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Abstract
Meetings are a common activity in professional contexts, and it remains challenging to
endow vocal assistants with advanced functionalities to facilitate meeting management. In
this context, a task like active speaker detection can provide useful insights to model inter-
action between meeting participants. Detection of the active speaker can be performed using
only video based on the movements of the participants of a meeting. Depending on the assis-
tant design and each participant position regarding the device, active speaker detection can
benefit from information coming from visual and audio modalities. Motivated by our appli-
cation context related to advanced meeting assistant, we want to combine audio and visual
information to achieve the best possible performance. In this paper, we propose two differ-
ent types of fusion (naive fusion and attention-based fusion) for the detection of the active
speaker, combining two visual modalities and an audio modality through neural networks.
In addition, the audio modality is mainly processed using neural networks. For comparison
purpose, classical unsupervised approaches for audio feature extraction are also used. We
expect visual data centered on the face of each participant to be very appropriate for detect-
ing voice activity, based on the detection of lip and facial gestures. Thus, our baseline system
uses visual data (video) and we chose a 3D Convolutional Neural Network (CNN) architec-
ture, which is effective for simultaneously encoding appearance and movement. To improve
this system, we supplemented the visual information by processing the audio stream with a
CNN or an unsupervised speaker diarization system. We have further improved this system
by adding visual modality information using motion through optical flow. We evaluated our
proposal with a public and state-of-the-art benchmark: the AMI corpus. We analysed the
contribution of each system to the merger carried out in order to determine if a given par-
ticipant is currently speaking. We also discussed the results we obtained. Besides, we have
shown that, for our application context, adding motion information greatly improves per-
formance. Finally, we have shown that attention-based fusion improves performance while
reducing the standard deviation.
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1 Introduction

Meetings are essential in our society, at universities and industries, where they are com-
monly held to coordinate professional matters such as projects, research, and funds, but
can also be informal when people discuss everyday issues. Usually, at some point during
a meeting, the person of interest is the one who is speaking because she/he is the center
of attention of all the participants. This task of detecting the person(s) speaking at a given
time is called active speaker detection. Active Speaker Detection is a multimodal analysis
task that consists of analysing a video, determining if the movements of one of the faces
appearing correspond to the speech signal contained in the audio track. This task can also
be performed only on the video based on the movements of the participants. Indeed, in such
a context, communication takes place not only through voice but also relies on non-verbal
signs as gestures, orientation, etc. Analysing this audiovisual information to estimate the
person of interest or the active speaker can be useful in scenarios, such as human-robot inter-
action [18] or human-machine multiparty dialogue [15] among others, so a system able to
interpret both cues is desirable. Various approaches to analyse meeting data have been car-
ried out in the literature [8, 31]. Most of them focus on analysing audio-only, which indeed
is a source that provides rich information. For example, multiple works explore ways to
recognize the speaker [38, 40], others propose diarization techniques [11] that allow parti-
tioning the incoming audio stream into homogeneous segments, i.e. audio sections with a
single speaker label. Likewise, some approaches process the audio, turning it into text [42].
As overlapping speech can lead to miss detections or recognition errors, audio detection
may not be efficient enough, and the visual detection of the person may lead to some
improvements.

Visual-only approaches for active speaker detection may encounter several difficul-
ties. Indeed, for example, occlusions or facial movements such as facial expressions or
yawns [14] can mislead these approaches. Nevertheless, the audio information combined
with the video information helps to overcome these difficulties [32]. Indeed, the move-
ment of the lips and more generally of the head can help to detect if a person is speaking.
Here, lips movement is encoded by spatiotemporal features, commonly estimated through
Convolutional Neural Networks (CNN).

In previous work [26] we have also addressed such an issue. Our objective here is to
go further and focus on the fusion of representations coming from audio, through speaker
diarization results, and video modalities.

2 Motivations

The research work presented here is part of an industrial project aiming at developing smart
assistants to automatically produce meeting summaries (LinTO https://linto.ai/). The long-
term project objective is to focus on discussions between participants to company meetings,
in order to perform high-level processing like segmentation into dialogue acts, study of their
relationships or production of meeting summaries.

Processing spontaneous multi-party meetings has always been considered as a challeng-
ing task [27] as they correspond to complex interaction situations not well structured unlike
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edited audiovisual contents coming from TV shows, TV-series or movies and which have
also been the subject of research over the past decade [5, 13]. In multi-party meetings sev-
eral speakers may be active at the same time (as illustrated in Figs. 1 and 2 respectively
from audio and visual point of view), speech transcription becomes a very challenging task
in such conditions, including spontaneous and overlapping speech, variability acquisition
conditions due to distant speech or camera field of view.

Within the applicative context of the LinTO project, we chose to focus on “active speaker
detection” by studying cues coming from non-verbal social signals and more particularly by
associating face movements with participant’s speaking status in order to strengthen detec-
tion robustness. We are interested in how audio and visual perception, their low-level cues
and their fusion could bring information about interactions between participants. Besides,
by working with vector representations and merging these low-level results we also wanted
to study solutions that avoid, as much as possible, to process personal information or learn
speaker models. We are also independent from the spoken language.

The “active speaker detection” task is far more complex than determining whether there
is somebody speaking (Voice Activity Detection). We consider it, here, as a prerequisite for
higher-level components that should form the processing pipeline leading to conversation
analysis and automatic meeting summaries, which both depend on the language used during
meetings.

