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Abstract
Skin cancer is a major public health concern and the most common type of cancer among
the other types. Reliable automated classification systems will provide clinicians with
great help to detect malignant skin lesions as quickly as possible. Recently, deep learning-
based approaches have efficiently outperformed other conventional machine learning
models in medical image classification tasks. In this study, a novel computer-aided
approach is designed for Skin Lesion Detection by creating an Ensemble of Deep
(SLDED) models. More specifically, we initially performed a modified faster R-CNN
using VGGNet feature extractor on ISIC archive database, including 4668 skin lesion
images for lesion localization, and we obtained a mean average precision (mAP) of 0.96.
Then we fused four different convolutional neural networks (CNNs) into one framework
to obtain high classification accuracy. Moreover, a weighted majority voting method is
proposed to aggregate the final decision of each individual voter. We evaluate our
experimental classification results on 934 and 200 images from ISIC and PH2 test data.
We achieved the average accuracy of 97.1% and 96%, Area under receiver operating
characteristics curve (AUC) of 98.6% and 98.1%, precision of 87.1% and 90.2%, recall of
86.7% and 85.4% for ISIC and PH2 test data, respectively. As another objective evalu-
ation, we have tested our proposed procedure on official test set of 2016 and 2017
International Symposium on Biomedical Imaging (ISIB) challenges. It outperforms the
results of other proposed frameworks that have been published in those challenges. The
results demonstrate that our proposed SLDED method is a meaningful approach to
classify four different skin lesions with a high accuracy despite the lack of access to
expensive computational equipment.
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1 Introduction

Skin cancer is one of the main public health problems that each year detects about 123 million
new cases worldwide [29]. Melanoma is the deadliest type among various skin cancers, with a
dramatic increasing incidence rate [61]. In 2019, approximately 96,480 people with melanoma
were expected in the United States, and one estimated in five people being diagnosed with skin
cancer [17, 59].

The human skin is a structured tissue, including the epidermis, dermis, and
hypoderm. The epidermis has melanocytes that can produce melanin, and under
certain conditions, such as ultraviolet radiation, it generates melanin at an extremely
abnormal rate [29]. Malignant tumors are caused by an atypical growth of melanocyte,
which is known as melanoma. Melanoma begins in melanocytes to make a pigment as
melanin, but despite other skin cancers, it spreads rapidly among other tissues
(metastasize) [58].

The annual cost of skin cancer treatment in the USA is estimated at $ 8.1 billion, and
it is still rising. In order to enhance diagnostic accuracy and diminish health care
expenses, there is a high amount of stimulus in developing the diagnosis of skin cancer,
especially for melanoma [47]. A common diagnosis examination of a skin cancer
diagnosis is a Biopsy method, an invasive and unpleasant procedure. It has a great deal
of time for the patient as well as a physician [37]. Without extra technological support,
dermatologists have a 65–80% accuracy in melanoma detection [3].

A non-invasive method that can aid in diagnosing skin cancer by providing high-resolution
skin images is Dermoscopy. It is a physical checkup method based on light radiation and
immersion in oil, providing a beneficial solution for visual examination of the underlying skin
structure [36]. Dermoscopy provides an excellent opportunity for dermatologists to collect
magnified images with a high resolution. This technology improves the visual quality of the
collected data drastically [52].

In 1992, the potential advantages of employing digital imaging to detect skin-
related diseases were pointed out [64]. In the work of Moss et al., an expert system
has been proposed, which has been based on analysis of the texture features extracted
from Fourier transform [55]. Chang et al. have proposed a pipeline including pre-
processing the images, extracting 91 features describing the tissue shape, color, and
texture; and finally using a Support Vector Machine (SVM) to classify the images
[18]. Some studies [1, 4, 15, 35] have classified skin cancer images according to
ABCD rules. The features have described the asymmetry (A), border(B), color(C), and
differential structure(D). They have been computed total dermoscopy score (TDS)
from A, B, C, and D features and classified thembased on their TDS. All of the
mentioned studies in this paragraph are based on extracting hand-crafted features from
a skin lesion. Additionally, some other studies [16, 65] have extracted other traditional
hand-crafted features from the images in order to classify the skin lesions. However,
the discriminative power of hand-crafted features is low, and they are computationally
intensive.

The first step in skin lesion images’ classification is lesion localization and segmentation of
the image [54]. Due to a wide variety of lesions, detecting and segmenting them is still a
challenging issue, and therefore many studies have been conducted in this area [24, 27, 57,
62]. In computer aided diagnosis (CAD) system, a better quality can be achieved if the
classification task is done on some areas of the images, including the lesions, known as a

10576 Multimedia Tools and Applications (2023) 82:10575–10594



region of interest (ROI). This is due to the extraction of a set of features that can be a great
indicator of the lesion [7, 14]. In deep learning methods to prevent feature maps’ saturation,
preprocessing of images is prior to the classification task [5]. In a study by Badrinarayan et al.,
they used a SegNet autoencoder-based approach to preprocessing their images [6]. In another
study by Bi et al., a fully convolutional network (FCN) method was used for lesion detection
[10]. Also, Attia et al. proposed a combination of CNNs and recurrent neural networks (RNNs)
for lesion detection and segmentation [5].

