
https://doi.org/10.1007/s11042-022-13694-2

Development iterations based on web augmentation
and context tasks

Lucy Gutierrez Marticorena1 · Leonardo A. Morales1,2 · Leandro Antonelli3 ·
Gustavo Rossi3 ·Diego Firmenich1

Received: 10 September 2021 / Revised: 13 June 2022 / Accepted: 15 August 2022

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
The use of prototypes in requirements engineering has widely known benefits since they
actively involve the stakeholders in the development process. Web Augmentation tech-
niques make it possible to build prototypes relying on existing web applications. Thus,
high fidelity mockups can be quickly generated. One of the most critical activities is divid-
ing requirements into tasks and managing them through the development process. This
paper proposes an approach that includes high fidelity mockups into the Task-oriented
Development approach. The proposed approach consists of the following steps: (i) end-
users specifies requirements, (ii) a product owner verifies and prioritizes the requirements,
(iii) tasks are defined and included in a kanban board, (iv) developers should provide
the functionality, and (v) the product owner should approved the functionality. The main
contribution of this approach is to integrate the requirements specified through web aug-
mentation mockups, into the development environment via a task-oriented development
approach. Thus, developers will have a rich context that facilitates the understanding of the
requirements. At the same time, the management of the development process will have ben-
efits because of the traceability between tasks and requirements. This paper describes the
approach proposed, called “WAMRI”, and an application of its usage, as well as a tool to
support the application.

Keywords Web engineering · Web augmentation · Requirements engineering ·
Software development environments · Task contexts · Software tools

� Diego Firmenich
dafirmenich@ing.unp.edu.ar

1 DIT, Departamento de Informática Sede Trelew, Facultad de Ingenierı́a, UNPSJB, Chubut,
Argentina

2 IPCSH, CONICET-CENPAT, Puerto Madryn, Chubut, Argentina
3 LIFIA, Facultad de Informática, UNLP, La Plata, Bs. As. Argentina

Published online: 5 September 2022

Multimedia Tools and Applications (2023) 82:11793–11817

/

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-022-13694-2&domain=pdf
http://orcid.org/0000-0002-7212-4454
mailto: dafirmenich@ing.unp.edu.ar


1 Introduction

Software development approaches based on mockups and prototyping techniques have been
used since decades ago. They were proven to be effective to communicate between engi-
neers with end-users [4, 37]. More recently [41] and [48] have shown how to involve
end-users allowing them to define their needs using text and layout tools to visually specify
requirements. Some model-driven approaches, such as Mockup-driven development [49],
propose to evolve prototypes into models. However, from a methodological point of view,
it is not really frequent and convenient [40].

Traditional techniques commonly used today to define requirements include Use Cases,
User Stories, and Prototyping. The three techniques rely on defining requirements in arti-
facts isolated from the software application. Thus, from the analysis of the requirements to
its implementation, there is a wide gap and this gap demands a huge effort to understand the
requirement placing it within the application context, as well as to identify the source code
related to the functionality.

The identification and limitation of the work context has been a matter of previous
research. The approach called MyLar [29] allows the developers to focus on carrying out
their labor within the boundaries of a work context. This approach evolved to MyLyn [46]
that makes it possible to build and collect the work contexts related to the execution of
some specific development tasks. Thus, the development environment can be adapted and
prepared for allowing to the developer manipulate a limited set of elements, having as a
consequence an increase in their productivity [30].

Moreover, requirements artifacts and the running software application follows two differ-
ent threads, where both elements should be synchronized. That is, the requirements evolve,
so the requirements artifacts should be updated to match the implementation. This task
is very demanding, and it is even more time consuming to update mockups, since they
have many details. Nevertheless, it makes no sense to update a mockup that represents the
application GUI, when the application GUI can be itself used as a base for the mockup.

Web Augmentation techniques allow web users to work directly with the application,
modifying the content (information displayed) and functionality of the existing web appli-
cations. Although Web Augmentation is primarily used for customization, these techniques
with an adequate support of tools can be used to define new requirements [15]. Moreover,
while describing the requirement the tools are also capable of identifying the modules of
the application that need to be modified, providing to the developer some clues about the
source code that needs to be modified.

Let’s consider as an analogy civil engineer or architecture. It would be very useful to
plan the extension or modification of a house at the same time that the inhabitants live in
there. Thus, preferences and needs can be better assessed and described. In the virtual world
of the application, the benefits are even more promising considering the great variety and
quantity of stakeholders that usually exist behind an application deployed over the Internet.
Even more, the augmentation techniques make it possible for different users to discover and
define different versions of their same needs, and these can be prioritized and negotiated
through adequate support of tools [16].

The contribution of this paper is providing an approach that involves the end-user in the
definition of the requirements through the technique of Web Augmentation. The require-
ments are anchored to the real application that need to be modified and the proposed
approach also provide clues about the modules (source code) that should be considered for
modification.

11794 Multimedia Tools and Applications (2023) 82:11793–11817



The proposed approach is based on two fundamental pillars. One of them, is the defi-
nition of requirements using high-fidelity web mockups with augmentation techniques for
their construction. Particularly, this paper proposes the use of a novel software artifact,
called Runnable Augmentation Mockup [15]. The second pillar is the usage of augmented
task contexts through the integration of our web augmentation mockups into the devel-
opment environment. Although there are some previous proposal, our approach combine
software artifacts with task contexts.

The rest of the paper is organized in the following way. Section Background and related
works, provides a deeper description of the conceptual and technological background for
understanding the proposed approach. Then, section WAMRI (Web Augmentation Mockup
Rapid Iteration) describe the contribution of this paper, that is, an approach of rapid
development increments in web applications based on mockups and augmented task con-
texts. Section four, describes examples of the proposed approach and tools to support the
approach. Then, some discussion is provided. Finally, some conclusions and future work
are presented.

2 Background: web augmentation and runnable augmentation
mockups

To provide clarity and describe web augmentation [6] techniques in more depth, it could be
mentioned that it is often said that augmentation is to the web of what augmented reality
is to reality [12]. Because the end-user of web applications executes them in a browser on
the client-side, there when the web apps are rendered, they have the opportunity to modify
their appearance and behavior. Technically this can be accomplished in several ways, but
the most widely used are Browser Extensions and User Scripts. About the former, these are
generally obtained through Browser Extension markets [23] where users can find and install
the extensions of their interest. These extensions are developed by third parties, generally,
to work on the different web applications used by the end-user. Just to mention an example,
the Dark Reader [11] extension apply dark themes overall visited websites or a few ones
selected by the user. This extension has more than 3 million installations.

The execution of the extensions is managed by browsers, and technically they are capable
of doing incredible things by altering, modifying, and combining content and functionality
of the websites visited by the user. All this making use of the Web Extension API [8, 43]
and manipulating the DOM Trees corresponding to the web applications used.

On the other hand, user scripts are software artifacts written in Javascript by end-users
of the web, who build and share them through repositories forming different communities
[25]. These user scripts are then executed using a user-scripts management extension [5,
24]. This extension is aware of the websites visited to insert these Javascript artifacts when
the user visits the augmented ones.

Although these techniques are quite well known and popular, it is worth considering that
they are not so much given their real potential and the immense number of web users [13]. In
addition, it is important to mention that these artifacts are built and maintained naturally and
totally decoupled from augmented websites and that drastically affects their survivability to
augmented website changes.