Thus, we organized our work around three following aspects:

– merge visual and audio features such that we obtain a robust final detection;
– find the most suitable fusion approach for our problem;
– focus on the audio modality in order to study its impact, as an additional modality, and

compare the performance between a supervised and an unsupervised method involving
or not any speaker models.

As previously explained, active speaker detection can be carried out either by using video
alone or by combining the visual modality with the audio modality. Our approach is based

Fig. 1 Illustration of the type of result we wish to obtain. The abscissa axis represents the time in seconds,
and the ordinate axis represents the speakers. We want to detect each time a participant becomes active, even
if another participant is already active
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Fig. 2 Illustration of the type of result we wish to obtain. For this example, we look at the result obtained at a
given time. In this case, we can see that participants 1 and 4 are talking, and participants 2 and 3 are listening
and are therefore not active speakers

on the prior image detection of the face using state-of-the-art techniques. The principle is to
analyse frames to characterize the orientation of the face in a continuous space in terms of
pitch, yaw, and roll. Therefore, a “speaker” / “non-speaker” status can be inferred at once
with only the pure visual percept.

However, in literature, there are few public multi-person audio-video datasets in our
application context (meeting), which limits the scope of the evaluations and comparisons
that we can perform. Nevertheless, the evaluations of the available datasets with increasing
complexity, from mono to multi-person observed within the field of view, are encouraging
for the different analyses and experiments that we have carried out. The main contributions
of this paper are:

1. A pure visual speaker classifier, based on 3D CNNs, is applied in this original context.
It takes as input video frames (i.e. clips) with the Red, Green, and Blue channels but
also optical flow information.

2. The implementation and comparison of two fusion strategies to combine audio repre-
sentations with the visual representations obtained. This shows that an attention-based
fusion strategy [2, 25] between audio and video modalities significantly improves
performance compared to a naive fusion strategy.
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3. Our experiments show that an unsupervised speaker diarization system, used to produce
audio representations, reaches almost the same performance as a neural network trained
for this audio task in a supervised way, while requiring fewer parameters to train.

This paper has the following structure: Section 3 presents the related work and Section 4
we explain the processing that we apply to each of the modalities. Section 5 describes the
strategies used for the fusion. Section 6 details the experimental protocol used, and the
quantitative and qualitative results, including a discussion, are given in Section 7. Last,
Section 8 concludes and mentions future work.

3 Related work

Communication situations and interaction, between humans commonly involve voice and
gestures, encoding verbal and non-verbal signs, which computer process as audio and video
signals respectively. Our work focuses on exploiting these signals to estimate the person (s)
who is speaking at a given time, and point him/her then as the active speaker. From both
signals, audio has been widely explored because it naturally captures whether somebody is
speaking or not.

3.1 Audio-basedmethods

In literature, there is a large amount of work on speaker recognition [38]. For such purpose,
one way to achieve it involves speaker diarization techniques [11] where the audio stream is
partitioned into “speech” and “non-speech” segments, and where a speaker ID is assigned
to each “speech” segment. In [3], Bonastre et al. proposed a speaker diarization method
based on the binary key modeling, which transforms the audio into a feature representing the
speaker within the binary space. Then, the diarization is performed by an iterative agglomer-
ative clustering algorithm that forms segments of a same speaker. Patino et al. [29] improved
the method by considering spectral clusterization. One of the main challenges is to be able
to recognize the same person regardless of the intensity of the speaker’s voice, e.g. whisper-
ing, or the background noise which may alter speaker identification. Vestman et al. [38] did
a deep taxonomy on different features that address these issues and proposed a sound time-
varying feature that gives state-of-the-art results. With the rise of the Convolutional Neural
Network (CNN), some proposals [20] have exploited such end-to-end solution for speaker
diarization. The most recurrent architectures are those based on Long Short Term Memory
(LSTM) Networks [33, 39] since they capture the variations in the voice of the speaker. One
of the limitations of CNNs is that they are computationally expensive, generally requiring
powerful GPUs to produce good results. In [41], the authors propose an end-to-end sys-
tem at utterance-level for speaker verification. This method proposes a new “thinResNet34”
trunk architecture, which incorporates a GhostVLAD layer allowing to aggregate features
across time. The thinResNet34 architecture has only 3 million parameters when a classic
ResNet-34 [17] has 22 million. It is trained and evaluated using the VoxCeleb dataset [28],
an audiovisual dataset of short clips of interviews extracted from YouTube. In this dataset,
with over 2000 hours of recordings and more than 7000 people, [41] has demonstrated the
effectiveness of such a compact network by providing state-of-the-art performances.

However, whispers, background noises, or interspersed audio cause bad estimates. To
overcome these difficulties, several approaches include visual features since those are not
affected by these phenomena.
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3.2 Video-basedmethods

Pure visual information is an important source to consider speaker recognition, especially
if the audio is not available, corrupted, or unintelligible. Zhou et al. [44] give an in-depth
review of advances in visual speaker recognition until 2014. The authors provided a list of
datasets aimed for this purpose. Also, the presented methods are grouped according to the
type of features used, highlighting three groups:

– Image-based group. Here raw pixels are transformed directly as visual features with the
aid of methods such as Principal Component Analysis (PCA) [19, 24]. More recently,
the authors of [34] have used neural networks for the detection of active speakers. To do
so, it first uses a face detector, then the authors use the AlexNet [23] network to extract
features on RGB color data for all found faces, and finally they give these features to a
recurrent LSTM network.