Classification based on computer vision pipelines and feature engineering is very compli-
cated and time-consuming. It requires specialized knowledge to choose and design the most
appropriate feature extraction methods. Moreover, the development of these models should be
robust against the diversity of lesions as well as intra-classes variations and inter-class
similarities [68]. The previously proposed automated image processing techniques for skin
cancer diagnosis achieved a high classification owing to the employment of recent emerging
deep learning models [11–13, 57].

Deep learning comprises a collection of machine learning algorithms called deep neural
networks (DNNs), which had enormous achievements in the processing of real data, such as
image, text, as well as sound in the past decade [41]. In 2012, Krizhevsky proposed a
convolution neural network (CNN) to make a significant leap in the accuracy of image
detection tasks [40]. The overall success and excellence of CNNs have been shown in a wide
range of computer vision tasks [9]. In recent years, CNN architectures, such as GoogleNet
[66], ResNet [30], ResNeXt [69] VGGNet [56], which are the most popular pre-trained
models, have been proposed for the classification of natural images.

After building and deploying GPU cards with high computing power at affordable prices in
recent years, several methods based on CNNs have been eased for the processing of skin
cancer images [24, 29, 32, 57, 68, 70]. Some of the most recent studies, which have applied
CNNs to classify skin lesions are shown in Table 1. In the study by [44], they have used pre-
trained VGGNet architecture and transfer learning paradigm to classify skin lesion images.
One of the limitations to the transfer learning technique is that they can achieve good
performance when a target problem’s data content is similar to the pre-trained model’s trained
data. To the best of our knowledge, the existing pre-trained models do not include sufficient
skin lesion images. They can be trained from scratch to address this issue while it is time-
consuming and suffers from high computational volume.

According to the results of studies mentioned above, deep models, if train with enough
data, can show better accuracy and can aid the dermatologists in decision making with higher
confidence and accuracy, such as the study by Esteva et al. [24]. However, one of the main
limitations of deep learning methods in medical imaging is the lack of sufficient training data
required to provide the model with high accuracy, especially in images with soft tissues.
Therefore, regarding the small number of available medical images, an individual CNN
possibly cannot extract all the discriminative features to obtain a high classification accuracy.

In this work to tackle the mentioned problems, we propose a novel computer-assisted
approach by creating an ensemble of four different CNNs. Our main contributions lie in four-
folds, including:

The main contributions of this study lie in four-folds, including:
– Designing a novel ensemble-based method (SLDED) by inspiring from the most

popular pre-trained architectures which were especially used in skin cancer detection.
– Proposing a new VGG-based faster R-CNN approach and using Inception-ResNet in

region proposal network (RPN) for skin lesion segmentation.

10577Multimedia Tools and Applications (2023) 82:10575–10594



Ta
bl
e
1

Su
m
m
ar
iz
in
g
th
e
pr
ev
io
us

st
ud
ie
s
of

sk
in

le
si
on

cl
as
si
fi
ca
tio
n
us
in
g
de
ep

le
ar
ni
ng

St
ud
y

T
op
ic

Y
ea
r

D
at
a

M
et
ho
d

R
es
ul
ts

[1
3]

A
co
nv
ol
ut
io
na
l
ne
ur
al
ne
tw
or
k
tr
ai
ne
d

w
ith

de
rm

os
co
pi
c
im

ag
es

pe
rf
or
m
ed

on
pa
r
w
ith

14
5
de
rm

at
ol
og
is
ts
in

a
cl
in
ic
al
m
el
an
om

a
im

ag
e

cl
as
si
fi
ca
tio

n
ta
sk

20
19

12
,3
78

op
en
-s
ou
rc
e

de
rm

os
co
pi
c
im

ag
es

C
on
vo
lu
tio
na
l
ne
ur
al
ne
tw
or
k

T
he

hi
gh

se
ns
iti
vi
ty

of
92
.8
%
,C

N
N

ha
d

a
m
ea
n
sp
ec
if
ic
ity

of
61
.1
%
.

[2
2]

Sk
in

ca
nc
er

de
te
ct
io
n
by

de
ep

le
ar
ni
ng

an
d
so
un
d
an
al
ys
is
al
go
ri
th
m
s:
A

pr
os
pe
ct
iv
e
cl
in
ic
al
st
ud
y
of

an
el
em

en
ta
ry

de
rm

os
co
py

20
19

51
61

de
rm

os
co
py

an
d

no
n-
de
rm

os
co
pi
c
im

ag
es

D
ee
p
le
ar
ni
ng

an
d
so
un
d
an
al
ys
is

al
go
ri
th
m
s

T
he

A
U
C
’s
of

0.
81
4
(9
5%

C
I,
0.
79
8–
0.
83
1)

an
d
F2

-s
co
re

se
ns
iti
vi
ty

of
91
.7
%
,a

sp
ec
if
ic
ity

of
41
.8
%
,a
nd

a
po
si
tiv
e

pr
ed
ic
tiv

e
va
lu
e
of

57
.3
%
.

