in Fig. 1. The original mammography image I (i, j)

is firstly fed into a cubic filter to obtain the textual details z (i, j) and the corresponding
smoothed version S (i, j). Then a bi-directional SCM model is proposed to enhance the

Fig. 1 Framework of the proposed Bi-SCM
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smoothed image. The two SCM-enhanced results are further fused as a single out, which
leads to anomalies being highlighted while the background textures and noises are sup-
pressed. The final enhancement result is obtained by adding the detailed image to the fused
image with adaptive gain control. The main motivation is to adequately enhance both of the
bright areas and dark areas. For both original mammogram and the corresponding reverse
mammogram, before a neuron pulses for the first time, it has no linking input, so its internal
activity can be derived from (1) and described as

Uij [n] = f Uij [n − 1] + Sij

= (Uij [0] -
Sij

1 − f
)f n + Sij

1 − f
. (4)

Its dynamic threshold Eij can be derived from (2) and expressed by

Eij [n] = gEij [n − 1] = gnEij [0] . (5)

When Uij [n] = Eij [n], the neuron Nij fires for the first time. Therefore, the first iteration
times can be given by

n1ij = − 1

ln g
ln

Eij [0]

Uij

[
n1ij

] . (6)

Since time matrix is defined to record the first iteration times for all neurons, if the internal
activity Uij is equal to its stimulus Sij , the time matrix of SCM can be approximated as

Tij = n1ij = − 1

ln g
ln

Eij [0]

Uij

[
n1ij

] ≈ − 1

ln g
ln

Eij [0]

Sij

. (7)

and thus
ln S = T ln g + lnE [0] . (8)

On the other hand, Weber-Fechner law is described by [15]

I = k ln S + r, (9)

where I is the human visual perception, S is the stimulus at the instant, k is a constant factor
which is to be determined experimentally, and r is the constant of integration. Substituting
(8) into (9), one achieve

I = k(T ln g + lnE [0]) + r = −k′T + r ′, (10)

where k′ = k/ln g, and r ′ = k lnE [0] + r . Equation (10) describes the link between the
subjective sense of intensity I and the time matrix T , where I can be obtained by computing
the negative time matrix. Therefore, the negative time matrix of SCM conforms to Weber-
Fechner law, and can be directly regarded as the enhanced result. The internal activity is
initialized to 0, i.e., Uij [0] = 0. Thus, equation (4) can be rewritten as

U [n1] = − S

1 − f
f n1 + S

1 − f
= 1 − f n1

1 − f
S. (11)

Substituting (11) into (7), we achieve

T = − 1

ln g
ln

(
1 − f

1 − f n1
· E [0]

S

)
. (12)

In addition, according to the lateral inhibition principle of the human visual system (HVS),
Laplacian of Gaussian (LoG) operator can be used for image edge sharpening, and the initial
value of dynamic threshold can be obtained as [25]

E [0] = 1 + S ⊗ LoG. (13)
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Therefore, as can be seen from (12) and (13), values of time matrix only depend on input
stimulus and decay factors f and g, where 0 < f < g < 1. To insure changes in E and U

occur slowly, the value of f is close to 0, and the value of g is just under 1.
To fuse the enhanced images of original mammogram and the corresponding reverse

mammogram, we propose to use the multi-scale and multi-directional computation frame-
work entitled NSCT, which consists of a nonsubsampled pyramid Laplacian filter and a
nonsubsampled directional filter [2]. Comparing with wavelet transform and contourlet
transform, NSCT shows better translational invariance and makes full use of the geomet-
ric regularity in images, so that it has better multidirectional selectivity and provides more
detailed information. Thereby, NSCT is a desirable technique for this purpose. The NSCT
based image fusion methods usually consist of three steps. Firstly, the source mammo-
grams are transformed by NSCT to obtain low- and high-frequency components. Then two
different fusion rules are used to fuse low- and high-frequency coefficients, respectively.
Finally, the fused image is constructed by the inverse NSCT with all fused subimages. More
detailed discussion can be found in [2]. In this subsection, we introduce a modified NSCT
based fusion method to fuse the SCM enhanced mammogram and its enhanced reverse ver-
sion. Weighted region energy and directive contrast are selected as the fusion rules of low-
and high-frequency coefficients, respectively. The proposed fusion framework can preserve
more details in source mammograms and further improve the quality of fused mammogram.