– Motion-based group. Features describe the observed movement during speaking.
Instead of creating handcrafted features, several proposals estimate the motion directly
from the video with techniques such as Optical Flow (OF) [24].

– Geometric-based group. The features focus on the geometric information of a moving
mouth. In [22], the movement is computed by measuring the distance between points
detected over the mouth. Then, the difference of distances between successive images
represents the motion. The main limitation of these methods is that any movement of
the mouth is associated with a speaking status. So the number of false positives is
commonly high. To overcome this problem, this motion information can be combined
with the audio signal and/or the raw images.

3.3 Audiovisual-basedmethods

Audiovisual methods are robust to background noise and different speaking modes (whis-
per). Recently deep learning has provided advances in audiovisual speaker estimation by
capturing the temporal relationships of visual and acoustic cues. The use of a recurrent neu-
ral network (RNN) is explored in [35] to extract video features using 2D CNN. Then, in a
similar way as [22], they train an LSTM layer for each modality. The output of both layers
is concatenated and the result is used to train a final LSTM layer. This process is known
as early fusion, on the contrary, it is called late fusion when the outputs are merged at the
end without any other training layer pursuing them. In [30], Petridis et al. compares both
fusion methods in the context of speaker recognition. Afouras et al. [1] explore the impact
of training audiovisual lip-reading network with different loss functions.

In the literature, the application of LSTM layers has been widely studied because it
is good at capturing spatiotemporal information related to a speaker. Besides, other CNN
architectures learn this aspect but are used in different classification contexts. Such is the
case of the deep 3-Dimensional Convolutional Network (C3D) [36]; here the objective is to
classify actions such as “biking”, “running”, among others. This 3D CNN model has been
extended to other architectures, in [37] they study the use of a 3D residual neural network
(ResNet3D). In both cases, the goal is to obtain a 3D feature that encodes simultaneously
appearance and motion. We aim to study these networks in our context of speaker detection
because these proposals show good performances with state-of-the-art methods. The classic
CNN-based image classification approach learns from raw images. Some works have shown
that the use of additional features like optical flow [4, 24, 37] or depth cue [4], help to
improve estimation.
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3.4 Synthesis

The main drawback of video-based applications (whether pure or in conjunction with audio)
is that their evaluations are conducted in constrained situations where there is usually only
one person, or few people looking straight at the camera. This scenario is not realistic in the
context of a traditional meeting. Therefore, we propose to use a classifier, which considers
spatiotemporal features, trained from videos in realistic meeting situations.

Additionally, the video can provide more information if we consider the social aspect
among the meeting participants. For example, a person who speaking will move, have facial
expressions and make gestures to support his or her arguments. That is why in this work,
different fusion strategies have been studied. First, let’s describe how each modality has
been processed.

4 Mono-modality processing

4.1 Visual modality processing

Let’s start by looking at the visual modality. We worked with two visual modalities: the
RGB images of the videos, and the optical flow image calculated from these images.

4.1.1 Video-based network architecture

In order to obtain a visual representation, we consider a 3D CNN architecture. Since we
want to capture the temporal relationship that exists between the images, we group several
consecutive images to form a non-overlapped video clip of L frames. The input clip has
a size 3 × L × H × W , where H and W are the height and width of the frame in the
Red, Green, and Blue (RGB) channels. We relied on [36] to set this parameter and chose
L = 16 as clip size, i.e. the number of frames. Thus, the clips are given as input to the
networks.

In comparison with 2D CNN, here we have a 4-dimensional tensor. The difference with
a classic 2D CNN is that the convolution is performed in 3D, allowing the feature maps
to learn temporal context. Thus, the convolution layers create a 3D feature where the ini-
tial part focuses on the appearance of the first images and the rest considers the salient
motion [36].

In our case, we chose to use the ResNet3D architecture. This architecture takes up the
idea of ResNet residual blocks [17] but using a 3D convolution instead of a 2D one. This
preserves and propagates the temporal reasoning through the network layers. Input is a 4D
tensor and the image size being the same as ResNet2D: 3 × 16 × 224 × 224. Here, we
evaluate the ResNet3D-18 version, i.e. considering 18 blocks. In the rest of this paper, we
will call this method “Video-net”. Video-net is trained with RGB images that show only one
participant’s face.

The output of this network indicates the probability that the analysed participant is
speaking or not.

4.1.2 Optical flow calculation and processing

In order to add the facial movement information, we took inspiration from the works [4, 24,
37], and encoded this information through the optical flow. We calculated the optical flow
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Fig. 3 We show in this figure two examples, (a) and (b), of images given to CNN. For these two examples,
we have at the top the images of the original video and at the bottom the magnitude of optical flow images.
We can clearly see that the person in example (a) is blinking while the person in example (b) is speaking

with the OpenCV1 library. Optical flow is the pattern of apparent motion of image objects
between two consecutive frames caused by the movement of objects or cameras. In our case
the cameras are fixed, so it will be the movements of the participants.

We present two examples in Fig. 3, where we have for each example at the top the RGB
images and at the bottom the magnitude of optical flow images. As you can see, the person
in example (a) is blinking while the person in example (b) is speaking.