[4
9]

Sy
st
em

at
ic
ou
tp
er
fo
rm

an
ce

of
11
2

de
rm

at
ol
og
is
ts
in

m
ul
tic
la
ss

sk
in

ca
nc
er

im
ag
e
cl
as
si
fi
ca
tio

n
by

co
nv
ol
ut
io
na
l
ne
ur
al
ne
tw
or
ks

20
19

11
,4
44

de
rm

os
co
pi
c
im

ag
es

C
on
vo
lu
tio
na
l
ne
ur
al
ne
tw
or
k

Se
ns
iti
vi
ty

an
d
sp
ec
if
ic
ity

of
C
N
N

w
as

0.
56

an
d
0.
98

re
sp
ec
tiv

el
y

[3
3]

Su
pe
ri
or

sk
in

ca
nc
er

cl
as
si
fi
ca
tio

n
by

th
e
co
m
bi
na
tio

n
of

hu
m
an

an
d

ar
tif
ic
ia
l
in
te
lli
ge
nc
e

20
19

11
,4
44

de
rm

os
co
pi
c
im

ag
es
,

w
hi
ch

co
ns
is
t
of

fi
ve

di
ag
no
st
ic
ca
te
go
ri
es

N
ov
el
de
ep

le
ar
ni
ng

te
ch
ni
qu
es

w
er
e
us
ed

to
tr
ai
n
a
si
ng
le
C
N
N

C
on
ce
rn
in
g
th
e
m
ul
tic
la
ss

ta
sk
,t
he
ir
m
od
el

ac
hi
ev
ed

an
ac
cu
ra
cy

of
0.
83

[2
9]

Sk
in

le
si
on

cl
as
si
fi
ca
tio
n
w
ith

en
se
m
bl
es

of
de
ep

co
nv
ol
ut
io
na
l
ne
ur
al
ne
tw
or
ks

20
18

20
00

sk
in

le
si
on

fo
r
th
re
e

cl
as
s

U
si
ng

en
se
m
bl
e
of

pr
e-
tr
ai
ne
d

C
N
N
s

T
he

av
er
ag
e
ar
ea

un
de
r
th
e
R
O
C
cu
rv
e
ha
s

be
en

0.
89
1
fo
r
th
e
cl
as
si
fi
ca
tio
n
ta
sk
.

[6
8]

E
xp
er
im

en
ts
us
in
g
de
ep

le
ar
ni
ng

fo
r
de
rm

os
co
py

im
ag
e
an
al
ys
is

20
17

90
0
im

ag
es

of
IS
B
I
20
16

m
el
an
om

a
cl
as
si
fi
ca
tio

n
ch
al
le
ng
e

C
la
ss
ic
al
im

ag
e
pr
oc
es
si
ng

A
nd

D
ee
p
C
on
vo
lu
tio

na
l
N
eu
ra
l

N
et
w
or
ks

T
he

Pr
op
os
ed

ap
pr
oa
ch

im
pr
ov
es

th
e
fi
na
l

cl
as
si
fi
er

in
va
ri
an
ce

fo
r
co
m
m
on

m
el
an
om

a
va
ri
at
io
ns
,c
om

m
on

sk
in

pa
tte
rn
s,
an
d
m
ar
ke
rs

[2
4]

D
er
m
at
ol
og
is
t-
le
ve
l
cl
as
si
fi
ca
tio
n

of
sk
in

ca
nc
er

w
ith

de
ep

ne
ur
al

ne
tw
or
ks

20
17

12
9,
45
0
cl
in
ic
al
im

ag
es

in
cl
ud
in
g
of

20
32

di
ff
er
en
t

di
se
as
e

U
se
d
G
oo
gl
e’
s
In
ce
pt
io
n
v3

C
N
N

ar
ch
ite
ct
ur
e

T
he
y
ac
hi
ev
ed

A
U
C
of

0.
96
.

[7
0]

A
ut
om

at
ed

m
el
an
om

a
de
te
ct
io
n
in

de
rm

os
co
py

im
ag
es

vi
a
ve
ry

de
ep

re
si
du
al
ne
tw
or
ks

20
16

90
0
de
rm

os
co
py

im
ag
es

Fu
lly

co
nv
ol
ut
io
na
l
re
si
du
al

ne
tw
or
k
fo
r
se
gm

en
ta
tio

n
an
d
ve
ry

de
ep

re
si
du
al
ne
tw
or
ks

fo
r
cl
as
si
fi
ca
tio
n

O
bt
ai
ne
d
0.
85
5
an
d
0.
78
3
fo
r
A
C
C
an
d

A
U
C
,r
es
pe
ct
iv
el
y.

10578 Multimedia Tools and Applications (2023) 82:10575–10594



– Improving the classification results by designing a new weighted majority voting ap-
proach to aggregate each individual CNN’s vote.

– Introducing a deep-based approach for classification of skin lesions with the applicability
of training in a short time, achieving a high accuracy.

This paper is organized as follows. In Section 2, a description of the dataset as well as the main
steps of our proposed SLDED method for skin image classification, are presented. Experi-
mental results are illustrated in Section 3. Section 4 discusses the main findings. Finally,
concluding remarks are shown in Section 5.

2 Materials and methods

In this study, we aim to classify skin images of four different skin lesions by building an
ensemble of deep neural networks. The class labels are Basal cell carcinoma (BCC), malignant
melanoma (MM), nevus lesions (NV), and Seborrheic keratosis (SK).