HVS is sensitive to intensity contrast, but insensitive to luminance value at independent
positions. Therefore, it is necessary to quantify the intensity contrast. The local luminance
contrast is defined as [42]

R = L − LB

LB

, (14)

where L denotes the luminance at a certain location in the image plane, and LB represents
the luminance of the local background, regarded as low frequency component. Hence, L −
LB can be taken as local high-frequency component. The local luminance contrast can be
further extended as directive contrast in multiscale domain, which is given by [2]

Dl,θ (i, j) =
{ (

1
C�(i,j)

)∂ SMLl,θ (i,j)

C�(i,j)
, if C� (i, j) �= 0

SMLl,θ (i, j) , if C� (i, j) = 0
, (15)

where C� (i, j) is the low-frequency subband at the coarsest level �, ∂ is a visual constant
representing the slope of the best fitted lines through high-contrast data, and SMLl,θ (i, j) is
the sum-modified-Laplacian of the NSCT high-frequency subband at scale l and orientation
θ , which is computed over a (2P + 1) × (2Q + 1) pixel block, given by

SMLl,θ (i, j) =
i+P∑

m=i−P

j+Q∑

n=j−Q

∇2
l,θH(m, n), (16)

and

∇2
l,θH(i, j) = ∣∣2Hl,θ (i, j) − Hl,θ (i − 1, j) − Hl,θ (i + 1, j)

∣∣

+ ∣∣2Hl,θ (i, j) − Hl,θ (i, j − 1) − Hl,θ (i, j + 1)
∣∣ , (17)

where Hl,θ (i, j) is the high-frequency subband at position (i, j), scale l, and orientation
θ . It has been proved that the directive contrast is less sensitive to noise and provides the
most salient features [2]. Therefore, in order to select the most prominent texture and edge
information, we use the directive contrast to fuse high-frequency coefficients.
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Region energy is computed over a (2M + 1) × (2N + 1) (usually 3× 3, 5× 5, or 7× 7)
pixel block as [44]

RE(i, j) =
M∑

m=−M

N∑

n=−N

(I (i + m, j + n) − I (i, j))2, (18)

where I (i, j) represents the gray value at position (i, j). In general, pixels with larger values
of region energy represent the salient features of the image, such as edges and lines. So
we can regard region energy as a quantitative metric of image clarity and use it to fuse
low-frequency subimages. The fused low-frequency is calculated by

CF
� (i, j) =

{
CA

� (i, j) ,

CB
� (i, j) ,

RECA
�

(i, j) ≥ RECB
�

(i, j)

RECA
�

(i, j) < RECB
�

(i, j)
, (19)

where A and B are two input images. CA
� and CB

� denote low-frequency subbands at the
coarsest level of A and B, respectively. Region energy based fusion rule can extract more
details, and is less sensitive to noises [44]. However, when the region energies of two corre-
sponding pixels are close to each other, this method may lead to information loss. Therefore,
we propose a novel fusion criterion based on weighted region energy. The weighted region
energy of the low-frequency subband at the coarsest level is defined as

WE�(i, j) = D� (i, j) · RE (i, j) , (20)

where D� (i, j) denotes the directive contrast in NSCT domain. When the difference
between the region energies of two corresponding pixels is great, the NSCT coefficients
with larger region energy are selected as fused coefficients. On the other hand, when the
region energies of two corresponding pixels are close to each other, the fused low-frequency
is calculated by

CF
� (i, j) =

(
WEA

� (i, j) CA
� (i, j) + WEB

� (i, j) CB
� (i, j)

)
(
WEA

� (i, j) + WEB
� (i, j)

) , (21)

Since directive contrast Dl(i, j) is the extension of local luminance contrast in multi-
resolution domain, from (20) and (21), we can find that more information will be extracted
from pixels with larger local contrast. Thus, by classing the fusion task into two cases and
use the directive contrast as weighting factor, the proposed fusion rule is able to avoid
information loss while improve the contrast of fused mammograms.