In a previous work that we have called Crowdmock [16], we have used these aug-
mentation techniques to allow end-users to elicit, define, and prioritize the augmentation
requirements. Crowdmock provides an engineering approach in the construction and main-
tenance of user scripts. Part of the proposed process was based on the Mockplug [15] tool

11795Multimedia Tools and Applications (2023) 82:11793–11817



that allows end-users to start the process by defining the requirement on the augmented
website itself.

Figure 1 shows a capture corresponding to a prototyping session using the Mockplug tool
on a web application that we have developed for a particular domain related to a flora study
on the Patagonia region [1]. It shows how the end-user dragged and dropped a representative
image of a map on the application and added an annotation describing their need.

This new type of prototype, which we have called RAM (Runnable Augmentation
Mockup), allows adding different kinds of elements such as text and form fields, buttons,
lists, images, etc. Among other things, it also allows to select elements present in the UI and
change their position or remove them. It also allows adding pocket widgets. That is, collect-
ing elements in a pocket while browsing the web, and then mixing them with those existing
in the system on which there is a need. In the case of the Fig. 1, this is what was done with
the map element.

The tool also makes it easier for an advanced user to incorporate behavior into the ele-
ments. So that it not only allows generating visual representations of the requirement but
also allows generating dynamic representations of it. Distinguishing this last possibility we
have called them RAM.

Fig. 1 Mockplug Web Extension: prototyping over an existing web application

11796 Multimedia Tools and Applications (2023) 82:11793–11817



These techniques not only facilitate the involvement of the end-user in their role of the
stakeholder from the point of view of requirements engineering, but they have also allowed
us to go further and provide tools that facilitate their participation in component testing and
references maintenance of DEOIs (DOM Elements of Interest) [17]. Being these, two very
important aspects for software artifacts built with augmentation techniques.

However, Crowdmock’s objective is that the end-user community can get hold of the
augmentation artifacts that allow them to satisfy their own customization needs, precisely
those that the owners of the web applications did not originally provide. To do this, the
end-user just begins by specifying and share their needs with RAM models through the
Mockplug tool.

3 Related works: tasks and context in software development

The context of a task is the set of interactions with tools and artifacts that the developer
performs during its execution [36]. The same artifact (for example a user story, the source
code, or a test specification), could be involved in more than one task and its relevance
will surely be different in each case. There are two prominent approaches to measuring
this relevance. On the one hand, the degree-of-interest (DOI) model takes into account the
frequency and decay of interactions to continuously calculate the degree of interest of each
artifact [31]. On the other hand, the FDA model measures the frequency and duration of
each developer-artifact interaction, also considering the passage of time (or aging) of these
interactions [36].

In the development of Software, understanding how the dynamics of interactions and
artifacts work in the context of tasks allows the development of tools that facilitate the
development process. Multiple tools have been proposed to free engineers from costly men-
tal burdens (such as searching for artifacts or changing context) in order to increase their
productivity and achieve higher quality products.

In order to attend to user productivity, and in relation to task planning, there are works
such as [34] in which a real-time multiple workflow scheduling scheme is proposed to
schedule workflows dynamically with a minimum cost and under different time constraints.
Nevertheless the benefit of this approach it is necessary to organize the tasks in an acyclic
directed graph structure in order to proceed. Another work [61] proposes an approach that
uses the network encoder-decoder with short-term memory (LSTM) along with attention
mechanism to generate predictions from activity logs and create schedules for allocating
tasks. This proposal avoid the effort to manually build an acycic directed graph since it uses
the activity logs. Nevertheless, [35] states that it is more effective the use of context than
task-based integration.

There are multiple factors of context that can be taken into account in the work of Soft-
ware Engineers and their interaction with the development tool or IDE. Some examples
of these are: overall developer experience, IDE experience, complexity of the artifact in
development, or even the day of the week the task is performed. In [20], thirteen of these
context factors were selected, and a model was presented through which it has been pos-
sible to improve the precision and synchronization of the recommendations produced in
the IDEs. Focusing on the so-called systems of recommendations for software engineering
(RSSEs), [20] allows categorizing tools linked to the context of tasks in the development
environment. Another group of tools focuses on offering relevant code examples, such as
Strathcona [26] and Code Conjurer [27] (which, unlike Strathcona, does not require man-
ual selection of the code snippet to perform the query and present a useful code snippet).

11797Multimedia Tools and Applications (2023) 82:11793–11817



We believe that recommendation is a valuable feature combined with code example, since
it is the key in developer works: finding the source code to modify. Some other approaches
focus on improving the use of the commands available in the IDE, such as SpyGlass [59],
while others focus on adapting the user interface presented by the IDE, such as Mylyn [31]
and AutumnLeaves [54]. And other tools focus on adapting the ordering of the recommen-
dations offered to the developer, such as OCompletion [50] and Quick Fix Scout [45]. We
believe that it is not necessary to change the functionality or appearance of the view, since
the developer is familiar with it.

The aforementioned Mylyn is one of the most popular tools and its objective is to help
the developer focus on those artifacts that are most relevant to their coding tasks [28]. This
plug-in, for the Eclipse [14] integrated development environment (IDE), implements the
DOI model to filter Java classes, methods, and variables. Thus, this tool provides a kind of
search tool to help the developer. Nevertheless, the developer needs to know what should he
search for and if he does, he need to do the effort, while a recommendation is more efficient.

In more recent solutions an advance can be noticed in the treatment of the context of
software engineers. [7] introduces Devy, a Conversational Developer Assistant (CDA) that
enables developers to focus on their high-level development tasks. It is a voice-controlled
prototype with a pre-defined set of automated Git and Github tasks. “CognIDE” [58], mean-
while, is a proposal that integrates psycho-physiological information from the developers
(obtained through sensors) to the IDE. The data processed by this tool is presented both
in the source code editor and in external visualization boards. In both cases, the proposals
pursue the goal of helping developers to input the information to the tool. Nevertheless, in
the first case, it is necessary to give some information orally while in the second case, the
sensors also demands input from some explicit stimulus.

Previous cited works only considered source code as context, but MylynSDP [47] based
on the aforementioned Mylyn tool considers some other phases (and artifacts) of soft-
ware development, such as requirements and testing. MylynSDP extends the DOI function
of Mylyn to work on three detected disadvantages: include artifacts from other phases of
software development such as use cases and test cases; collect information on other charac-
teristics of artifacts such as frequency or file type; third to prevent tasks from being manually
defined. We believe that the inclusion of requirements is crucial since it provides a richer
and higher level context that the source code.

Murphy [44] also proposed a new dimension regarding contexts since he focus on histor-
ical and activity information, which then serve as input for the creation of tools that actually
increase human intelligence. This is a kind of machine learning solution that can be inter-
esting approach in which the recommendations are adjusted according to the criteria finally
adopted by the developers. We can find some examples of these tools in the work [38], such
as chatbots (cognitive computing) in conjunction with recommendation systems (machine
learning). The paradigm proposed in this work aims to take advantage of context informa-
tion (implicit or explicit) to assist developers in real time and in the different scenarios in
which they are working.