BCC is the most commonly diagnosed skin cancer worldwide Fig. 1a This lesion type is a
typical non-aggressive cancer, and its corresponding tumors grow slowly with rarely metas-
tasize (metastatic rate < 0.1%) [63]. MM lesions have an uppermost mortality rate compared
to other skin disorders Fig. 1b Given the aggressive growth of invasive MM lesions, its early
diagnosis is a critical issue [51]. The nevus lesions Fig. 1c refers to occurring several
conditions such as neoplasm and hyperplasia in melanocytes [26]. Moreover, the lesions
labeled as SK class Fig. 1d have the highest occurrence rate among benign skin lesions,
affecting almost 83 million Americans [8].

Figure 2a describes the main steps of our proposed SLDED method. After data collection
and augmentation prior to the classification task, the lesions were segmented using the
proposed VGG-based faster R-CNN model, shown in Fig. 2b Afterward, the segmented
lesions were fed to each module of the SLDED method as input data to do feature map
extraction, illustrated in Fig. 2c Finally, by performing a weighted majority voting approach on
each module’s predicted probabilities, which were obtained from each module’s fully con-
nected layer, a final decision has been made to classify the lesion types, presented in Fig. 2d.

More details about the proposed SLDED method are described in the following
subsections.

2.1 Dataset

The images analyzed in this study are collected from the International Skin Imaging Collab-
oration (ISIC) Archive[20], which has been gathered from different melanoma detection
challenges in recent years. The total number of these images is 4668, and the number of
images labeled as BCC, MM, nevus, and SK are 583, 2131, 1535, 419, respectively. To train
and evaluate our proposed SLDED method, the data by a ratio of 8:2 has been randomly
divided into training and test sets. Therefore, the total number of training and test images are
3734 and 934 images, respectively. Additionally, 10% of the training data as a validation set is
considered to provide the model’s training process unbiased. The number of images per class
for training and test datasets is illustrated in the second and the last columns of Table 2
respectively.
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Moreover, for the sake of completeness evaluation, another dermoscopic image dataset
(PH2) with a total number of 200 skin lesion images, including 160 Nevus and 40 melanoma
images are used as another test set.

2.2 Data preprocessing

The steps of preprocessing data are described in the following subsections.

2.2.1 Data augmentation

Data augmentation is a strategy to increase the training data volume significantly. It can be
helpful to prevent deep models from being overfitted [42, 60]. Additionally, the data augmen-
tation approach is advantageous for CNNs to lead them to be more able in the extraction of

Fig. 1 Different classes of skin cancers considered in this study: a basal; b melanoma; c nevus: d seborrheic
keratosis

Fig. 2 The framework of the designed SLDED method in this study
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general features, especially when the data set is imbalanced [40]. Since the amount of data in
our study is insufficient to train the proposed SLDED approach, the data augmentation is

applied using different methods. The original images have been rotated with45
�
to45

�
(45

�
, 90

�
,

135
�
, 180

�
, 210

�
) and flipped horizontally and vertically. The second column of Table 2

illustrates the training dataset’s size after augmenting per class.

2.2.2 Lesion detection and localization

Region-based CNN (R-CNN) was first introduced by Girshick et al. [31]. R-CNN performs
object detection in two stages. In the first step, it generates independent object proposals using
a selective search method [67]. Then in the second step, after wrapping each object proposal
into constant sizes, the features are extracted to be used by a classifier and a regressor for
object detection. Despite the high accuracy of R-CNN, it also has a high computational
volume, so then, fast R-CNN was introduced to solve this problem. In fast R-CNN, instead
of convolving each wrapped area, only the whole image is convolved. As a result, a fixed
feature vector is extracted for each object proposal. Moreover, the Region of Interest (ROI)
enables fast R-CNN to use some pre-trained models as well.

R-CNN and fast R-CNN use hand-crafted models, such as selective search, to generate
object proposals. These hand-crafted methods are time-consuming, and they suffer from high
computational volume. To tackle those problems and achieve a greater accuracy, faster R-
CNN model is introduced, including two parts. This model is robust against the noises and
performs well applying on benchmark dataset. The first part includes an RPN that do the task
of generating objects and the second part is a fast R-CNN to refine the proposals. Faster R-
CNN has the ability to share the convolutional layers between RPN and fast R-CNN. As a
result, it is sufficient for the image to be passed through the convolutional layer only once.
Therefore, faster R-CNN can generate proposal objects and also refine them more quickly.
This enables us to use very deep learning networks, such as ResNet 50 and VGGNet 19, to
achieve high accuracy in object detection tasks. In the entire faster R-CNN system, the input of
fast R-CNN is completely dependent on the output of RPN, and these two modules must share
their convolutional layers with each other. As a result, in the optimization phase, the optimizer
in fast R-CNN must consider ROI according to the coordinates of predicted proposals of RPN.

After extracting the features from VGGNet, two steps have to be taken in order to form
bounding boxes. Initially, 9 anchor boxes with different sizes were generated on 3⋅3 non-
overlapped patches of each image’s feature map. Then the RPN model consisting of an
Inception-ResNet module, with 6 convolutional layers with different kernel sizes was designed
to predict the coordinates and the probability of the mentioned anchor boxes labeling them as a
lesion or normal area. This was done by labeling the anchor boxes based on the intersection

Table 2 Data distribution in training and test datasets per classes

Size of the original
training set(#images)

Size of the training set after
data augmentation(#images)

Size of the test
set(#images)

BCC 466 3728 117
Melanoma 1705 13,640 426
Nevus 1228 9824 307
SK 335 2680 84
Total images 3734 29,872 934
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over union (IOU) threshold of 0.5. In the second step, as shown in Fig. 3 each feature map of
the proposed fixed-size regions is given as fast R-CNN input; this was done by ROI pooling.

