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Abstract
Through 5G networks, mobile edge computing (MEC) brings the power of cloud comput-
ing, storage, and analysis closer to the end user. Innovative inventions in the domain of
multimedia and others such as connected cars, large-scale IoT, video streaming, and indus-
try robotics are made possible by improved speeds and reduced delays. On the other hand,
in mobile edge computing, machine learning (ML) is leveraged to predict demand changes
based on cultural events, natural disasters, or daily travel patterns, and it prepares the net-
work by automatically scaling up network resources as required. Mobile edge computing
and ML together allow seamless network management automation to decrease operating
costs and boost user experience. In this paper, we discuss the state of art with in mobile
edge computing with deep learning to server low-latency, real time application by providing
application specific resource allocation. The experimental results have indicated significant
amount of improvement in respond time while executing in low latency.
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1 Introduction

In recent years, the number of Internet of Things (IoT) devices has significantly increased
due to the exponential growth of wireless communication technology. More than 25 billion
devices are expected to be connected to the Internet by 2020[8] and the total economic effect
of the IoT by 2025 will be $3.9 trillion to $11.1 trillion annually [9]. Usually, IoT devices
have minimal processing capacity and tiny memories. Sensors, cameras, smart fridges,
and smart lights are examples of such resource-constrained IoT products. Large quantities
of data are continually produced by IoT devices and sensors, which are of vital impor-
tance for many modern technological applications, such as autonomous vehicles. To obtain

� Dhritiman Mukherje
dmukherjee3@kol.amity.edu

Aman Anand
amananand972@gmail.com

1 Department of Computer Science and Engineering, Amity University, Kadampukur, 24PGS(N),
Kolkata, West Bengal, 700135, India

Published online: 21 September 2022

Multimedia Tools and Applications (2023) 82:12229–12243

/

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-022-13712-3&domain=pdf
http://orcid.org/0000-0003-0419-6437
mailto: dmukherjee3@kol.amity.edu
mailto: amananand972@gmail.com


knowledge and make decisions, this knowledge must be fed to a machine learning system.
Unfortunately, limitations in resource-scarce devices’ computational capacities hinder the
implementation of ML algorithms on them. The data is then deposited into remote comput-
ing facilities, most generally cloud servers, where computations are carried out. Transferring
raw data to cloud storage increases the cost of communication, causes device responses to
be delayed, and leaves any private information vulnerable to compromise. It is appropriate
to consider processing data closer to its origin and sending only the required data to remote
servers for further processing in order to resolve these problems [2].

Edge computing refers to computations conducted as near as possible to data sources
rather than at distant, remote locations [1, 13]. This is accomplished by adding an edge
computing system close to the resource-constrained devices where data is generated (or
simply, edge devices). There are both computing and communication capabilities for Edge
applications. Computations that are too intense for edge devices are sent to remote servers
that are more efficient. Driven by the advent of new computer-intensive applications and
the vision of the Internet of Things (IoT), an exponential rise in traffic volume and com-
putational demands is anticipated for the evolving 5G network. End users, however, often
have restricted storage capacities and finite processing resources, so it has recently become
a common concern to run compute-intensive applications on resource-constrained devices.
Mobile edge computing (MEC), a key technology in the evolving fifth generation (5G) net-
work, can leverage mobile resources by hosting compute-intensive applications, processing
large data before sending to the cloud, providing Radio Access Network (RAN) cloud com-
puting capabilities in close proximity to mobile users, and providing RAN information with
context-aware services. 5G mobile edge computing (MEC) is expected to be a multi-million
- dollar market by 2024 with $73 million in enterprise deployments [18].