Considering the ways of building software today, “Agile Methodologies” are mature and
widely adopted in the industry. These methodologies proposed a paradigm shift in order
to increase the success rate of software projects. With their practices, they seek to keep
the client involved in all phases of development, deliver software early and continuously
and adapt quickly to changes that may occur [19]. From this new way of working new
artifacts emerged and gave rise to new interactions for software engineers in their day-to-day
work. Therefore new contexts emerge as well. Work on [33] has shown that incorporating
Continuous Integration and Continuous Delivery tools into the IDE has increased their use,

11798 Multimedia Tools and Applications (2023) 82:11793–11817



and it has also improved the workflow for developers. The Agile Methodologies most used
in the industry today are Extreme Programming, Kanban, and Scrum [52]. Some of them
user combined [53]. In Agile Requirements Engineering, the most frequently used artifacts
are User Stories, Prototypes, Use Cases, Scenarios, and Story Cards [57]. Thus, it is valuable
to include artifacts related to agile methodologies in the context.

4 WAMRI

This section is organized in the following way. The first subsection describes WAMRI
briefly. The second subsection describes general characteristics of the approach. The third
subsection describes the steps of the approach. Finally, the last subsection conceptually
describes the main components of the proposed aproach.

4.1 WAMRI in a nutshell

From an engineering conception, our approach raises the possibility of including, within the
development process of an existing web application, integrated tools that provide a frame-
work for the elicitation and definition of new functional requirements. At the same time, it
takes advantage of the prototyping information, at the precise moment and place in which
the developers carry out the tasks corresponding to the resolution of the requirements.

According to the proposed approach, it is the end-users who, through the use of the
web application and based on their own experiences and needs, are in charge of laying
out their functional requirements. This is achieved by enriching the web application by
adding web augmentation capabilities to define their requirements. These web augmen-
tation capabilities, let end-users add artifacts over the existing web applications that are

Fig. 2 WAMRI General Diagram

11799Multimedia Tools and Applications (2023) 82:11793–11817



essentially high-fidelity mockups and can be used later to provide the development environ-
ment with new kinds of information about the user requirements. Thus, new ways of reverse
engineering in the construction and maintenance of web applications are possible.

In this way and as can be seen in the diagram of Fig. 2, the end-user as stakeholders
that are interested in new functionalities, use the web application accompanied by special
new tools for the definition of requirements, using prototypes via web augmentation tech-
niques. The information obtained by the augmentation artifacts nourishes the development
process, and developers through the development environment, visualize information of
interest linked to the tasks to be carried out to satisfy these augmented requirements.

The diagram depicted in Fig. 2 includes the following steps: (i) end-users specify
requirements, (ii) a product owner verifies and prioritizes the requirements specified by
the end-users, (iii) tasks are defined and included in a kanban board, (iv) developers code
the functionality to satisfy the requirements which (v) the product owner should test to be
approved. Thus, three roles are involved in the method: end-user, product owner, and devel-
oper. End-user is the role in charge of specifying requirements. The product owner is the
role in charge of prioritizing the requirements, identifying and solving conflicts, and vali-
dating functionality after the developer implements the requirements. The developer is the
role in charge of analyzing the requirements and implementing them.

In the same way, Fig. 3 allows us to distinguish the three main software components that
support the approach: an extension for the browser (A), an extension for the development
environment (B), and an extension for the web application (C). These components are also
indicated in the general diagram in Fig. 2.

Thus, the extension of the browser is used by end-users to specify requirements and the
product owner to verify them. Then, the extensions make use of the Kanban Tool Support
to manage the creating and updating of the tasks in the board. Finally, the combination of
the web server extension and the IDE provides the information about the files needed to be
edited by the developers.

4.2 General characteristics of the approach

Foremost, it is important to emphasize that the method applies to developing new fea-
tures of an application already developed and deployed in production. The running software

Fig. 3 WAMRI Components Diagram

11800 Multimedia Tools and Applications (2023) 82:11793–11817



application is the base for specifying new requirements. The key product to specify require-
ments is the web augmentation mockup. It is a mockup described directly on the software
application to be extended in its functionality. That is in contrast to the traditional mock-
ups designs approaches and tools, where the mockup artifacts are described in extern
documents. The webmockup is also enriched with a User Story. Both elements are used
to describe every requirement. Webmockups are runnable because it can contain widgets
actions that triggers some functionality. Requirements are used as a mean of communication
between end-users and products owners. Every requirement is available for every end-user,
thus they can collaborate in the definition. This evolution creates a tree where end-user can
also vote to express their agreement with the requirements. Finally, the product owner has
the responsibility to define the final version of the requirement [16].

After the requirement is accepted by the product owner, it is included in a kanban
board, which is a communication means between product owner and developers. The board
includes the following columns: (i) To Do, with the task to be performed, (ii) Doing, with
the tasks picked up by developed, (iii) Done, with the finished tasks that need to be validated
by the product owner, (iv) Reviewing, with the tasks being validated and (v) Reviewed, with
the tasks finally validated by the product owner. It is important to mention that the board is
automatically updated according to the actions performed by the roles. That is, in order to
have a task in ToDo, the product owner should have accepted a requirement.

The use of the software application to describe the requirement makes it possible to relate
the requirement with the files needed to modify in order to satisfy the requirement. This
is an advantage of the approach. There is a relationship between the requirement and the
files to be edited. Another advantage is that there is no need to learn to use a tool to specify
requirements, and no need to change from the tool to specify requirements and the running
software.

The method proposed is based on an agile life cycle, since the documentation is simple
and light. Moreover, it is iterative and incremental, since end-users request new function-
ality, it is developed and deployed, and end-users can request new functionality. Finally, it
is based on an evolutionary prototype. The literature considers an evolutionary prototype
when the prototype is improved and finally is transformed into the final application. In this
case, it is even more extreme, since the application also contains the requirement.

4.3 Steps of the approach

This section describes every one of the steps of the proposed approach. The first step is the
requirements specification. In this step, a group of end-users specifies requirements. The
product owner does not elicit requirements from them. Requirements are specified directly
in the web application using augmentation. Thus, the implementation begins in some way
with the specification, since a new widget can be placed in the real position of the appli-
cation and the developer will have to implement the logic and functionality needed. It is
important to mention that requirements not only consider adding widgets, it also consider
removing, moving, combining, etc...

The second step is the requirements verification and prioritization stage where the prod-
uct owners review every requirement looking for requirements repeated or in conflict. If
there are two repeated requirements, the product owner should accept only one. By contrast,
if there are two requirements in conflict, the product owner decides (in combination with
the end users) the specification. For example, it could occur a conflict when two end users
request a delete functionality to work in different ways. One end user requests a delete func-
tion to remove one element, while another end user requests a delete function to remove

11801Multimedia Tools and Applications (2023) 82:11793–11817



the element chosen, performing delete in cascade with the related elements. In this situa-
tion the product owner decides, in discussion with the end user involved if necessary, the
best approach. It is important to mention that this discussion can be carried out in situations
where there is no huge amount of end user. For example, in a global platform like social
medias is not possible, but in a back office of a bank could be. Finally, the product owner
accepts a requirement and prioritize it.

The third step is the definition of tasks stage where every requirement accepted by the
product owner is translated to an individual task in the kanban board positioned according to
the prioritization. Files related to the task are traced by the tool that supports this approach.
Thus, the task is described using three elements: (i) a webmockup defined in a real applica-
tion, (ii) a User Story described by the end-user, and (iii) the files needed to be edited which
are identified by the tool proposed in this approach.