We trained a network with two branches: one branch for the raw image and one for the
optical flow. Each of the branches is a ResNet3D. We remove the top of each network and
concatenate both visual representations. After concatenation, two fully connected layers are
trained.

1https://docs.opencv.org/3.4/index.html
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4.2 Audiomodality processing

Now let’s focus on the two audio approaches we used.

4.2.1 Audio-net system

For the audio representation, we use the author’s implementation of [41], named VGG-
Speaker-Recognition framework.2 The first part of this network (thinResNet34) takes as
input an extract of the spectrogram computed from the audio file. This network uses the
principle of shared weights on all extracts belonging to the same audio file.

The second part of this network is made up of a dictionary-based GhostVLAD layer [43]
to aggregate features across time. The objective of this part is to obtain a vector of a fixed
size as output of the network whatever the length of the audio file processed.

The spectrograms are calculated with the Librosa library3 from audio clips corresponding
to the duration of the video clip, i.e. 0.64 second, with 256 frequency components. The
spectrogram is normalized by subtracting the mean and dividing by the standard deviation.
The thinResNet34 network was trained with Adam optimizer and an initial learning rate of
1e-2.

This network produces an audio representation that is initially intended to respond to
a speaker recognition task, or a speaker verification task. For our problem, the vector
produced by this network will be merged with other vectors coming from other systems
components applied to audio or video data. In the rest of this paper, we will call this method
“Audio-net”.

4.2.2 pyBK speaker diarization system

After carrying out a study on the existing speaker diarization system applied to meeting
data from AMI, pyBK [29] was selected as showing the best performances. For this speaker
diarization system, baseline acoustic features are MFCCs comprising 60 static coefficients
computed from windows of 250 ms with a 100 ms shift and with a filter bank of 60 channels.
The binary key background model (KBM) is determined from a pool of Gaussians, each
estimated using windows between 0.5 and 2-second duration set dynamically to ensure a
minimum of 1024 components. The size of the KBM after Gaussian selection is set to 320.
The top number of Gaussians per frame is set to 10. We empirically set the number of initial
clusters at 12. We used the Jaccard distance metric to select the output clustering solutions,
and we employed the elbow method for the selection of the best number of clusters. All
parameters were set experimentally.

To be more specific, for our approach, we used only the output of pyBK in our global
system. Indeed, in the case of pyBK, we directly merge the result of this approach with
Video-Net and Audio-net presented earlier. To do this we used hot vectors. A hot vector
is a representation of categorical variables as binary vectors. Here, we took as vector size
the maximum number of speakers found by pyBK applied on the whole set of meeting
recordings. So we created hot vectors of a dimension Nmax + 1, to be able to encode when
no one is speaking. To merge this hot vector with Video-net and Audio-net, we use a Gated

2https://github.com/WeidiXie/VGG-Speaker-Recognition
3http://librosa.org/doc/main/index.html
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Recurrent Unit [9] (GRU) layer proposed by Cho et al. [9]. Its role is to make each recurrent
unit to adaptively capture dependencies of different time scales. The GRU has gating units
that modulate the flow of information inside the unit.

The activation h
j
t of the GRU at time t and layer j is a linear interpolation between the

previous activation h
j

t−1 and the candidate activation h̃
j
t :

h
j
t = h̃

j
t (1 − z

j
t ) + z

j
t h

j

t−1 (1)

where an update gate z
j
t decides how much the unit updates its activation.

The update gate is computed by:

z
j
t = σ

(
[Wzxt ]j + [Uzht−1]j

)
(2)

where σ is a logistic sigmoid function, and xt is an element of a given sequence x =
(x1, x2, . . . , xT). The logistic sigmoid function will transform the values between 0 and 1,
allowing the gate to filter between the less-important and more-important information in the
subsequent steps.

The candidate activation h̃
j
t is computed as in (3) from [2].

h̃
j
t = tanh

(
[Wxt ]j + [U(rt � ht−1)]j

)
(3)

where rt is a set of reset gates, tanh is hyperbolic tangent, and � is an element-wise mul-
tiplication. When off (rj

t close to 0), the reset gate effectively makes the unit act as if it is
reading the first symbol of an input sequence, allowing it to forget the previously computed
state.

The reset gate r
j
t is computed similarly to the update gate:

r
j
t = σ

(
[Wrxt ]j + [Urht−1]j

)
(4)

Since the input of Video-net is clips of 16 frames, we have extracted the result vector of
pyBK at the time of each frame. Thus, we have at the input of the GRU layer 16 vectors of
size 8.

5 Fusion strategies

Each module, described in the former section, has been designed to produce feature vectors
assumed to be characteristic of the speaking or non-speaking status of the current partic-
ipant, considering a single modality. Because we are interested in studying the impact of
additional audio cues to video results, different dimensions were taken into account for the
vectors coming from Audio-net or pyBK (16, 32, 64, 128), while each output vector from
Video-net, for RGB images or optical flow, was fixed to the same dimension (128). Fusion
has been operated by combining those feature vectors as presented in Fig. 4 (vector concate-
nation). Two approaches were tested: a naive fusion as a baseline version and an innovative
one, involving attention mechanisms.

5.1 Naive fusion

For this fusion, we have applied the easiest way to merge these vectors, by concatenating
them. However, one of the vectors is likely to be more discriminating than others. This is
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why we made the size of the various vectors vary to be able to analyse the importance of
each method on the fusion process.