Through 5G networks, mobile edge computing (MEC) brings the power of cloud com-
puting, storage, and analysis closer to the end user. Innovative inventions in the domain of
multimedia and others such as connected cars, large-scale IoT, video streaming, and indus-
try robotics are made possible by improved speeds and reduced delays. On the other hand,
in mobile edge computing, machine learning (ML) is leveraged to predict demand changes
based on cultural events, natural disasters, or daily travel patterns, and it prepares the net-
work by automatically scaling up network resources as required. Mobile edge computing
and ML together allow seamless network management automation to decrease operating
costs and boost user experience [10]. A note related to terminology. Fog computing, a sim-
ilar concept, describes an architecture where the ’cloud is extended’ to be closer to the
end-devices of the IoT, thereby enhancing latency and security through computing near the
network edge [10]. The major difference is where the data is processed: in edge computing,
data is processed directly on the devices to which the sensors are attached (or physically
very close to the sensors on the gateway devices); in fog computing, data is processed fur-
ther away from the edge, on devices connected via a LAN [6]. Layering ML on top of
the mobile edge computing infrastructure allows efficiency-enhancing network functions at
the edge to be automated. ML and mobile edge computing, together, can enable real-time
applications with cloud computation at low-latency.

Authors in [7] have proposed a decentralized communication model with a smart device
and vehicle base station servers. Further, they have formulated a combinational optimization
graph problem based on the superposed-data collection problem. However, their research
work addressed only the problem of finding communication link and strategy which min-
imizes the total energy consumed by smart devices. In the case of computation-intensive
task-based real-time time applications, optimizing response time will be challenging. In
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[15] authors mainly focuses on the deep learning overview and explain how that can be
adopted in mobile edge network with computation and memory limitation. Further, they
have also studied deep learning techniques and challenges in the 5G network. They only
focus on the abstract view of the discussed study. In [16] authors have proposed a smart
home architecture based on cloud computing and blockchain. They have implemented hash-
ing and encrypted algorithms to provide integrity and confidentiality in the network. In case
of computation-intensive device transactions, huge network delay can be incurred while
getting results for computations. However, none of the above-discussed papers has imple-
mented a real test case scenario that deals with challenges like response time, computation
and memory constraints.

In this paper,

• An overview of 5G network is discussed.
• The power of machine learning implemented at the network edge to serve low-latency,

real time application that are considered primary goal for designing the 5G network.
• Challenges like inherent resource constraint and computational limitations at edge

device are identified and proposed solution are also addressed.
• Respond time is compared in low latency with different data sets.

2 Researchmethodology

The overall architecture of the proposed system shown at Fig. 1. At level 0, edge/IoT layer
is present.

In edge/IoT layers edge devices can be considered as smartphones, sensors, tablets,
laptops, moving cars etc. At top of the level 0 the fog layer is present. Fog layer can be con-
sidered as multiple interconnected fog controller. Fog controllers are the intelligent devices
that also represents the cloud near to the ground. In this project we established the fog

Fig. 1 The Overall architecture
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environment inside the raspberry pi device and we have considered that device as a fog
controller. At level 2 or top of the hierarchy remote cloud servers are present.

Figure 2 describes the overall flow diagram of the proposed system Now a day, smart-
phones are so powerful device that it can able to perform computational intensive task. In
spite of that they are still suffering the inherent problem like limited battery power, mem-
ory uses etc. Hence, the challenge of performing entire deep learning operation on a mobile
device often be computational intensive. In this study, this issue is resolved by performing
training phase on a powerful GPU outside the mobile device. After successful completion
the training phase the trained model deployed in mobile device to classify the images.

As discussed due to limited memory capacity of mobile devices it sometimes become
challenging to deploy trained model into the mobile devices. This issue has been resolved by

Fig. 2 The overall flow diagram of proposed system
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offloading the entire task (i.e. image) to the fog controller depending on the available device
resources. In that situation, only final classify result will display on the mobile devices.
Hence, entire classification process will be initiated by the fog controller.

2.1 Transfer learning

When the dataset is significantly small transfer learning can be very effective tool to develop
a large network without overfitting. Firstly, in transfer learning a base network is trained
on a dataset. Furthermore, the learned features are transferred or repurposed to the second
target network to be trained on the target dataset. The remaining layers are randomly initial-
ized and trained. This process will work if the features are general and fit for the both base
and target tasks. Transfer learning can be considered a powerful tool for training a large
network when the target dataset is significantly smaller than the base dataset [19]. Deploy-
ing pre-trained model on similar dataset shown good image classification result [11, 14].
Few organizations are working on building such models such as Oxford VGG model [14],
Google Inception Model and Microsoft ResNet Model [5]. These models can be integrated
with existing research to bring better result.