The last two steps are coding and user acceptance tests. In coding stage, the developer
chooses a task, then the IDE displays a list of the files needed to be edited. Thus, the devel-
oper does not need to search for them, he can focus on write the source code. When he
finishes the task, the product owner performs the last stage: user acceptance test, where
he checks whether the functionality satisfies or not the requirements. If it not, the product
owner restarts the iteration.

4.4 Conceptualization of principal components

As mentioned, the fundamental components that support the approach are the web aug-
mentation mockups for the definition of the requirement (Component A), as well as the
extension of the functionality of the existing web framework, to be able to inspect the source
code files of the deployed web application to be modified (Component C).

As described above, these two artifacts interact mediated by the development environ-
ment extension (Component B). Components A and C, are the key pieces that support the

Fig. 4 Web augmentation mockups metamodel

11802 Multimedia Tools and Applications (2023) 82:11793–11817



approach since the first one contains the requirement information provided by the end-
user, and the second one, can exploit this information on the web server that deploys the
application where the requirement was created.

Concerning Component A, it can be seen in Fig. 4, the metamodel of a web augmentation
mockup. Each RAM model is made up of the following: the URL where it was created, a set
of widgets, their properties, their insertion strategies, actions, etc. Thus, the models created
by end-users in their augmentation requirements are represented by particular instances of
this metamodel.

As for the C artifact to extend the functionality of the web framework, this is conceptu-
alized as a web service. Requested, given a specific instance of the previous metamodel, it
will be capable of responding with a list of source files and lines of code of potential interest
to resolve the requirement.

This service, attached to the services offered by the web server that deploys the appli-
cation on which the requirement was created, may, depending on the technology used, be
implemented in many ways. However, conceptually, an example compatible with any Web
Application Framework based on the well-known and popular architectural pattern Model
View Controller (MVC) is next described in more detail.

Most popular web frameworks are based on the MVC pattern and its derivatives (MVT,
MVP, MVVM), and they achieve the separation of concerns by dividing the application
into distinct types of components and source files. Thus, based on the component’s nature,
there are component types and files for the business model and backend (application domain
logic), there are component types for view files and templates (user interface logic), and
finally, there are component types for controllers and files where the application events and
inputs logic are located.

Therefore, a requirement specified by a specific web augmentation model, over an MVC
Framework based application, will be related to a set of views, models, and controllers.
These will be defined in certain files, and within those files, very commonly composed of
hundreds of lines of code, only some snippets will be relevant to solve the requirement.

Fig. 5 Component C generic algorithm for a MCV Framework

11803Multimedia Tools and Applications (2023) 82:11793–11817



Figure 5 shows an algorithm for obtaining as an outcome these files and these lines of
relevant code for a particular web augmentation mockup model, created on an application
deployed in a Web MVC Framework.

It can be seen that the algorithm can meet its objectives in a polynomial time O(n3).
At a lower level of abstraction, foreseen in any implementation of this algorithm, it will be
probably necessary the use of regular expressions, XML or configuration files processing
to find the controllers corresponding to the URLs of the mockups, as well as to lean on the
characteristics of each framework and its technology, and its libraries, to programmatically
browse the directories and the text of its view and model files. In the generic algorithm of
Fig. 5 that operations were abstracted with the pseudo primitives match and find.

Finally, it will also be necessary performing widget definition searches based on their
HTML Text properties. Like in the case of sub-algorithm of Fig. 6, which looks for widgets
in an HTML view file. And for that, it is important to highlight that the widgets in the web
augmentation mockup, may have been pre-existing in the application, or may have been
added from the default tool palette or from any other application apart on the entire web.
In either case, as is expressed in the metamodel, widgets are inserted into the augmented
application using an Insertion Strategy. There, an existing reference to the DOM Tree rela-
tive application host element is used, which is the one used to search for the corresponding
widget code definition lines (widget.insertionStrategy.domRef).

5 Examples and tool support

The examples in this section are of an intranet web application used by biology scientists to
record, visualize, and manage data about the flora and its distribution in the territory. These
scientists use mobile applications to conduct flora recognition campaigns, then sync their
devices with the intranet web application when they return to their labs. Four developers
make up the software development team, two of them focus on mobile applications and
the other two on web applications. The product owner role is played by the leader of the
development team. Showing our contribution from the use of web augmentation mockups to
the software development process, let’s think about a possible scenario to present the tools
in that context.

Fig. 6 Component C sub-algorithm for find widgets relative lines in views

11804 Multimedia Tools and Applications (2023) 82:11793–11817



Fig. 7 Intranet web application

5.1 The end-users define their needs

Rose, a biologist, has already registered 40,000 specimens from 377 different species using
the mobile app. She has collected dozens of samples from these specimens, and she is now
in her lab, using her stereoscopic magnifying glass to identify the species that she has not
been able to recognize with her naked eye in the territory. Once the species’ scientific name
has been determined, it must be registered using the web application, associating it with the
synonym used during the exploration campaign with the mobile app. Figure 7 shows how
Rose accesses the form that she uses to record the scientific names from the list of different
species.

While Rose is working in the lab, the web app displays a legend that shows how many
fantasy names do not yet have a scientific name assigned (in Fig. 7, this number is 26/377).

Fig. 8 Rose requirement

11805Multimedia Tools and Applications (2023) 82:11793–11817



Fig. 9 Augmented DOM Tree in Browser Inspector

However, she has no way of knowing how representative these species are in comparison
to the entire sample, and she needs to know how many of the 40,000 specimens sampled
already have a scientific name and how many do not.

Then, using the same browsing session and the Mockplug tool, Rose defines a new
requirement to communicate her need to the IT team that maintains the application. Figure 8
depicts the definition of this simple requirement, in which the user indicates that she needs
to add an element of information about the data she is working on.

Rose is unaware, but this method of specifying her need allows us to incorporate her
requirement into the DOM Tree during the user’s browsing session. Figure 9 depicts the
Mockplug tool’s modification of the DOM Tree. The elements corresponding to the require-
ment were added there. Furthermore, as shown in Fig. 8, existing DOM Tree elements

Fig. 10 Product owner Kanban Board in Trello

11806 Multimedia Tools and Applications (2023) 82:11793–11817



relevant to the requirement were converted into requirement elements as well, such as the
container div element for the data of interest.

Once Rose finishes defining her needs in terms of prototyping, she reports them by com-
pleting a simple form in which she adds a textual description of them using well-known
user stories.

5.2 The product owner verify and prioritize the requirement

User stories are automatically assigned to a specific list on the Kanban board of the product
owner. There he can see the requirement’s textual description as well as a screenshot of the
mockup. As shown in Fig. 10, from his board, the product owner will be able to verify and
prioritize the resolution of the requirements.

It’s worth noting that the product owner can resume the mockup created by Rose at this
point in the process by clicking on the Kanban card details. This would allow him to evolve
or adjust the required Mockplug mockup as he sees fit using his own browsing session. In
this case, the Rose need was validated and then accepted by simply dragging and dropping
it onto the IT Team board’s TODO list. At that time, the web developers are notified in their
development environment.

5.3 Augmenting the context of the developer task

On the developer’s side, all the previously described information becomes really impor-
tant: the resulting DOM tree on the original Rose browser session, all the data about her
story, including annotations, widgets, and their respective properties, and the URL where
the requirement was prototyped.