In this work, our lesion detection faster R-CNN method is based on a pre-trained model,
VGGNet 19. For the training process, we were first trained the VGGNet with our images, and
its weights were fine-tuned in order to learn the specific features of these images. The VGGNet
weights were kept constant in the next step, and the RPN and fast R-CNN weights were fine-
tuned. Then we ran the model with 100 iterations using Adam optimizer [39].

The SOFTMAX activation function in the last layer of R-CNN can predict any image area,
either a normal skin region or a lesion. Then, the greedy suppression algorithm was used to
generate the bounding box around the lesion.

2.3 Classification by an ensemble of different CNNs

2.3.1 Convolution neural network

CNN is a subset of deep learning methods that has fascinated much attention in recent years
and has been used in image recognition, such as analyzing skin medical images [38]. In
general, the main parts of CNNs are convolutional layers and subsampling parts that extract
the features’ hierarchy from input images. These layers are usually followed by fully connect-
ed layers (dense layers) and a SOFTMAX classifier. Therefore, CNNs are used for the
classification of images. The CNN architecture mainly encompasses (1) Convolutional layers,
(2) Pooling layers, as well as one or multiple (3) Fully connected layers [25, 34]:

(1) Convolutional layer: The essential capability of deep learning, notably for image recog-
nition, is due to its convolutional layers. These layers convolve the whole image using

Fig. 3 Schematic of our proposed VGG-based faster R-CNN for lesion localization. The parameters inside the
blue boxes denote the number of filters, kernel size, and stride, e.g., 32, 1 × 1, 1 means a convolutional layer
with the number of 32 filters, kernel size of 1, and stride 1
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various kernels and generate different feature maps [25]. These layers take an input
volume of sizeW1×H1×D1 and produce output volume of sizeW2×H2×D2 based on the
following Eq. (1) by adjusting the parameters K, E, S, and P:

W2 : ðW1 þ 2P � FÞ=S þ 1
H2 : ðH1 þ 2P � FÞ=S þ 1
D2 : K

ð1Þ

(2) Pooling layer: Pooling operation is used to reduce the dimensions of the output neurons
from the convolutional layer, reducing the required computational time and memory and
preventing the overfitting of the model.

(3) Fully connected layer: A fully connected layer that uses the convolutional layer’s output
to predict an image’s class.

Activity functions, which are used to get output from neurons, play an essential role in training
deep neural networks. Nowadays, one of the most frequently and most successful activation
functions is the Rectified Linear Unit (ReLU) [28], which has fast convergence ability and
prevents from exploding and vanishing gradient problem. In this work, two activation
functions are used: (1) Rectified linear unit and (2) SOFTMAX for the last layer.

(1) Rectified linear unit: After all convolution layers as well as fully connected layers, the
RELU activation function is used. Equation (2) shows this function.

f xð Þ ¼ 0; for x < 0
x; for x � 0

�
ð2Þ

Where f (x) is zero if x is less than zero, and f (x) is equal to x when x is greater than or
equals to zero.

(2) SOFTMAX: The SOFTMAX function is a more generalized logistic activation function
used for multi-class classification problems. The SOFTMAX function calculates the
probability distribution for the k output classes. Therefore, the last layer (the third layer
of fully connected) employs this function to predict the class label of the input images.
Equation (3) shows this function mathematically.

σ xð Þi ¼
exiPk
j¼1 e

xj
; for i ¼ 1; . . . ; k and x ¼ x1 . . . xkð Þ 2 R

k ð3Þ

Where x is a vector of the inputs to the output layer, and i is the index of the output
neurons. Output values of σ xð Þi lie between 0 and 1, and their sum equals 1.

2.3.2 The architecture of the proposed SLDED method

The existing models that are pre-trained on a large natural ImageNet dataset have a considerable
performance in a classification task. But to use them in areas that are not well trained, we require to
train them from scratch. However, due to their very deep architecture training them from scratch is a
very time consuming and expensive task. Consequently, on our own task, inspiring pre-trained
models, including VGGNet, GoogleNet, ResNet, and ResNeXt we developed some modules that
are a light sample of the original networks. Each of these networks has different advantages with
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various architectures; therefore, combining them provides our model with extracting more varied
features. In the following, we will describe how we used them in this work.

(a) GoogleNet module
It is first introduced by Szegedi et al. in 2015. Their proposed V1 and V2 Inceptionmodels

include 9 inception modules. The following year, they presented Inception-V4 and Inception-
ResNet with more changes compared to their previous versions. Instead of adding up more
deep layers, the GoogleNet is based on employing different kernel sizes in each layer. This is
because that the large kernels lead the model to identify global features and the smaller ones
resulting in extracting local features. In our first network, which is inspired by Google Net, we
use 5modules with kernel sizes of 1 ⋅ 1, 3 ⋅ 3, and 5 ⋅ 5 for convolutional layers as well as 3 ⋅ 3
for the pulling layer. For simplicity, we call it CNN1.

(b) VGGNet module
In a study by Simonyan et al., they proposed a deep CNN architecture called VGG.