We present, in Fig. 4, the global architecture used to perform the fusion. In the case of
naive fusion, attention modules (in blue) are not used. The two top branches are associated
with audio modality processing. These two branches are never activated at the same time,
either Audio-net or pyBK is used. The two lower branches are associated with visual modal-
ity processing via Video-net. When RGB images and optical flow are used, a pre-fusion is
carried out between the two representations coming from each Video-net network.

5.2 Attention-based fusion

Then, we proposed a second fusion strategy introducing attention layers, as shown in Fig. 4
(in blue). Each single modality representation xm (m being one modality: Audio, RGB or
OF) is sent to the input of an attention layer, which in turn, produces a new representation
om. These new representations are then merged in the fusion step.

The principle of the attention mechanism is to give more importance to the elements of
a feature vector that are the most discriminating. In practice, attention is simply a vector,
often the outputs of a dense layer using softmax function, as detailed below.

Let x̂m be the result of applying the softmax on the output vector xm of a modality m

with xm = xm
1 . . . xm

n , where n is the representation dimension. x̂m is computed as:

x̂m =

⎛
⎜⎜⎝

exm
i

∑
j

e
xm
j

⎞
⎟⎟⎠ (5)

Fig. 4 Illustration of the architecture we used. The top two branches are associated with audio modality
processing. In this work, pyBK is an alternative to Audio-net, so these two branches are never activated at
the same time, either Audio-net or pyBK is used. The two lower branches are associated with visual modality
processing via Video-net. Fusion is represented in grey boxes where the feature vectors are first concatenated
(in brown) to feed two fully connected layers (in blue). The difference between the attention-based fusion
strategy and the naive fusion approach relies on the use or not of attention mechanisms (blue ellipses)
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Table 1 Information about the
IDIAP remote control scenario
meetings

# meetings # participants Total Avg per meeting

38 4 17h 44min 28 min

Finally, to obtain the output vector om for this modality, we multiply term by term the
vectors x̂m and xm:

om = x̂m · xm (6)
These om vectors are then concatenated: RGB with OF first in a pre-fusion step; and then

with Audio. Concatenation results are then feeding two fully connected layers as shonw in
Fig. 4.

6 Experimental protocol

Our experiments have been carried out using the Keras Python library on a workstation with
an Intel Xeon E-2286G 4.0 GHz CPU, 64 Gb of RAM, and one NVIDIA GeForce RTX
2080 Ti. We also used the OSIRIM computing cluster4 composed of 7 GPU servers each
equipped with 2 Xeon 2640 V4 @ 2.40 GHz CPUs and 4 NVIDIA GeForce GTX 1080 Ti
GPUs.

6.1 Dataset

Our first objective was to apply our approach to a dataset dedicated to meeting and freely
available, while waiting for the internal dataset on professional meetings designed for
LinTO, in order to compare the effectiveness of our approach on both datasets as done in
[10]. So we have first evaluated our method using the AMI Corpus (Augmented Multi-party
Interaction) [7]. This dataset consists of over 100 hours of meeting recordings. The record-
ings use a range of signals synchronized to a common timeline and recorded with different
sensors: close-talking and far-field microphones, individual and room-view video cameras.
It also includes outputs from a slide projector and an electronic whiteboard. During each
meeting, the participants have also unsynchronized pens available to them that record what
is written.

The meetings were recorded in English using three different rooms with different acous-
tic properties, and include mostly non-native speakers. To make sure that we keep the same
meeting context (microphones, cameras...), we have selected the IDIAP “remote control
scenario” meetings. The information for this scenario is presented in the Table 1.

This scenario includes 38 recorded meetings with four participants each, whose roles are:
Project manager, Industrial designer, User interface designer and Marketing expert.

There are 4 cameras and each one records a single participant as shown in Fig. 5.
For the audio part, each participant is recorded with a headset with a microphone. These

recordings are then mixed into a single audio file. In the case of our project, only one
microphone will be used to record the meetings, so we chose to only use “mix headset” to
be in the same application context and to simulate real conditions.

The AMI corpus has detailed ground truth (GT) at the audio level but has no information
regarding the video. First, we use this dataset to train and evaluate the performances of the

4https://osirim.irit.fr
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Fig. 5 Examples of images from the AMI dataset captured by individual cameras

visual-based networks following a cross-validation methodology. Thus, all recorded meet-
ings are divided into five cross-validation folders: four are used to train the models and one
for testing.

The CNNs are trained considering individual images only (no general view image) using
RGB. The face is detected with ResNetSSD FaceDetector from the CAFFE library. The
samples are grouped in clips of 16 frames successive and labeled as speaker or non-speaker
according to the audio-based GT. The images are rescaled to 224 × 224 pixels which is the
size required for ResNet-based network.

6.2 Evaluationmetrics

To evaluate the different models we proposed and to measure the efficiency of our fusion
strategies, we used the macro and micro area under the curve [6, 16] (AUC) applied to the
receiver operating characteristic curve (ROC) which is created by plotting the true positive
rate (TPR) against the false positive rate (FPR) at various threshold settings. The TPR and
FPR are defined by:

T PR = T P
T P+FN

(7)

FPR = FP
FP+T N

(8)

where T P is the number of true positive, T P + FN is the number of real positive cases in
the dataset, FP is the number of false positive, FP + T N is the number of real negative
cases in the dataset.