The proposed image fusion scheme includes the following steps:

– NSCT Based Decomposition
Perform �-level NSCT on the source images A and B to obtain their low-frequency

subimages CA
� , CB

� and a series of high-frequency subimages HA
l,θ , HB

l,θ at each level

l ∈ [1, �] and direction θ , i.e., A :
{
CA

� ,HA
l,θ

}
and B :

{
CB

� ,HB
l,θ

}
.

– Fusion of High-frequency Subimages
The high-frequency coefficients usually include most details and edge features of the

source image. Since directive contrast can be thought as an quantitative expression of
image detail and be less sensitive to noise, we select directive contrast as the fusion rule
for high-frequency subimages. Firstly, the directive contrast for NSCT high-frequency
subimages is computed using (15)-(17), denoted by DHA

l,θ
and DHB

l,θ
at each level l in

direction θ , respectively. Then the high-frequency coefficients are fused, and the fused
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high-frequency coefficients HF
l,θ are defined by

HF
l,θ (i, j) =

{
HA

l,θ (i, j) ,

HB
l,θ (i, j) ,

DHA
l,θ

(i, j) ≥ DHB
l,θ

(i, j)

DHA
l,θ

(i, j) < DHB
l,θ

(i, j)
(22)

– Fusion of Low-frequency Subimages
The low-frequency coefficients usually represent the approximation component of

the source images. The simplest way to get the fused bands is conventional averaging
[2]. However, it leads to information loss and low contrast of the fused image. Select-
ing low-frequency coefficients is still an open problem. In this subsection, we propose
a novel fusion rule based on weighted region energy for low-frequency subimages.
Firstly, the region energy and the weighted region energy for NSCT low-frequency
subimages are computed with (18) and (20), denoted by RECA

�
, RECB

�
, WECA

�
and

WECB
�
, respectively. Then we choose fusion rule by estimating the difference between

the region energies of two corresponding pixels. If the region energies of two corre-

sponding pixels are close to each other, i.e.,
∣∣∣RECA

�
− RECB

�

∣∣∣ > T , where T is a

threshold which is normally set as 0.1, the fused low-frequency is calculated by (19). If∣∣∣RECA
�

− RECB
�

∣∣∣ ≤ T , the fused low-frequency coefficients CF
� is calculated by (21).

– Inverse NSCT Based Reconstruction
Perform �-level inverse NSCT on the fused low-frequency

(
CF

�

)
and high-frequency(

HF
l,θ

)
subimages to get the fused image F .

2.2 Adaptive unsharpmasking

Besides contrast that can be well enhanced by the proposed Bi-SCM, textual details are also
very important for mammography images. In conventional enhancement models, unsharp
masking [26] is usually adopted for enhancing textual details. In particular, every pixel
y(i, j) in the enhanced image can be obtained from original image I through

y(i, j) = I (i, j) + λ z(i, j), (23)

where z(i, j) is a high-passed version of the input image, and λ is the enhancement factor.
The traditional UM can enhance details in the original image effectively. However, using
a universal enhancement gain for the whole image leads to over-enhancement and noise
amplification. In this paper, to suppress the noise sensitivity, a cubic filter [35] is employed
to acquire z(i, j), which is defined as

z (i, j) = (
Ii−1,j − Ii+1,j

)2 (
2Ii,j − Ii−1,j − Ii+1,j

)

+ (
Ii,j−1 − Ii,j+1

)2 (
2Ii,j − Ii,j−1 − Ii,j+1

)
.