Different versions of VGGmodel, including VGG16 and VGG19 differ only in total number
of layers with 16 and 19 convolutional layers, respectively. The main attribute of this network
is using fixed-size kernels, and the idea behind this is to reduce the number of parameters and
to improve the network training time. Accordingly, kernels with different sizes can be replaced
by several convolutional layers with the same kernel size in one block. In this work, our VGG-
based network called CNN2 includes 14 convolutional layers with kernel size of 3⋅3, 6 max-
pooling layers with kernel size of 2⋅2 and stride two.

(c) ResNet module
One of the problems with CNNs is vanishing of gradients. It is because that the CNNs lack

the ability to identify identical and straightforward feature maps, especially when the training
iteration number is large. He et al. introduced the ResNet architecture to address thementioned
problem by presenting a shortcut connection between the next layers’ input and output. As a
result, themodel can also be trained on an input with simpler featuremaps. ResNet has various
versions that are named based on the total number of layers. In our ResNet-based network
called CNN3 we employed 24 convolutional layers with a 3 ⋅ 3 filter size and stride 1 or 2
without max pulling layer. Also, we put a shortcut connection between every two or three
layers.

(d) ResNeXt module
ResNeXt is a simple, highly modularized architecture for image classification tasks, first

introduced by Xie et al. and ranked first in the ILSVRC classification competition task 2017.
ResNeXt’s architecture includes aggregated residual transformation blocks (ARTB). It
achieved better results training on ImageNet dataset compared to its ResNet counterpart.
Using ARTBs, we designed a network called CNN4 that is a light sample of ResNeXt model.
Each path in ARTBs includes three convolutional layers with kernel sizes of 1⋅1, 3⋅3, and 1⋅1.

Figure 4 depicts the architecture of our proposed SLDED method. Each network’s
parameters, including depth, kernel size, stride, dimensions, and cardinality (for CNN4), are
illustrated.

2.3.3 Weighted majority voting of CNNs

A better decision can be made when the information is derived from several experts.
Aggregating the multiple opinions by a decision-maker can improve prediction accuracy
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[43]. In this study, we elaborate on an automated approach employing an ensemble of four
different CNNs to achieve considerable accuracy in our image classification task.

In the first step, each of the proposed CNNs classifies the skin lesions. To do so, in each
CNN, we employed two fully connected layers with sizes of 1024 and 4, respectively.
Additionally, soft max activation function is used in the last layer in order to calculate the
predicted probabilities. The maximum probability of classes calculated in Eq. (4) is considered
as an image’s label and its assigned vote associating to that individual CNN.

x ! ci; if pi ¼ max sxð Þ ð4Þ
Where ci,pi, and sx represents class i, the value of predicted probability for class i, and output of
the SOFTMAX function, respectively.

Secondly, a weighted majority voting method illustrated in Eq. (5) is applied to lead the
model to make the final decision for every input image. According to Eq. (6) ifCNNj allocates
label i to the input image x, the vote of CNN j equals to 1 for that label and 0 for other classes.

p
0
i ¼

Pm
j¼1 wjH pij

� �
m

; i ¼ 1; 2; 3; 4 ð5Þ

V pij
� � ¼ 1; if pij ¼ max CNNj

� �
0; otherwise

�
ð6Þ

Fig. 4 Architecture of the SLDED method. The networks from left to right represents GoogleNet (CNN1),
VGGNet (CNN2), ResNet (CNN3), and ResNeXt (CNN4) modules, respectively. The numbers insides the boxes
from left to the right denote the number of filters, kernel size, and stride, respectively. i.e., 3 × 3 × 2 means the
convolutional layer with the number of 3 filters, kernel size of 3, and stride 2. C = 32 means the cardinality of 32
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Where pij is the probability thatCNNj assigns label i to x.V pij
� �

represents the vote thatCNNj

assigns label i to x and wj is the weight of CNNj’s vote
Since the number of aggregated votes for two classes may be the same, we determine a

weight for each network’s vote. To do this, we first determined an initial weight for the
individual models according to their calculated mean AUC score, then optimized the weights
using genetic (GA) algorithm [21].

2.3.4 Training the SLDED method

Each member CNN of the weighted voting ensemble model are trained end-to-end. In training,
categorical cross-entropy was used as a loss function for calculating the weights of the voters.
Moreover, an RMSProp [50] optimizer with a learning rate of 0.01 was used to minimize the
loss. The data were fed to the CNNs in a batch of 16 images through 300 training epochs per
network. The training has been performed in a computer equipped with NVIDIA GeForce
GTX 1070 SLI, CPU @ 2.6 GHz, with 20 cores. The implementations were performed in
Python using the Keras library.

2.4 Evaluation metrics

To evaluate the accuracy of faster R-CNN, creating bounding boxes around the lesions, we
used IOU criterion. The generated bounding box is defined as the area of bl (a, b, l, w), where
(a, b) denotes the center coordinates and l, w are the length and width of the bounding box.
RCNN performs the lesion area detection using a greedy overlapping or IOU criterion of the
actual and the predicted box. The area is known as a lesion when IOU is between 0.5 and 1,
and also, the region will be labeled as a normal one if the IOU is between 0 and 0.5. According
to Eq. (7) IOU is written as:

IOU ¼ Area of overlap
Area of union

ð7Þ

Where area of overlap is calculated by finding the overlapped area between predicted
bounding box and the ground truth. Also, area of union is obtained by getting the sum of
areas of predicted and ground truth bounding box.