ROC is a probability curve and AUC represents the degree or measure of separability. It
tells how much the model is capable of distinguishing between classes. Higher the AUC,
the better the model will predict the correct class for a new sample.

Macro AUC calculates metrics for each label and computes its unweighted mean. This
does not take label imbalance into account. Micro AUC globally calculates metrics by
considering each element of the label indicator matrix as a label.

6.3 Assessment of the speaker diarization system

Concerning the results of pyBK on the task of speaker diarization, we did not look after a
better performance on this task. Our goal was to figure out if we could improve the result
of the active speaker detection task by adding this quickly-obtained information, without a
learning phase as it is based on an unsupervised method.

To assess this speaker diarization system, we used a 5-fold cross-validation on all the
audio files of the IDIAP remote control scenario meetings from the AMI corpus.
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Table 2 Results obtained with pyBK applied on meetings from the IDIAP “remote control scenario”

Missed detection rate False alarm rate Confusion rate DER

50.52% 3.46% 16.02% 70.0%

To evaluate pyBK on its diarization performances, we used the Diarization Error Rate
(DER), which is the standard metric for evaluating and comparing speaker diarization sys-
tems. This measure was introduced for the NIST Rich Transcription Spring 2003 evaluation
(RT-03S). It is defined as follows:

DER = False alarm + Missed detection + Confusion

Total
(9)

where False alarm is the duration of non-speech incorrectly classified as speech, Missed
detection is the duration of speech incorrectly classified as non-speech, Confusion is the
duration of speaker confusion, and Total is the total duration of speech in the reference.

As can be seen in Table 2, the results we have obtained with the parameters described
above do not reach those of the state-of-the-art (for example a DER of 12.81% in [12]).

Besides, as we can see, the fact that the DER is as high comes mainly from the fact that
we have a high rate of missed detection. Indeed, the false alarm rate is only 3.46%, and
the confusion rate is 16,02%, which is relatively low. These scores mean that even if this
approach misses half of the speech segments, the speech segments are generally attributed
to the right speakers.

6.4 Training settings

Video-net and Audio-net have been trained with a batch size of 20 clips, the Adam
optimizer [21], and an initial learning rate of 0.05. Training is stopped after 21 epochs.

Besides, since we did not have access to the weights of the Video-net model when we
did our experiments, all our models were trained from scratch to have a fair comparison.

6.5 Evaluation protocol

We present in Fig. 6 how our evaluations were carried out.
For each meeting, here the IS1004a meeting, we evaluated our system by analysing in

parallel the flow of each participant, using the same model (shared weights) for all the
participants. For the audio part, we use the mix-headset audio recording that consists of
voices from all the speakers, so we have a single audio file per meeting.

To summarize, for each evaluated meeting, we have 4 video streams, one for each
participant, and a single audio stream, containing the voices of all participants.

7 Evaluation of our fusion strategies

In this section, we present the results obtained during our experiments. In Table 3, the size
of the vector used for fusion is indicated after the name of the neural networks. For example,
Video-net 128 + Audio-net 16 means that the output of Video-net is a 128 dimensional
vector and the output vector of Audio-net is a 16 dimensional vector.
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Fig. 6 Method used to carry out the evaluation of our different models

We have not experimented with Audio-net alone because the objective of this network is
to support Video-net. By bringing information such as the fact that somebody is speaking
and when there is a speaker change. We remind the reader that Audio-net is initially used
for speaker recognition and does not allow the detection of the active speaker as it is.

7.1 Results related to Video-net

We want to evaluate the potential of visual information in the first step. We started by eval-
uating the performance of Video-net. As can be seen in the first row of Table 3, Video-net

Table 3 Active speaker detection results in terms of Macro AUC using Video-net and Audio-net

Fusion Model Macro AUC

Video-net-RGB 72.4% ± 3.5

Naive

Video-net-RGB 128 + Audio-net 16 76.2% ± 4.4

Video-net-RGB 128 + Audio-net 32 76.8% ± 4.7

Video-net-RGB 128 + Audio-net 64 76.6% ± 5.1

Video-net-RGB 128 + Audio-net 128 76.4% ± 5.2

Attention

Video-ne-RGB 128 + Audio-net 16 79.4% ± 3.7

Video-net-RGB 128 + Audio-net 32 78.6% ± 3.0

Video-net-RGB 128 + Audio-net 64 79.6% ± 2.9

Video-net-RGB 128 + Audio-net 128 78.0% ± 2.2

The best result of each fusion is shown in bold
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obtains an area under the curve equal to 72.4%. This result will be our baseline for the
following experiments.

7.2 Fusion between Video-net and Audio-net

In Table 3, we present the results we obtained by merging Video-net and Audio-net. We first
present those obtained with the naive fusion, and then the results with the attention-based
fusion. As can be seen, merging representations slightly improves performance. Indeed,
with this fusion, we manage to achieve at best a macro AUC of 76.8%, an improvement of
more than 4% compared to Video-net alone.

When we look at attention-based fusion, we can see that there is a very strong improve-
ment in performance. Indeed, for this fusion, we can see an improvement of up to 7.2%
compared to Video-net alone. The use of attention layers on the output vectors of each
modality make fusion more efficient.

Same evaluations were applied to video, audio, and optical flow.