(24)

On the other hand, in order to reduce the over-enhancement, we choose the log-ratio opera-
tions and adaptive gain control algorithm [12] instead of arithmetic operations and universal
enhancement gain, respectively. The output of the adaptive UM scheme becomes

y (i, j) = I ⊕ [λ (z) ⊗ z] , (25)

λ (z) = ∂ + β exp(−|2z − 1|γ ), (26)
where γ is a decreasing factor, and γ > 0. The addition operation ⊕ and scalar
multiplication operation ⊗ of the log-ratio operations are formally defined as

ψ (x) = 1 − x

x
, (27)
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x1 ⊕ x2 = 1

1 + ψ (x1) ψ (x2)
, (28)

λ ⊗ x = 1

1 + ψ(x)λ
. (29)

The gray scale set is closed under log-ratio operations. In order to avoid over-enhancement,
λ is excepted to gradually decrease from λmax when the value of z is moderate to λmin when
z is high or low. Thus, we can assume λmax = λ (1) and λmin = λ (0.5). Then the two
parameters ∂ and β can be obtained by

β = (λmax − λmin) /
(
1 − e−1

)
(30)

and
∂ = λmax − β, (31)

respectively. The proposed adaptive UM algorithm can significantly enhance details while
avoid over-enhancement. The values of parameters γ , λmax, and λmin depend on the contrast
of the input mammogram. We experimentally found that the choices of γ = 0.005, λmax =
3, and λmin = 1 are effective in providing good results to almost all tested mammograms.

3 Experimental results and discussions

This section provides the experimental results and a comprehensive discussion of the pro-
posed approach. Mammograms for experiments are from the mini-mammographic image
analysis society (MIAS) database of mammograms [40] and the digital database for screen-
ing mammography (DDSM) of the University of South Florida [19]. All test mammograms
are cropped into images with smaller size which contain masses, micro-calcifications or
abnormal regions.

3.1 Comparison of fusionmethods

To evaluate the proposed fusion method, it was tested on 100 mammograms, half of which
come from the MIAS database and others come from the DDSM database. Sufficient
state-of-the-art approaches are taken into comparison, including PCNN [43], wavelet [31],
contourlet [33], and NSCT (NSCT-1 [2] and NSCT-2 [41]) based methods. For wavelet,
contourlet, and NSCT based methods, the level of decomposition is set to 3, and wavelet
based method uses the ‘db4’ wavelet as basis. Typical fusion results are visualized in Fig. 2.

Mutual information (MI) and edge based similarity measure QAB/F are commonly used
objective criteria for evaluation of fusion algorithms [28]. Specifically, MI is utilized to
measure the mutual dependence of the fused image F and two input images A and B. In
other words, MI reflects how much information of the original image is obtained by the
fused image, which is expressed as [32]

MI = MI(A, F ) + MI(B, F ), (32)

and

MI(U, V ) =
∑

u∈U

∑

v∈V

p(u, v)log2
p(u, v)

p(u)p(v)
, (33)

where p(u, v) is the joint probability distribution function of U and V , and p(u) and p(v),
which are the marginal probability distribution functions of U and V , respectively, can be
obtained by simple normalization of the joint and marginal histograms of both variables.
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Fig. 2 Comparison of mammogram fusion results with different fusion algorithms. (a) Enhanced mammo-
gram from conventional SCM; (b) Enhanced reverse mammogram from conventional SCM;(c) Fused results
by PCNN; (d) Contourlet; (e) Wavelet; (f) NSCT-1; (g) NSCT-2; (h) The proposed fusion method

On the other hand, ESM computes the similarity of edges between the fused image and
input images, which measures the ability of the fusion process to transfer important detail
information as accurately as possible, and is given by [46]

QAB/F =

M∑
i=1

N∑
j=1

[
QAF

i,j wA
i,j + QBF

i,j wB
i,j

]

M∑
i=1

N∑
j=1

[
wA

i,j + wB
i,j

] , (34)

where wA
i,j and wB

i,j are the weighting coefficients. QAF
i,j and QBF

i,j are defined as

QAF
i,j = QAF

g (i, j)QAF
α (i, j) (35)

and

QBF
i,j = QBF

g (i, j) QBF
α (i, j) , (36)

where Q∗F
g and Q∗F

α are the edge strength and orientation preservation values at location
(i, j), respectively, and can be derived