We used the mAP, illustrated in Eq. (8) to evaluate the accuracy of RCNN lesion
localization. mAP is a good metric to investigate the accuracy of a bounding box prediction
model. The higher the mAP value is, the greater the accuracy of the model is in lesion
localization.

mAP ¼ mean
TP

TP þ FP
ð8Þ

For calculating mAP, we first calculate IOU, if the value of IOU is greater than 0.5 and less
than 1 (0.5 < IOU ≤ 1), the predicted bounding box is labeled as TP. This means that the
most area of predicted bounding box contains the most of lesion area. On the other hand, if
IOU is greater than 0 and less than 0.5 (0 ≤ IOU ≤ 0.5), the most area of predicted bounding
box includes normal area, so it is considered as FP.
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To evaluate the performance of the SLDED method, several measures are calculated for
comparison. Common measures for assessing the performance of a classification model
include Accuracy, AUC, Precision, Recall, and F1-Score.

Since our problem is multi-class classification, it is required to calculate the average of
AUC, F1-score, precision, and recall measures. For each measure, there are micro and macro
averages that will calculate slightly different values. Since the micro-average of the perfor-
mance measures for imbalance data is preferred to macro-average ones [46], the micro-average
of F1-score, precision, recall, and AUC for the models are reported. A micro average will sum
up the contributions of all categories to calculate the average of the measures. Equations (9–
11) indicate how to calculate the mentioned measures.

micro� averaged precision ¼
P4

c¼1 true positivecP4
c¼1 true positivec þ

P4
c¼1 false positivec

ð9Þ

micro� averaged recall ¼
P4

c¼1 true positivecP4
c¼1 true positivec þ

P4
c¼1 false negativec

ð10Þ

micro� averaged F1score ¼ 2� micro� averaged precision� micro� averaged recall
micro� averaged precisionþ micro� averaged recall

ð11Þ

3 Experimental results

This section will describe the results of lesion localization achieved by a VGG-based faster R-
CNN method. We will also use two ISIC and PH2 test sets to compare and analyze the results
of the proposed SLDED approach with other previous state-of-the-art models.

3.1 Lesion localization results

Faster R-CNN can distinguish areas in the image that are as lesions from the ones which are
normal. To do so, faster R-CNN assigns the features extracted from the last convolutional layer
to the SOFTMAX function and sets them a probability to consider extracted features, either a
lesion or a normal skin area. The confined pixels relating to the lesion area are labeled as
positive specimens and the rest of the regions as negative ones to train the faster R-CNN as a
binary classifier for lesion localization. The detected overlapped lesion area is labeled based on
a presumed IOU threshold value. In this work, we assumed a threshold of 0.5, and if IOU
exceeded it, we consider it as a lesion area. The accuracy of lesion localization by faster R-
CNN for ten randomly selected images from the ISIC test set is shown in Table 3. Also, the
mAP criteria for total images is 0.958.

Figure 5 shows 12 selected images from ISIC test set that had the highest confidence score.
As shown in the Fig. 5, the proposed faster R-CNN method was able to detect the lesions very
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meticulously regardless of the rotation of the images, their differed lesion sizes, and the
presence of hair and/or other noises in them.

3.2 Comparison of the models

We have investigated the SLDED method with the initial weights deriving from the average
AUC score and with optimal weights adjusted by the GA algorithm for evaluation and
validation. Additionally, for the sake of completeness evaluation, each member CNN has also

Table 3 Comparing the performance of SLDED with its base CNNs from ISIC and PH 2 test data (SLDED-w1,
SLDED-w2 denote the method with initial and optimal weights, respectively)

Datasets Models F1-score Precision Recall ACC AUC

ICIS CNN1 0.761 0.786 0.739 0.875 0.901
CNN2 0.733 0.759 0.709 0.864 0.898
CNN3 0.701 0.679 0.725 0.853 0.866
CNN4 0.782 0.764 0.801 0.894 0.912
SLDED-w1 0.866 0.863 0.867 0.963 0.979
SLDED-w2 0.868 0.871 0.867 0.971 0.986

PH2 CNN1 0.789 0.776 0.803 0.887 0.913
CNN2 0.701 0.667 0.739 0.869 0.879
CNN3 0.724 0.754 0.696 0.872 0.890
CNN4 0.778 0.812 0.747 0.881 0.904
SLDED-w1 0.870 0.894 0.848 0.952 0.977
SLDED-w2 0.877 0.902 0.854 0.960 0.981

The bold indicate the best result

Fig. 5 Results of the proposed faster R-CNN method for each skin leison type, including MM, BCC, Nevus, and
SK from ISIC dataset
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been assessed. Table 3 demonstrates the calculated results in terms of micro-average on the
ISIC as well as PH2 test sets.

As illustrated by Table 3 SLDED with w2 derived from the GA algorithm outperforms the
other skin lesion classification methods while evaluated on both ISIC and PH2 test dataset.

Moreover, for complete visual comparison, the four CNNs and their ensemble’s ROC
curves are depicted in Fig. 6 regarding the classification of four skin lesion types, including
BCC, MM, SK, and Nevus.

Figure 7 presents the confusion matrix of the proposed SLDED method for skin cancer
diagnosis.