As part of it work, it has been developed an experimental extension for the Visual Stu-
dio Code environment [39] to support our approach from the developer’s point of view.
Figure 11 shows a development session where the developer, through the main menu of
the extension, has started solving the requirement mentioned above, which is shown to the
developer on his right.

Fig. 11 WAMRI Tool Integrated on Visual Studio IDE

11807Multimedia Tools and Applications (2023) 82:11793–11817



Fig. 12 WAMRI Task Outline

In the rapid development iterations approach proposed, it was found important to think
about the development contexts, as augmented contexts of development tasks. It can be seen
in Fig. 12, how the extension is based on the information of the selected requirement to
infer, through its WAMRI Outline component, which files probably need to be modified.
This association allows the developer to have at hand the file(s) involved in each of the tasks
that he must face when he selects the task on which he is going to work. Even more, as can
be seen in the Fig. 12, the developer has opened one of the files to edit it, and the cursor
was automatically positioned where the HTML file has an element of id “SynonymsToRe-
solve”. This action could carry out due to the information obtained from the augmented
web mockup (relevant part of the corresponding DOM tree is showing in Fig. 9). There, this
particular instance of the web augmentation metamodel, Component A, were used by the
extension to request the related components to the Component C, the web service extension.

On the developer side all requirement data can be conveniently used to support the devel-
oper work and carry out his task with new suggestions that now can be automatically done
by the tooling. For example, Fig. 13 shows how through the contextual editing menu, the
developer can use the tool options to incorporate the base code of the widgets present in the
web augmentation mockup.

Finally, when the requirement is resolved, developers release a new version of the appli-
cation for review and, from their developer environment, move the card to the TO-REVIEW
list on the kanban board so it can be noticed and reviewed by the product owner.

Fig. 13 WAMRI Commands in the Context Editor Menu

11808 Multimedia Tools and Applications (2023) 82:11793–11817



5.4 Behind the scenes

Through Component A, all the information captured when the end-user was prototyping
his requirement was collected from some part of the web application and contains the end-
user annotations, the widgets with their properties, a snapshot of the browser tab that the
end-user has worked on, as well as other complementary information about the application
part where the requirement was prototyped. That is, information about the AJAX requests
that may have occurred, the URL of the CSS files and rules of the elements selected, the
Javascript files involved, etc.

On Component A we have carried out experiments with very positive results [15, 16]
through its MockPlug implementation. In these experiments, participants specified their
requirements through web augmentation mockups, and through traditional requirements
specification techniques. As result, participants reported different levels of perceived dif-
ficulty. Through Component A, although the perceived difficulty was considered mostly
normal, it was considered between easy and very easy many more times than using tradi-
tional techniques. Participants also reported that using this component, they spent half the
time specifying their requirements compared to traditional techniques.

While the end-user finishes defining his requirement with these facilities, all the informa-
tion of the web augmentation mockup, as well as the information about the AJAX requests
that may have occurred, the URL of the CSS files and rules of the elements selected, the
Javascript files involved, etc. All of that information is attached to the user story in the
Kanban board using Trello’s REST API [3].

Using this Trello REST API with the appropriate security keys from the development
environment, the pending resolution user stories are listed, and with all the previously
described information, a small but very important piece of the approach comes into play,
which is the extension of the web framework to support our approach (component C in
Fig. 3).

This extension of the web application framework takes information from the require-
ment and returns information from the software project probably related to it: source files,
component names, lines of code where they are defined, HTML templates, etc.

Over this component, it have been carried out a series of tests into two scenarios: in
the previously described one, on the Django Framework, and with another web application
that we have developed on the Flask Framework [42]. The data obtained from these test is
published at FigShare [18].

These tests consisted of verifying that the suggested components of the application cor-
responded to those that should have been for different requirements laid out on the web
apps. Based on the collected information, it can be stated that it was always possible to

Table 1 Component C test results in Django an Flask Frameworks

Property/Framework Django Flask

Found source file 100% of times 100% of times

Found line in source file 100% of times 100% of times

Found all HTML template files 100% of times 100% of times

Found all widget lines 40% of times 50% of times

Found all widget container lines 95% of times 100% of times

Found used domain classes 100% of times No applicable

11809Multimedia Tools and Applications (2023) 82:11793–11817



find the main source files as well as the lines of code where the main functions and meth-
ods are defined, which are the functions where the framework inversion of control happens.
Also was always possible to find the HTML templates that the developer should modify to
resolve the requirement. This is resumed in Table 1.

It wasn’t always possible to figure out which lines of the HTML template corresponded
to the defined widgets in the mockup. This is because widgets are frequently dynamically
generated on the DOM Tree in the user browser and are not textually present in the HTML
template file. However, in most cases, it was possible to find a container for the widgets,
which did make it possible to position the developer between the most relevant lines of the
template to resolve the requirement.

5.5 The example in contrast

A summary of how the approach has affected the actors involved in the example scenario
concludes this section. Table 2 shows which activities were done in a new way using the
approach and associated tools.

It stands out that the end-user never had to change her attention from the application she
was using to specify her needs. In addition, she communicated without knowing it with all
the IT team involved, without having to send emails to any of them, and without having to
verbatim describe any part of the application. The product owner did not have to interpret
loose emails. Finally, when given the task to developers, they did not have to resort to their
memory to know which files were related to that part of the application source code, nor
did they have to perform text searches to find parts of the most important files related to the
part of the system that should be modified.

6 Discussion

As it have been previously exposed, this work has two clearly defined fundamental pil-
lars: the definition of requirements and their integration into the development environment
through task contexts.

Concerning the use of RAMs, it is important to distinguish that the proposed approach
deals with functional requirements in web applications that are already deployed since,
the use of these web mockups is built over the application itself. This sets it apart from
approaches like Mockup-driven development proposed in [49] where the prototyping work
needs to be done from scratch using traditional mockup tools. We strongly believe that
our new type of mockups make it easier to use these visual forms for the definition of
requirements from the point of view of communication with the stakeholders, in stages
in which modeling in methodological terms is much more expensive to carry out and to
implement keeping aligned with the evolution of the applications [40, 60].

On the other hand, in contrast to end-user approaches such as Crowdmock [16] the main
difference is that in those the end-users solve their objectives without the intervention of the
developers of the web applications. In the present work, what is intended is that stakeholders
have the possibility of communicating with the developers in a visual, agile, traceable way
and from which it is possible to take real advantage by being able to intervene in the own
development environment where the developer performs his tasks.

The main differences between MDD, Crowdmock, and WAMRI are summarized in
Table 3.