Q∗F
g (i, j) = 
g

1 + eκg(G∗F (i,j)−σg)
(37)

and

Q∗F
α (i, j) = 
α

1 + eκα(∗F (i,j)−σα)
, (38)

where the constants 
∗, κ∗, and σ∗ determine the shape of the sigmoid functions used
to form the edge strength and orientation preservation value. G∗F and ∗F , which rep-
resent the relative strength and orientation values between input image and fused image
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respectively, are given by

G∗F (i, j) =
{

gF (i,j)
g∗(i,j)

, g∗ (i, j) > gF (i, j)
g∗(i,j)
gF (i,j)

, otherwise
(39)

and

∗F (i, j) = 1 − |α∗ (i, j) − αF (i, j)|
π/2

. (40)

The edge strength g∗ and orientation α∗ are got by a Sobel edge operator, i.e.

g∗ (i, j) =
√

sx∗ (i, j)2 + s
y∗ (i, j)2 (41)

α∗ (i, j) = tan−1
(

sx∗ (i, j)

s
y∗ (i, j)

)
, (42)

where sx∗ and s
y∗ are the convolved results with the horizontal and vertical Sobel templates.

Table 1 reports the average MI values and average QAB/F values of each database for all
tested mammograms. All two fusion scores are normalized where values closer to 1 indicate
a higher quality of the fused image. And the best records are marked in bold. From Fig. 2 and
Table 1, we can see that PCNN cannot capture features at different levels and bandwidths,
as shown in Fig. 2(c). This problem is overcome in multi-resolution based algorithms, espe-
cially NSCT based algorithms. This result is from the fact that NSCT can provide better
shift invariance and multidirectional selectivity than other multiscale analysis tools. Among
NSCT based algorithms, the proposed method performs best. The algorithm in [41] uses
local entropy and region energy to fuse low- and high-frequency coefficients respectively,
leading to low contrast of the fused image, as shown in Fig. 2(f). The performances of the
algorithm in [2] and the proposed method are close to each other, giving better results com-
pared to others algorithms, as shown in Fig. 2(g) and (h), respectively. However, looking
carefully at the results, the proposed algorithm not only improves the visual effect of the
fused image, but also preserves more details in the source image. This is due to the fact that
our method can reduce the information loss and improve the contrast of the fused images. In
conclusion, both subjective and objective evaluations prove the superiority of the proposed
algorithm.

3.2 Comparison of enhancement performance

The proposed enhancement method is tested on 50 mammograms obtained from the
MIAS database, and compared with several well-known enhancement algorithms, includ-
ing the RUM [36], nonseparable cubic UM (NSCUM) [35], generalized UM (GUM) [12],
AUM [30], multi-scale retinex (MSR) [34], and brightness preserving dynamic fuzzy HE
(BPDFHE) [38]. Typical mammograms and the corresponding enhanced results are shown
in Figs. 3, 4, 5 and 6. The initial values of the parameters are listed in Table 2.

Table 1 Average evaluation indices for fused mammograms

Database Criteria PCNN wavelet Contourlet NSCT-1 NSCT-2 Bi-SCM

MIAS MI 0.5689 0.7741 0.6058 0.7714 0.4583 0.8336

QAB/ABF 0.5345 0.7972 0.8030 0.8107 0.7646 0.8196

DDSM MI 0.6642 0.8425 0.6959 0.8768 0.5581 0.9181

QABABF 0.5326 0.7769 0.7773 0.7928 0.6983 0.7943
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Fig. 3 Comparison of mammogram enhancement with different algorithms. (a) Original mammogram.
Enhanced results by (b) RUM; (c) NSCUM; (d) AUM; (e) GUM; (f) MSR; (g) BPDFHE; (h) The proposed
Bi-SCM. Note that RUM, NSCUM, AUM, and GUM are UM based methods; MSR is MD based method;
BPDFHE is HE based method