2.2 Microsoft ResNet model

In recent past, among deep learning models CNN have become the leading architecture in
the field of image classification and recognition. It uses multiple convolution layers for com-
plex tasks like information processing, feature extraction, pattern analysis. Neural network
suffers with problem like vanishing gradient [4] and degradation problem [17] while train-
ing deeper layer. So, researchers observed adding more layers eventually had an improper
effort in final result.

ResNet was introduced as an innovative solution to the vanishing gradient problem.
Residual Network (ResNet) is a convolution Neural Network(CNN) architecture which can
enable hundreds or thousands of convolution layers. ResNet claimed the first position at
ILSSVRC 2015 in image classification and detection and localization as well as winner of
MS COCO 2015 detection and segmentation [12]. As we see in the Fig. 3 a skip/shortcut
connection was added to add input x to the output to avoid vanishing gradient problem.
Hence, the output H(X) = F(X)+X. The model instead of learning from the features tries
to learn from the residual mapping:

F(X) = H(X) − X (1)

The input for our model is RGB image. We use flower classification for the proof of work.
The image will reach to the pre trained ResNet layer with pertained weight. The last layer of
the model is fully connected dense layer with softmax activation. The two significant layer
for the proposed model is pre- trained ResNet layer and the dense layer. The weights for the
pre-trained model is to be imported and the last layer i.e. dense layer will learn from back
propagation. The proposed model architecture shown in Fig. 4.

The Relu action function are being used in the ResNet model. RestNet50 is a 50-layer
residual network architecture. It also has other variants such as ResNet101 and ResNet152.
Software activation function is used in this proposed architecture. Softmax is kind of mul-
ticlass sigmoid function. Softmax is use for the multiclass classification. In this paper, we

12233Multimedia Tools and Applications (2023) 82:12229–12243



Fig. 3 ResNet Architecture

use softmax activation because we are classifying 5 classes of flowers. The mathematical
presentation of the softmax activation function is as follows.

σ(z) = eZj

∑k
j=1 eZj

(2)

2.3 Model conversion and integrating pre-trainedmodel into the application

Tensorflow lite is designed to execute models efficiently on smartphones and other devices
with minimal processing power and resources. Converting model results reducing the file
size and introducing optimization without affecting the accuracy [3]. Tensorflow lite con-
verter is a tool available in python API to convert pre trained model into tflite model. We
used following coding snippet for conversation.

Code snippet for the necessary steps to convert model for the smartphone device.
Figure 5 demonstrates the model conversion process of integration pre-trained model

inside the edge device. Trained model deployed into the edge devices after successfully
completion of training phase. This integration process brings the machine learning model
from the cloud server onto the edge devices. However, ML model (pre-trained.h5) not
designed to execute efficiently on mobile, IoT and other embedded devices [3]. In most of
the cases, pre-trained model has to be converted into the suitable format and integrated onto
edge devices. In this study, TFLiteConverter has been used to convert (.h5) format to (.tflite)
model format [4].
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Fig. 4 Proposed model architecture

3 Experiment and result

The machine learning part of the project is conducted in a Google Colab notebook. In the
backend for the deep learning environment, Keras 2.4.3 and Tensorflow 2.3.0 were used.
Apart from that fog environment is established inside raspberry pi B+ model. Android Pi
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Fig. 5 Pre-trained model integration into the Edge Device

with 6GB RAM 4500mAH lithium-polymer battery configuration base smartphone is used
for the edge devices. v9Tesla P100- 16 GB GPU is used for the training the model.

3.1 Dataset

We use a dataset of flower images to demonstrate the proof of work. The dataset is from
Kaggle’s flowers recognition. The dataset consists of 4242 images of flowers. Images are
divided into five classes namely daisy, dandelion, rose, sunflower, tulip. These are about 800
images for each classes. Number of image in each class category are listed below Table 1:

The images were resized to 256 ×256, as original size 375×500 was too large to train
in the tensorflow. Furthermore, the dataset was split into 80% of training and 20% of
validation.