7.3 Fusion between audio, video and optical flow

We present the results of merging video, audio, and optical stream in Table 4.
First of all, we can notice that processing the optical stream alone gives better perfor-

mance than RGB data processing. Indeed, with optical flow we have a 3% improvement.
Then if we look at the performances obtained by merging video with optical stream. We

can see that this greatly improves performances. In fact, adding this information gives a
macro AUC of 81% for naive fusion and 82.4% for attention-based fusion. This gives a gain
of more than 9% compared to Video-net alone.

Let us now focus on naive fusion as shown in Table 4 involving audio modality. We can
see that the addition of Audio-net allows a gain of about 4%. However, when looking at the
results for attention-based merging, we can see that the performances are similar (≈ 82%).

Table 4 Active speaker detection results in terms of Macro AUC using Video-net, Audio-net and optical flow

Fusion Model Macro AUC

Video-net-RGB 72.4% ± 3.5

Video-net-OF 75.4% ± 4.0

Naive

Video-net-RGB 128 + Video-net-OF 128 81.0% ± 4.4

Video-net-RGB 128 + Video-net-OF 128 + Audio-net 16 82.2% ± 4.0

Video-net-RGB 128 + Video-net-OF 128 + Audio-net 32 81.6% ± 3.5

Video-net-RGB 128 + Video-net-OF 128 + Audio-net 64 83.4% ± 4.4

Video-net-RGB 128 + Video-net-OF 128 + Audio-net 128 82.4% ± 3.9

Attention

Video-net-RGB 128 + Video-net-OF 128 82.4% ± 2.3

Video-net-RGB 128 + Video-net-OF 128 + Audio-net 16 82.4% ± 2.5

Video-net-RGB 128 + Video-net-OF 128 + Audio-net 32 84.0% ± 2.8

Video-net-RGB 128 + Video-net-OF 128 + Audio-net 64 82.5% ± 3.0

Video-net-RGB 128 + Video-net-OF 128 + Audio-net 128 83.0% ± 3.6

The best result of each fusion is shown in bold
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This is also true for the fusion between Video-net and Audio-net. This fusion allows us to
obtain the best performance with a macro AUC of 84%. However, we can notice that with
this fusion we get a smaller standard deviation than with the naive fusion.

7.4 Alternative and lighter fusion between Video-net and pyBK

In our approach, we also tried to compare results when using an unsupervised method for
speaker diarization based on pyBK. The same kinds of experiments were carried out and
presented in Table 5.

As we can see, the naive fusion between Video-net-RGB and pyBK output vectors gives
better performance than Video-net with a gain of about 3% in the best case. However,
this fusion is less efficient than the one between Video-net and Audio-net. This does not
seem significant but we can highlight one possible advantage which concerns the num-
ber of parameters involved in computation. This can be of interest if the process has to be
embedded.

When we focus on attention-based fusion, we can see that we get the same performances
as between Video-net-RGB and Audio-net, an improvement of up to 7% compared to Video-
net alone.

When we focus on the fusion between Video-net, pyBK, and optical flow, we can see
that the performances are not as good as when we used Audio-net. Indeed, with pyBK, the
performances are 1% lower.

7.5 Discussion

As we saw earlier, by merging both visual and audio modalities (using pyBK or Audio-
net) performances were higher than our baseline video-based system. Let us now go a little
further in the analysis of our results.

As can be seen in Tables 3, 4, 5 and 6, we show the evolution of the macro AUC as a
function of the repartition in the fusion of Video-net-RGB, and Audio-net, or pyBK’s output
vector.

Table 5 Active speaker detection results in terms of Macro AUC using Video-net, and pyBK’s output vectors

Fusion Model Macro AUC

Video-net-RGB 72.4% ± 3.5

Naive

Video-net-RGB 128 + pyBK 16 75.6% ± 4.8

Video-net-RGB 128 + pyBK 32 74.2% ± 5.2

Video-net-RGB 128 + pyBK 64 74.0% ± 3.3

Video-net-RGB 128 + pyBK 128 74.2% ± 4.0

Attention

Video-net-RGB 128 + pyBK 16 79.2% ± 2.6

Video-net-RGB 128 + pyBK 32 79.4% ± 2.7

Video-net-RGB 128 + pyBK 64 78.8% ± 3.7

Video-net-RGB 128 + pyBK 128 78.0% ± 2.4

The best result of each fusion is shown in bold
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Table 6 Active speaker detection results in terms of Macro AUC using Video-net, pyBK’s output vectors,
and optical flow

Fusion Model Macro AUC

Video-net-RGB 72.4% ± 3.5

Video-net-OF 75.4% ± 4.0

Naive

Video-net-RGB 128 + Video-net-OF 128 81.0% ± 4.4

Video-net-RGB 128 + Video-net-OF 128 + pyBK 16 81.8% ± 3.5

Video-net-RGB 128 + Video-net-OF 128 + pyBK 32 81.6% ± 3.5

Video-net-RGB 128 + Video-net-OF 128 + pyBK 64 82.6% ± 2.9

Video-net-RGB 128 + Video-net-OF 128 + pyBK 128 81.4% ± 3.7

Attention

Video-net-RGB 128 + Video-net-OF 128 82.4% ± 2.3

Video-net-RGB 128 + Video-net-OF 128 + pyBK 16 82.8% ± 2.9

Video-net-RGB 128 + Video-net-OF 128 + pyBK 32 81.8% ± 3.3

Video-net-RGB 128 + Video-net-OF 128 + pyBK 64 83.0% ± 2.9

Video-net-RGB 128 + Video-net-OF 128 + pyBK 128 81.2% ± 2.9

The best result of each fusion is shown in bold

The variation of vector size has a small impact on the results. Indeed, the biggest differ-
ence one can encounter within the same fusion is only 1.8% with the Video-net-RGB 128
+ Video-net-OF 128 + pyBK attention-based fusion.