Fig. 4 Comparison of mammogram enhancement with different algorithms. (a) Original mammogram.
Enhanced results by (b) RUM; (c) NSCUM; (d) AUM; (e) GUM; (f) MSR; (g) BPDFHE; (h) The proposed
Bi-SCM. Note that RUM, NSCUM, AUM, and GUM are UM based methods; MSR is MD based method;
BPDFHE is HE based method
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Fig. 5 Comparison of mammogram enhancement with different algorithms. (a) Original mammogram.
Enhanced results by (b) RUM; (c) NSCUM; (d) AUM; (e) GUM; (f) MSR; (g) BPDFHE; (h) The proposed
Bi-SCM. Note that RUM, NSCUM, AUM, and GUM are UM based methods; MSR is MD based method;
BPDFHE is HE based method

Fig. 6 Comparison of mammogram enhancement with different algorithms. (a) Original mammogram.
Enhanced results by (b) RUM; (c) NSCUM; (d) AUM; (e) GUM; (f) MSR; (g) BPDFHE; (h) The proposed
Bi-SCM. Note that RUM, NSCUM, AUM, and GUM are UM based methods; MSR is MD based method;
BPDFHE is HE based method
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Table 2 Initialized parameters for enhancement experiments

Algorithm Parameters

RUM [36] λ = 2

NSCUM [35] λ = 1

GUM [12] γmax = 3, γmin = 1, ∂ = 0.0005

AUM [30] τ1 = 0.3, τ2 = 0.5, αh = 4, αl = 3

∂b = 1, μ = 0.1, β = 0.5

MSR [34] c1 = 20, c2 = 80, c3 = 200

BPDFHE [38] Parameters = [123454321]

Bi-SCM f = 0.02, g = 0.996, λmax = 3, λmin = 1, γ = 0.005

The RUM, NSCUM and AUM are modified UM methods, which can enhance detail
information. However, seeing Figs. 3(b)-6(b), Figs. 3(c)-6(c), and Figs. 3(d)-6(d), we can
found that the contrast enhancement is almost indiscernible. Moreover, RUM introduces
spot artifacts in enhanced images. GUM employs CLAHE [29] to enhance images, which
produces over-enhancement in some portion of the image and enhances background noises,
as shown in Figs. 3(e)-6(e). BPDFHE preserves the mean image-brightness, but introduces
over-enhancement at the same time, leading to masses and micro-calcifications more undis-
tinguishable than the original ones, as shown in Figs. 3(g)-6(g). In comparison with GUM
and BPDFHE, the proposed Bi-SCM method can restrain noise amplification and over-
enhancement to some extent. MSR simply takes reflectance as the final results, such that
the light source directions of its enhanced images are confused, as shown in Figs. 3(f)-6(f).
Comparing with MSR, the proposed Bi-SCM preserves the light source directions. In sum-
mary, one can see from the experimental results that the proposed Bi-SCM method not only
improves the contrast but also enhances the details. In addition, it restrains noise amplifi-
cation and over-enhancement. These observations indicate that the goal of the paper, which
aims at enhancing visual quality of mammography images, is achieved by the proposed
Bi-SCM.

To evaluate the quality of the enhanced mammography images quantitatively, the
enhancement measures entitled measure of enhancement (EME) [1] and the increase of the
number of visible edge (INVE) [18] are employed. EME is related to the ratio between the
maximum intensity and the minimum intensity of a local region. Higher EME corresponds
to more contrast improvement of the enhanced images. While INVE computes the ratio
between the gradient of the visible edges before and after enhancement. Larger value of
INVE indicates better enhancement performance of contrast and clearer visibility of details.
Both of EME and INVE values greater than 2 indicate that contrast and detail visibility