11810 Multimedia Tools and Applications (2023) 82:11793–11817



Ta
bl
e
2

A
ct

iv
iti

es
in

th
e

ex
am

pl
e

af
fe

ct
ed

by
th

e
ap

pr
oa

ch

A
ct

iv
ity

A
ct

or
T

ra
di

tio
na

lA
gi

le
A

pp
ro

ac
h

W
A

M
R

I
A

pp
ro

ac
h

R
eq

ui
re

m
en

td
ef

in
iti

on
E

nd
-u

se
r

U
se

r
st

or
y,

te
xt

ua
ld

es
cr

ip
tio

n,
tr

ad
iti

on
al

m
oc

ku
p

M
oc

kp
lu

g
m

oc
ku

p

R
eq

ui
re

m
en

tc
om

m
un

ic
at

io
n

E
nd

-u
se

r
E

-m
ai

l
M

oc
kp

lu
g

U
se

r
st

or
y

fo
rm

R
eq

ui
re

m
en

te
lic

ita
tio

n
Pr

od
uc

t-
ow

ne
r

E
-m

ai
l

T
re

llo

R
eq

ui
re

m
en

tp
la

ni
fi

ca
tio

n
Pr

od
uc

t-
ow

ne
r

T
re

llo
T

re
llo

an
d

V
S

C
od

e

Fi
nd

fi
le

s
to

be
m

od
if

ie
d

D
ev

el
op

er
R

eq
ui

re
m

en
ta

nd
so

ur
ce

co
de

an
al

ys
is

V
S

C
od

e,
W

A
M

R
I

ex
te

ns
io

n

Fi
nd

lin
es

to
be

m
od

if
ie

d
D

ev
el

op
er

So
ur

ce
co

de
an

al
ys

is
V

S
C

od
e,

W
A

M
R

I
ex

te
ns

io
n

Fi
nd

co
m

po
ne

nt
im

pl
ic

at
ed

D
ev

el
op

er
E

xp
lo

re
So

ur
ce

co
de

pr
oj

ec
t

V
S

C
od

e,
W

A
M

R
I

ex
te

ns
io

n

11811Multimedia Tools and Applications (2023) 82:11793–11817



Ta
bl
e
3

M
ai

n
di

ff
er

en
ce

be
tw

ee
n

ap
pr

oa
ch

’s

Fe
at

ur
e/

A
pp

ro
ac

h
M

D
D

C
ro

w
dM

oc
k

W
A

M
R

I

R
eq

ui
re

m
en

td
ef

in
ed

by
E

nd
us

er
,D

ev
el

op
er

E
nd

us
er

E
nd

us
er

R
eq

ui
re

m
en

ta
rt

if
ac

t
T

ra
di

tio
na

lm
oc

ku
p,

SU
I

M
od

el
,T

ag
s

R
un

na
bl

e
au

gm
en

ta
tio

n
M

oc
ku

p
R

un
na

bl
e

au
gm

en
ta

tio
n

M
oc

ku
p

Pr
io

ri
tiz

ed
an

d
va

lid
at

ed
by

E
nd

us
er

,D
ev

el
op

er
U

se
r

co
m

m
un

ity
Pr

od
uc

to
w

ne
r

Im
pl

em
en

te
d

by
D

ev
el

op
m

en
tt

ea
m

E
nd

us
er

D
ev

el
op

m
en

tt
ea

m

A
pp

lic
ab

le
to

W
eb

ap
pl

ic
at

io
ns

fr
om

sc
ra

tc
h

E
xi

st
in

g
w

eb
ap

pl
ic

at
io

ns
E

xi
st

in
g

w
eb

ap
pl

ic
at

io
ns

T
he

or
et

ic
al

pi
lla

rs
M

od
el

dr
iv

en
,A

gi
le

C
ro

w
ds

ou
rc

in
g,

W
eb

A
ug

m
en

ta
tio

n,
E

nd
U

se
r

Pr
og

ra
m

m
in

g
Ta

sk
fo

cu
se

d
pr

og
ra

m
m

in
g,

W
eb

au
gm

en
ta

tio
n,

A
gi

le

11812 Multimedia Tools and Applications (2023) 82:11793–11817



Other authors [10] have observed that during a working day, the developer makes mod-
ifications to the source code that are related to more than one particular task, and proposes
the automatic detection [9, 10] of the task that are working on. Attending the same problem
approaches like [51] starts from a set of source components of interest and then enriches the
task contexts automatically from the software project structure using its hierarchy. In the
case of approaches like [2], the contexts are enriched from textual descriptions of the task,
focusing on the fact that developers often use representative words for the names of classes
and methods in the source code.

Instead, our approach proposes creating the tasks contexts from the definition of the
requirement in visual as well as textual terms, and through these particular kinds of mockup
indicate to the developer in his own work environment a few clicks away which files he
will have to probably modify. Being that possible because the stakeholder has selected parts
of the system when making the mockup. We believe that this can be a great contribution.
Since, in traditional task-oriented approaches, when these tasks originate, there is no precise
information on which files to work on. Either the task context is inferred as in the mentioned
approaches, or the developer generates the context while he does progress in the resolution
of the requirement by opening, modifying, and closing files of the development project in
question. The recent bibliography highlights this disadvantage of manual task creation (on
which the context is to be recorded) as an issue to be resolved [47].

There are numerous approaches concerning the problem raised that account for its rel-
evance. Developers perform many different tasks per day, generating many task context
switches [22]. In each of these context changes, the developer usually must read the doc-
umentation, the emails, the parts of the web, and the systems themselves [32]. There are
recent studies [56] on the effects of high levels of developer stress on the quality of the prod-
ucts developed and how the aforementioned task-oriented approaches and others for time
dimension administration such as the Pomodoro technique [21, 55], help to combat such
effects.

In [44] Murphy describes a future and hypothetical scenario in which a developer, Jes-
sica, is assisted in solving a task: An assistant prioritizes the requirements that were assigned
to him by e-mail. After asking for the next action to be carried out, the assistant is in charge
of loading the necessary environment to start coding. After solving the issue, the tasks of
verification, measurement of results, and deployment of the new feature are carried out by
the assistant. This way then allows this hypothetical developer to work without ever losing
the central focus of her assigned task. Thus, by combining tools and recording interactions,
it is possible to work on the context as a first-class element. Now, our approach can be
thought of as an approximation to this ideal case enunciated, taking advantage of the power
of the augmented mockups. In our case, with the augmented mockup accompanied by a user
story, the developer receives a new request in her IDE since the request has been added to
their dashboard. The developer, having a notion of how to respond to the change, tells the
IDE that she wants to work on the change request. The IDE loads the user story workspace,
the components involved and leaves the cursor on the piece of software involved in the
requested change. Jessica at this point never lost focus on the main task.

7 Conclusions and future work

The web is an incredibly massive and dynamic software platform. Year after year from its
standards new functionality is incorporated, and today, it is really very difficult to imagine
a future where the web may not be relevant. And, if that future existed, after more than 20

11813Multimedia Tools and Applications (2023) 82:11793–11817



years of global level evolution, the legacy would be immeasurable. It is not at all risky to
say that we will live using and evolving the web for many more years. Even more, new
generations of developers with skills increasingly different from those of precursors will
have to deal with an immense legacy. We believe that developer tools play a very important
role in this regard and this work presents a new way of incorporate prototypes into the
development process of existing web applications. This facilitate and speed up the exploring
of the source files related to a requirement in a task-focused development way.

In technical terms, web applications are usually developed over some framework for the
development of these kind of software and, about these type of frameworks, there is also
a great variety and they are technically very diverse. Different programming languages are
used and different architecture patterns such as MVC, MVT, MVP, MVVM, are adopted.
And, as if the diversity is not enough, the most modern to be more comprehensive, use their
own palette of components rather than simple HTML elements.