As shown in Fig. 7, the SLDED-w2 method on ISIC test set can correctly classify 98/117 of
BCC, 396/426 of MM, 273/307 of NV, and 72/84 of SK classes. Moreover, on PH2 test data,
including only two classes (MM and Nevus), SLDED-w2 can classify 36/40 of MM and 157/
160 Nevus correctly.

“As an additional evaluation, we compared our approach with other state-of-the-art
methods that have been selected as the best-developed models during 2016 and 2017 ISIB
challenges towards skin lesion classification. In the 2016 challenge, the aim was developing an
automated system to classify MM and Nevus lesions while in the 2017 competition, SK lesion
images have also been added to the dataset. We note that the same data was considered for
assessment of the models in terms of average AUC and accuracy and using an extended data
has been permitted for the learning process. For this purpose, we used a transfer learning

Fig. 6 The compared ROC curves for four skin lesions. The images are selected from ISIC test part
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technique. Therefore, in our model we replaced the last dense layer including four neurons
with a dense layer with two neurons so as to compare our results with the challenge 2016.
Also, we replaced the dense layer with three neurons to make a fair comparison with the results
of the challenge 2017. It is worth mentioning that we have frozen the weights for the rest of the
layers. Also, we did not fine-tune the model because the images in these challenges were
available in our data set, so there was no need to fine-tune the parameters. In order to have a
fair comparison, we used the images in the test set of these data sets for the testing. Table 4
illustrates the comparison results; and the SLDED method performing on the ISIB challenges’
official test data outperforms the other proposed methods.

4 Discussion

Combining different networks will lead to the extraction of various feature maps, some of
which can lead the classification model with high accuracy. Considering the same weights for
the candidates results in integrating both weak and strong classifiers’ votes with the same
weight. Therefore, we used a weighted majority voting approach to take the individual
classifier’s accuracy into account. On one hand, the average AUC of each CNN is determined
as its initial weight. For CNN1 to CNN4, we have set the weights 0.901, 0.898, 0.866, and
0.912, respectively. Then the weights have been optimized by the GA algorithm.

Fig. 7 Confusion matrix of the proposed SLDED-w2 on ISIC and PH2 test set

Table 4 The comparison results of ISIB 2016 and 2017 challenges’ winners with the proposed SLDED method.
(ACC = accuracy)

Challenge Team/authors AVG_ACC AVG_AUC

ISIB 2016 [48] Lequan Yu [70] 0.839 0.85
Sahbi Chaieb [2] 0.855 0.804
BALDE THIERNO [45] 0.813 0.802
SLDED(ours) 0.941 0.960

ISIB 2017 [19] Matsunaga et al. [50] - 0.911
Monty python [23] - 0.910
RECOD Titans [53] - 0.908
SLDED(ours) 0.952 0.938
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The genetic algorithm inspired by the natural selection process is a heuristic search and an
optimization method. It is commonly used to find an approximate optimal solution for large-
parameter space optimization problems. The evolution process of species (weights in this
study) is mimicked according to biologically inspired components. Finally, the algorithm finds
the optimal weights to minimize the cost (average AUC in our case). The optimal weights
obtained from the GA algorithm for CNN1 to CNN4 equal to 0.883, 0.806, 0.656, and 0.954,
respectively. As shown in Table 3 in Section 3.2 the SLDED-w2 method, whose weights are
obtained by the GA algorithm, outperforms the others.

During the training process, the classification results of ensemble member CNNs on the
validation and training set after each epoch using top-1 error rate are plotted, see Fig. 8a It can
be pointed out that the training and validation curves move together in a descending way,
which shows addressing the overfitting problem by applying data augmentation methods.
Additionally, we fine-tuned and trained VGGNet, ResNet, GoggletNet, and ResNeXt pre-
trained models to compare time-consuming trends. Comparing the gradient convergence of the
pre-trained models and our designed approach in Fig. 8b displays the time-consuming trend. In
general, our approach’s training time was 8 h and ResNet, ResNeXt, GoggletNet, and
VGGNet were 11, 12, 15, and 19 h, respectively.

5 Conclusion

Despite the increasing trend in the employment of CNNs for diagnosis of skin lesions, the lack
of large annotated images to train these networks is still a promising challenge in medical
image analysis. In this paper, we have investigated the possibility of combining deep neural
networks which have had excellent performance in medical image classification to improve the
classification accuracy.

The main motivation is the development of an automated skin lesion detection approach. In
this study, we exploited a collection of 3361 ISIC archive’s images for training, 373 for
evaluation, and 934 images for testing. Moreover, 200 images of PH2 dataset have been
employed as another additional test set. It is noteworthy that if we set the CNNs’ weights
appropriately using the weighted majority voting approach, our proposed fusion method
outperforms the individual CNNs according to the classification accuracy.

Fig. 8 Training and validation results during training and fine-tuning of a our individual CNNs b pre-trained
CNNs

10591Multimedia Tools and Applications (2023) 82:10575–10594



We note that our proposed ensemble approach is modular, and adding additional CNNs to
the framework can improve the classification accuracy while also increasing the computational
complexity. Moreover, other image segmentation methods rather than deep-based ones, such
as clustering or threshold-based approaches, can be exploited, which can reduce the imple-
mentation time.

Data availability The datasets analyzed during the current study are available in the International Skin Imaging
Collaboration (ISIC) Archive repository, https://challenge.isic-archive.com/data/.
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