Table 3 Quantitative measurement results of EME

Image RUM NSCUM AUM GUM MSR BPDFHE Bi-SCM

Mam1 0.9322 1.9663 0.6410 3.0622 3.0963 2.4314 3.3654

Mam2 0.6700 0.9822 0.5381 1.6667 4.3819 1.2659 2.4955

Mam3 0.6424 0.6087 1.1835 2.3942 1.3386 1.5994 3.9603

Mam4 1.0481 2.6734 0.8125 2.4254 2.6014 2.4478 3.1787

Mam5 0.7791 1.1088 0.9627 1.6836 1.0551 1.5119 2.0894
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Table 4 Quantitative measurement results of INVE

Image RUM NSCUM AUM GUM MSR BPDFHE Bi-SCM

Mam1 -0.5691 1.0252 -0.9783 2.3532 1.9105 0.3445 2.8158

Mam2 -0.2993 0.1928 -0.8587 1.1004 1.1628 0.8306 2.4237

Mam3 -0.3832 -0.7491 0.4371 3.9919 1.5487 2.1209 4.5953

Mam4 -0.1312 2.6147 -0.8261 4.5374 2.2565 5.1088 5.3424

Mam5 0.6199 1.4954 1.0092 2.4121 1.4057 1.3212 3.5310

are well enhanced. The EME and INVE values of five mammograms are listed in Tables 3
and 4, respectively. And the best records are marked in bold. Examining Tables 3 and 4, we
can conclude that the values of EME and INVE from GUM, MSR, and our UM scheme are
higher than those of the rest algorithms, reflecting the state-of-the-art performance of the
proposed Bi-SCM approach.

In order to report the overall results on 50 test mammograms, we plot box plots in terms
of EME and INVE values in Figs. 7 and 8, respectively. One can conclude from Figs. 7 and 8
that the proposed Bi-SCM achieves better performance than state-of-the-art enhancement
methods, while the GUM method takes the second place.

3.3 Discussions

The conventional SCM model makes full use of the intensity distribution and spatial infor-
mation of image to improve contrast. When SCM is used to enhance images, bright areas
would be processed more coarsely than dark areas, resulting in losing information of lesions.
To overcome the drawbacks of SCM, we propose a Bi-SCM model to improve the con-
trast while avoiding information loss, making the lesions being highlighted from complex
background. However, fusing the two SCM-enhanced results increases the computational
complexity.

Specially, the proposed method is implemented by MATLAB R2010b on a PC with
Intel i5 processer and 8 GB RAM. The average processing time for one test image with

Fig. 7 Box-plots of EME for 50 test images
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Fig. 8 Box-plots of INVE for 50 test images

256×256 pixels is 61.8774s. This is primary because the NSCT based fusion algorithm is a
computationally intensive process. While the running time of SCM model is only 0.3293s.
In the future, the efficiency of Bi-SCM can be improved from either implementation point-
of-view or algorithm point-of-view. First, the Bi-SCM model is currently implemented by
software for sequential processing on CPU, which heavily limits the processing speed of the
algorithm. One important future research direction is to implement Bi-SCM by parallelly
programming on multi-thread processors, such as GPU or FPGA. Second, a comprehensive
study of different fusion algorithms will be conducted to reduce the computational burden
of fusion process.

4 Conclusion

In this paper, a Bi-SCMmodel with unsharp masking is proposed for the purpose of enhanc-
ing both contrast and textural details of mammography images. The proposed Bi-SCM
method not only explores the neural spiking ability in low-contrast image enhancement
from a bidirectional way, but also is the first attempt which leverages neural spiking mech-
anism and unsharp masking to improve both both contrast and textural details. Sufficient
experimental results on real breast mammography images show that the proposed method
not only improves contrast and enhances details, but also reduces noise amplification and
over-enhancement without the priori knowledge of image contents.

In addition, high-quality imaging is an important technique for early detection of tumors,
which is further an important way to reduce the death rate caused by breast cancer among
women. The proposed Bi-SCM is able to significantly improve the visual quality of mam-
mography images that are usually limited by X-ray hardware systems. Therefore, the
proposed method has high potential and shows clinical significance for radiologists to detect
and diagnose breast cancer.
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