An interesting point to observe on the overall results is that we did not obtain the best
performance when Audio-net has a vector size of 128. This observation is also true when we
merge Video-Net with the vector obtained with pyBK. Thus, we can deduce that the audio
vector is only used here as a support for the video.

Moreover, interesting information to take into account is the number of parameters to be
learned. Indeed, pyBK is merged with the other networks through a GRU layer. When the
output of the GRU layer is set to a vector of size 16, the fusion of pyBK with a neural net-
work requires only 66,512 parameters to be trained. Table 7 shows the number of parameters
per model.

In this work, we also proposed a lighter alternative by merging Video-Net with the
output vector of pyBK. Indeed, the Video-net-RGB 128 + pyBK 16 fusion has 33 mil-
lion parameters to compute, while Video-net-RGB 128 + Audio-net 16 has 53 million.
Moreover, having fewer parameters means that the learned model will be lighter, for
example Video-net-RGB 128 + pyBK 16 weighs only 133 MB compared to 215 MB for
Video-net-RGB 128 + Audio-net 16.

Table 7 Number of parameters
per system Model #parameters

Video-net-RGB 33.21M

Audio-net 128 21.95M

Video-net-RGB 128 + Audio-net 16 53.56M

Video-net 128 + pyBK 16 33.28M
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Table 8 Summary of all our results obtained by merging the different approaches

Fusion Model Macro AUC

Video-net-RGB 72.4% ± 3.5

Video-net-OF 75.4% ± 4.0

Attention Video-net-RGB 128 + pyBK 32 79.4% ± 2.7

Attention Video-net-RGB 128 + Audio-net 64 79.6% ± 2.9

Attention Video-net-RGB 128 + Video-net-OF 128 82.4% ± 2.3

Attention Video-net-RGB 128 + Video-net-OF 128 + pyBK 64 83.0% ± 2.9

Attention Video-net-RGB 128 + Video-net-OF 128 + Audio-net 32 84.0% ± 2.8

Only the best fusion result between the different modalities is presented

In addition to the results presented in the Tables 3 to 6, we have calculated the micro
AUC. We have not included these results because it is the same behavior, but it is 1% lower
on all values.

We present, in Table 8, a summary of the best results we have obtained by merging the
different modalities and approaches. As can be seen, all the results presented are the result
of the attention-based fusion. As we have shown in our experiments, this fusion allows to
make the most of each modality and thus to obtain the best detection of the active speaker.

8 Conclusion

This paper presents a framework for active speaker detection in a meeting context using two
fusions between three approaches / modalities. During our experiments, we used only one
audio representation at a time, either the feature extracted through a CNN (Audio-net) or
the feature extracted with pyBK, a speaker diarization system. The other two representations
used are based on visual information. We used the AMI corpus, and from that the video from
each camera filming the participants individually of each meeting. We analysed the visual
information through 3D CNN (Video-net), which is generally used to classify actions such
as “cycling”. We used this particular neural network to encode the spatiotemporal aspect
of a participant in the active speaker detection task. The last feature we used was based on
motion via optical flow. This feature is used in combination with video. In order to take
this information into account, we made a joint learning with the video with a two-branch
network.

We first evaluated Video-net-RGB and used this result as a baseline system. With this
experiment, we obtained a macro AUC of 72.4%. We then merged Video-net-RGB with
Audio-net. We show that merging these two modalities improves results by at least 4%.
We have also noticed by combining these two modalities that the attention-based fusion
gives better performances since in the best case, we have a gain of more than 7%. Next, we
showed that adding motion information with the optical flow greatly increases the results.
In fact, merging video with the optical stream allows reaching a macro AUC of 78.8%, an
improvement of more than 6% compared to Video-net alone. Moreover, by adding the audio
modality through Audio-net, we show that it further improves performance with a macro
AUC of over 83% regardless of the fusion used.

In a second step, we carried out the same experiments by replacing Audio-net with a
lighter alternative which is pyBK speaker diarization system. We have shown in the course
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of our experiments that this alternative allows us to reduce the number of parameters while
maintaining performances very close to those obtained with Audio-net.

The continuation of this work consists in using our proposed approach on the project
internal dataset with new issues. Indeed, in our project, there may be a higher number of
participants. Moreover, the number of participants is not always the same. Another differ-
ence in the data is that in our case a single microphone is used for all participants. In the
case of the AMI corpus data, each participant has a microphone. For this work we used the
audio file mixing all the recordings in order to get closer to the recording conditions of our
project. However, by using a single microphone for all the participants, the distance to the
microphone of each participant will be different, so we will have other difficulties. Finally,
the video acquired within the scope of the LinTO project were made with a 360 camera
as in [10]. Applying our approach to this dataset, not yet available at the time of this sub-
mission, will be a way to assess its robustness and validate its integration in the pipeline
dedicated to the LinTO project and its long-term objective.5
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