So in modern web front-end frameworks, we have identified situations where the ability
to refer to a part of the code according to the intervened DOM element needs a little more
attention. In these frameworks, a conversion of the code that the developer writes is carried
out to generate the corresponding HTML, CSS and Javascript files. This allows developers
to generate separate units, usually called components, that contain the graphical interface
design plus its necessary logic. These components are then combined to integrate the entire
application. This environment opens the doors to the challenge of developing an interpreter
that allows dialogue between the HTML generated by the framework and the corresponding
component highlighted here, in the context of the approach presented.

The proposed approach is fundamentally based on the integration of development tools.
Some of the types of tools involved are well known and conceptually validated as is the
case on tools for task-focused development. In the case of MockPlug that is used for the
definition of the web augmentation mockups, we have carried out several experiments with
very encouraging results. In previous work [16], we showed that using these techniques for
the definition of requirements has a direct and positive impact on the obtained software
product. In these experiments, participants who played the stakeholder role found it easier
to express their requirements in this way, defining them in half the time they spent with
traditional techniques.

Concerning the WAMRI extension for VisualStudio Code, it should be noted that there
are too many options in terms of technologies, and we have tried to take as a guiding cri-
terion the incorporation of popular technologies in our experimental tools. In that sense,
VisualStudio Code is one of the most widely used IDES today and several thousand exten-
sions are available in its extension market. Similarly, Django, the Web Framework we’ve
been experimenting with so far, is a very popular and mature framework. Soon we hope to
be able to reach a good level of usability in our most recent tools. That will allow us to carry
out new experiments over more applications and frameworks and get new feedback as well
as discover new alternatives for improvements and challenges.

Acknowledgements We would like to thank to Matı́as, Ian, Gastón and Nicolás, who has collaborated with
us in the Trello REST API utilization and the migration of a part of MockPlug tool to modern JS.

Author Contributions Conceptualization, L.G.M., L.A. and D.F.; WAMRI Extension software, L.G.M.;
Mockplug Extension software D.F.; investigation, All.; writing—original draft preparation, L.G.M., L.M.
and D.F.; writing—review and editing, All.; supervision, G.R., D.F; project administration, D.F.;

11814 Multimedia Tools and Applications (2023) 82:11793–11817



Data Availability The datasets generated during and/or analysed during the current study are available in
the Figshare repository.

https://doi.org/10.6084/m9.figshare.20060363
https://doi.org/10.6084/m9.figshare.19096781

Declarations

Competing interests All authors declare that they do not have any competing financial interests nor any
personal relationships that could seem to have influenced the presented work.

Conflict of Interests All authors declare that they have no conflicting interests.

References

1. Almonacid S, Klagges MR, Navarro P, Morales L, Pazos B, Puigbó AC, Firmenich D (2019) Mobile
and wearable computing in patagonian wilderness. In: Conference on cloud computing and big data,
pp 137–154. Springer

2. Antoniol G, Canfora G, De Lucia A, Merlo E (1999) Recovering code to documentation links in oo
systems. In: Sixth working conference on reverse engineering (cat. No. PR00303), pp 136–144. IEEE

3. Atlassian Trello REST API. https://developer.atlassian.com/cloud/trello/rest/api-group-actions/,
Accessed 03 Feb 2022

4. Beynon-Davies P, Holmes S (1998) Integrating rapid application development and participatory design.
IEE Proc-Softw 145(4):105–112

5. Biniok J Tampermonkey. https://www.tampermonkey.net/, Accessed 03 Feb 2022
6. Bouvin NO (1999) Unifying strategies for Web augmentation. In: Proceedings of the tenth ACM con-

ference on hypertext and hypermedia: returning to our diverse roots returning to our diverse roots -
HYPERTEXT ’99, pp 91–100. http://portal.acm.org/citation.cfm?doid=294469.294493. Accessed 03
Feb 2022

7. Bradley N, Fritz T, Holmes R (2018) Context-aware conversational developer assistants. In: 2018
IEEE/ACM 40th international conference on software engineering (ICSE), pp 993–1003. IEEE

8. Chrome Developer extensions. https://developer.chrome.com/docs/extensions/, Accessed 03 Feb 2022
9. Coman I, Sillitti A (2009) Automated segmentation of development sessions into task-related subsec-

tions. Int J Comput Appl 31(3):159–166
10. Coman ID, Sillitti A (2008) Automated identification of tasks in development sessions. In: 2008 16th

IEEE international conference on program comprehension, pp 212–217. IEEE
11. DarkReader Browser extension. https://darkreader.org/, Accessed 03 Feb 2022
12. Dı́az O (2012) Understanding web augmentation. In: International conference on web engineering,

pp 79–80. Springer
13. Dı́az O, Arellano C (2015) The augmented web: rationales, opportunities, and challenges on browser-

side transcoding. ACM Trans Web (TWEB) 9(2):1–30
14. Eclipse Foundation Eclipse IDE. https://www.eclipse.org/eclipseide/, Accessed 03 Feb 2022
15. Firmenich D, Firmenich S, Rivero JM, Antonelli L (2014) A platform for web augmentation require-

ments specification. In: International conference on web engineering, pp 1–20. Springer
16. Firmenich D, Firmenich S, Rivero JM, Antonelli L, Rossi G (2018) Crowdmock: an approach for

defining and evolving web augmentation requirements. Requir Eng 23(1):33–61
17. Firmenich D, Firmenich S, Rossi G, Wimmer M, Garrigós I, González-Mora C (2022) Engineering web

augmentation software: a development method for enabling end-user maintenance. Inf Softw Technol
141:106735

18. Firrmenich D WAMRI component c test results. https://doi.org/10.6084/m9.figshare.19096781,
Accessed 03 Feb 2022

19. Fowler M, Highsmith J et al (2001) The agile manifesto. Softw Develop 9(8):28–35
20. Gasparic M, Murphy GC, Ricci F (2017) A context model for ide-based recommendation systems. J Syst

Softw 128:200–219
21. Gobbo F, Vaccari M (2008) The pomodoro technique for sustainable pace in extreme program-

ming teams. In: International conference on agile processes and extreme programming in software
engineering, pp 180–184. Springer

11815Multimedia Tools and Applications (2023) 82:11793–11817

https://doi.org/10.6084/m9.figshare.20060363
https://doi.org/10.6084/m9.figshare.19096781
https://developer.atlassian.com/cloud/trello/rest/api-group-actions/
https://www.tampermonkey.net/
http://portal.acm.org/citation.cfm?doid=294469.294493
https://developer.chrome.com/docs/extensions/
https://darkreader.org/
https://www.eclipse.org/eclipseide/
https://doi.org/10.6084/m9.figshare.19096781


22. González VM, Mark G (2004) “Constant, constant, multi-tasking craziness” managing multiple working
spheres. In: Proceedings of the SIGCHI conference on Human factors in computing systems, pp 113–120

23. Google Chrome web store. https://chrome.google.com/webstore/, Accessed 03 Feb 2022
24. Greasespot The weblog. https://www.greasespot.net/, Accessed 03 Feb 2022
25. Greasyfork Safe an useful user scripts. https://greasyfork.org/, Accessed 03 Feb 2022
26. Holmes R, Walker RJ, Murphy GC (2005) Strathcona example recommendation tool. In: Proceedings of

the 10th European software engineering conference held jointly with 13th ACM SIGSOFT international
symposium on foundations of software engineering, pp 237–240

27. Hummel O, Janjic W, Atkinson C (2008) Code conjurer: pulling reusable software out of thin air. IEEE
Softw 25(5):45–52