3.2 Spliting data

Total number of flower data in the data set are 4326. We split out dataset in 80:20 basic i.e.
80% of data used for the training purpose and rest of the data for the training purposes. It
is well known practise of splitting data gets more than two-third of total data. This training
data contains all the available classes of flowers in the dataset. Figure 1 shows the android
application that is executing using devices’ own resources. Figure 2 shows the output from
model trained from ResNet 50.

Table 1 Data component in
dataset Image class No of image

Daisy 769

Dandelion 1055

Rose 784

Sunflower 734

Tulip 984
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Fig. 6 Accuracy graph

3.3 Model training

In transfer learning the first base n layers are trained then the copy of that n layers transfers
to the target network. The remaining layers of the target network are initialized randomly
and trained towards the target network. Weights are updated by back propagating the errors
and fine-tune the copied feature to the new task. The choice of fine-tune the first n layers
depends on the size of the target dataset and number of parameters presents in first n layers.
In case of small dataset and large parameters fine-tuning may cause overfitting hence the
features are left frozen. On the other hand, overfitting can be avoided if the target dataset is
large and number of parameters are large [19].

Fig. 7 Loss graph
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Table 2 Training performance
Matrices Data

Training Accuracy 95%

Validation Accuracy 93%

Training Loss 0.11

Validation Loss 0.13

3.4 Result

During training accuracy and loss matrices were measured. Tesla P100- 16 GB GPU is used
for the training the model. Figure 6 shows the accuracy graph during the training of the
dataset and Fig. 7 shows the loss graph during the training of dataset. Accuracy and loss
data for training and validation are shown in Table 2.

Fig. 8 Edge device resources availability before processing starts
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Fig. 9 Edge device resources availability while ongoing processing

Figures 8, 9 and 10 shown the results when we are implementing the classification task
at the smartphones. The resource availability at the beginning of the task and at the end of
the task are displayed at the top of the application. This resource availability information
is the key part for making decision whether task (input image) will be uploaded to the fog
controller or not.

3.5 Respond time comparison

In the last part of our experiment respond time is measured with different data size while
executing entire task inside the edge devices. Parameter details and corresponding values
are listed in Table 3.

Figure 11 presents the impact of respond time for different data size. Here, responds time
is modeled as time difference between completion and submission of task. It is discussed
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Fig. 10 Edge device resources availability after completion of processing

that computational capabilities of edge devices resides closer to the data source. As, a con-
sequence, network delay is negligible for edge devices. Furthermore, if the size of the data
set is not varying the respond time will not differ significantly whether the application is
executed in Fog or Edge.

Table 3 Parameter details of fog
and edge Parameter Value

Bandwidth of Fog Server 34 Mbps

Number of Edge Devices 1 -5

Data size 20 - 40 KB
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Fig. 11 Respond time comparison of edge devices for different data sizes

Fig. 12 Classification and accuracy of the trained model
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4 Conclusion and future work

In the area of new computation intensive task and IoT it is predicted that the emerging
5G network will face an unprecedented growth in traffic volume. Mobile edge comput-
ing (MEC) or edge application, a key technology that can optimize mobile resource by
offloading the task to the nearby server. Edge application is considered one of the most
informative drivers for information delivery application. The combination of deep learn-
ing and edge computing has great potential to transfer knowledge with minimum delay.
Many machine learning studies on mobile devices have been focus on cloud-based solution
because limitation of memory and computation power and latency causes some issue in case
of computational intensive tasks. In this study we present on device inference approach.
As pertained model is deployed on the edge devices like smartphones it is not necessary to
invoke remote server. Still, we consider the situation when remote server can take action.
Instead of using cloud we used fog (i.e. close to user) server. In future we are focusing to
extend our work in medical image processing domain where we can reduce the latency to
get the response in minimum delay within radio access network (RAN) in close proximity
to mobile users. The overall classification and accuracy of trained model shown in Fig. 12.
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