28. Kersten M (2007) Focusing knowledge work with task context. Ph.D. thesis, University of British
Columbia

29. Kersten M, Murphy GC (2005) Mylar: a degree-of-interest model for ides. In: Proceedings of the 4th
international conference on Aspect-oriented software development, pp 159–168

30. Kersten M, Murphy GC (2006) Using task context to improve programmer productivity. In: Proceedings
of the 14th ACM SIGSOFT international symposium on foundations of software engineering, pp 1–11

31. Kersten M, Murphy GC (2006) Using task context to improve programmer productivity. In: Proceedings
of the 14th ACM SIGSOFT international symposium on foundations of software engineering, pp 1–11

32. Kersten M, Murphy GC (2015) Reducing friction for knowledge workers with task context. AI Mag
36(2):33–41

33. Luo L, Schäf M, Sanchez D, Bodden E (2021) Ide support for cloud-based static analyses. In: Proceed-
ings of the 29th ACM Joint meeting on european software engineering conference and symposium on
the foundations of software engineering, pp 1178–1189

34. Ma X, Xu H, Gao H, Bian M (2021) Real-time multiple-workflow scheduling in cloud environments.
IEEE Trans Netw Serv Manag 18(4):4002–4018

35. Maalej W (2009) Task-first or context-first? Tool integration revisited. In: 2009 IEEE/ACM International
conference on automated software engineering, pp 344–355. IEEE

36. Maalej W, Ellmann M, Robbes R (2017) Using contexts similarity to predict relationships between tasks.
J Syst Softw 128:267–284

37. Macaulay L (1996) Requirements for requirements engineering techniques. In: Proceedings of the
second international conference on requirements engineering, pp 157–164. IEEE

38. Melo G, Alencar P, Cowan D (2021) A cognitive and machine learning-based software develop-
ment paradigm supported by context. In: 2021 IEEE/ACM 43rd International conference on software
engineering: new ideas and emerging results (ICSE-NIER), pp 11–15. IEEE

39. Microsoft Visual Studio API. https://code.visualstudio.com/api, Accessed 03 Feb 2022
40. Molina-Rı́os J, Pedreira-Souto N (2020) Comparison of development methodologies in web applications.

Inf Softw Technol 119:106238
41. Moore JM (2003) Communicating requirements using end-user gui constructions with argumentation.

In: 18th IEEE International conference on automated software engineering, 2003. Proceedings, pp 360–
363. IEEE

42. Morales L, Navarro P, Cintas C, Gonzalez-Jose R, Ramallo V, Delrieux C (2021) Bulsarapp: interactive
visual analysis for surname trend exploration. IEEE Computer Graphics and Applications

43. Mozilla Browser extensions. https://developer.mozilla.org/es/docs/Mozilla/Add-ons/WebExtensions,
Accessed 03 Feb 2022

44. Murphy GC (2019) Beyond integrated development environments: adding context to software devel-
opment. In: 2019 IEEE/ACM 41st International Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER), pp 73–76. IEEE

45. Muşlu K, Brun Y, Holmes R, Ernst MD, Notkin D (2012) Speculative analysis of integrated development
environment recommendations. ACM SIGPLAN Not 47(10):669–682

46. Mylyn Task and application lifecycle management. https://www.eclipse.org/mylyn/, Accessed 03 Feb
2022

47. Portugal I, Oliveira T, Alencar P, Cowan D (2020) Mylynsdp—process-aware artifact filtering based on
interest. J Braz Comput Soc 26(1):1–35

48. Rashid A, Meder D, Wiesenberger J, Behm A (2006) Visual requirement specification in end-user
participation. In: 2006 First international workshop on multimedia requirements engineering (MERE’06-
RE’06 Workshop), pp 6–6. IEEE

49. Rivero JM, Grigera J, Rossi G, Luna ER, Montero F, Gaedke M (2014) Mockup-driven development:
providing agile support for model-driven web engineering. Inf Softw Technol 56(6):670–687

50. Robbes R, Lanza M (2010) Improving code completion with program history. Autom Softw Eng
17(2):181–212

11816 Multimedia Tools and Applications (2023) 82:11793–11817

https://chrome.google.com/webstore/
https://www.greasespot.net/
https://greasyfork.org/
https://code.visualstudio.com/api
https://developer.mozilla.org/es/docs/Mozilla/Add-ons/WebExtensions
https://www.eclipse.org/mylyn/


51. Robillard MP (2005) Automatic generation of suggestions for program investigation. In: Proceedings of
the 10th European software engineering conference held jointly with 13th ACM SIGSOFT international
symposium on foundations of software engineering, pp 11–20

52. Rodrı́guez P, Mäntylä M, Oivo M, Lwakatare LE, Seppänen P, Kuvaja P (2019) Advances in using agile
and lean processes for software development. In: Advances in computers, vol 113, pp 135–224. Elsevier

53. Rodrı́guez P, Markkula J, Oivo M, Turula K (2012) Survey on agile and lean usage in finnish soft-
ware industry. In: Proceedings of the 2012 ACM-IEEE international symposium on empirical software
engineering and measurement, pp 139–148. IEEE

54. Röthlisberger D, Nierstrasz O, Ducasse S (2009) Autumn leaves: curing the window plague in ides.
In: Proceedings of the 16th working conference on reverse engineering (WCRE 2009). IEEE Computer
Society

55. Ruensuk M (2016) An implementation to reduce internal/external interruptions in agile software devel-
opment using pomodoro technique. In: 2016 IEEE/ACIS 15th international conference on computer and
information science (ICIS), pp 1–4. IEEE

56. Sarkar S, Parnin C (2017) Characterizing and predicting mental fatigue during programming tasks. In:
2017 IEEE/ACM 2nd international workshop on emotion awareness in software engineering (SEmotion),
pp 32–37. IEEE

57. Schön EM, Thomaschewski J, Escalona MJ (2017) Agile requirements engineering: a systematic
literature review. Comput Stand Interfaces 49:79–91

58. Vieira RD, Farias K (2020) Cognide: a psychophysiological data integrator approach for visual studio
code. In: Proceedings of the 34th Brazilian symposium on software engineering, pp 393–398

59. Viriyakattiyaporn P, Murphy GC (2010) Improving program navigation with an active help system.
In: Proceedings of the 2010 conference of the center for advanced studies on collaborative research,
pp 27–41

60. Whittle J, Hutchinson J, Rouncefield M (2013) The state of practice in model-driven engineering. IEEE
Softw 31(3):79–85

61. Zhu Y, Zhang W, Chen Y, Gao H (2019) A novel approach to workload prediction using attention-based
lstm encoder-decoder network in cloud environment. EURASIP J Wirel Commun Netw 2019(1):1–18

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

11817Multimedia Tools and Applications (2023) 82:11793–11817


	Development iterations based on web augmentation and context tasks
	Abstract
	Introduction
	Background: web augmentation and runnable augmentation mockups
	Related works: tasks and context in software development
	WAMRI
	WAMRI in a nutshell
	General characteristics of the approach
	Steps of the approach
	Conceptualization of principal components

	Examples and tool support
	The end-users define their needs
	The product owner verify and prioritize the requirement
	Augmenting the context of the developer task
	Behind the scenes
	The example in contrast

	Discussion
	Conclusions and future work
	References




