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Abstract
Nowadays, digital images have been manipulated for various fraudulent purposes from
time to time. Therefore, proposing a detection algorithm for such manipulations has
become a key interest for investigators. Digital image splicing and copy-move are among
the most commonly performed forgeries and their detection is problematic. In spite of the
number of accessible potential solutions for manipulation detection, the increasing
number of forgery cases and their complexity necessitate the need for improved detection
methods. The technique put forward in this article aims to deliver a reliable remedy for
image manipulation detection. In the presented article, a novel procedure for discovering
forgery in digital images is proposed with the use of quaternions that expands the
distinction between probability distributions of authentic and forged images. Quaternions
help in representing the image in its entirety as a vector field and discrete cosine transform
is applied on the quaternion that is constructed from the color components of the image.
After that, Markov features are originated from the transitional probabilities of the inter-
block and intra-block correlation amongst the coefficients of the blocks along four
directions. Finally, a feature vector of 648 dimensions is classified using a fusion of
various classifiers. The performance of the approach is presented in terms of seven
different performance metrics. The experiments are performed on three benchmark
datasets viz. CoMoFoD dataset, CASIA version 1.0 and CASIA version 2.0 datasets.
The proposed approach beats existing approaches over the CoMoFoD dataset and yields
competitive outcomes for the CASIA version 2.0 dataset.
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1 Introduction

With the swift growth of the internet and technology, digital images are vulnerable to
fraudulent manipulations. Digital images are the simplest and commonly used media to share
and transfer information and they are even used in various fields as visual proof of things.
Hence, manipulation detection in digital images has become the need of the hour [38].
Investigators have proposed several methods in the last decade that can be characterized into
two major types: Active and Passive blind methods [37]. Active methods are employed when
there is little knowledge about the image available beforehand [13]. Image watermarking and
digital signatures are the techniques that come under active methods of forgery detection. On
the other hand, passive methods of forgery detection work on intrinsic changes made in the
image that is used for corroborating the genuineness of the images. Passive methods attracted
much more attention in recent times as they are more practical as compared to active methods.
In a practical scenario, only a single image is handed over to a forensic team with no
aforementioned information. In such cases, passive blind methods are more appropriate. There
are two types of forgery that commonly operate on digital images: copy-paste and splicing/
image composites. For uncovering copy-paste forgery, many algorithms are proposed by
researchers that follow a simple procedure of feature extraction followed by a feature vector
matching [1, 10, 22, 36]. On the other hand, image splicing introduces some intrinsic changes
in the images that further instigate inconsistencies. The major goal of any forgery detection
method is to determine such inconsistencies in the images.

In the last couple of years, various methods of detection of image composites, or splicing
have also been proposed. Farid [11] has proposed a method to unveil artificially higher-order
correlations in the image due to forgery operation by analyzing the interactions between wave
patterns in the frequency domain. A 266-dimensional feature vector was created by using
wavelet transform and Markov features and resulted in a success rate of 91.8% for the
Columbia dataset developed in the Digital Video and Multimedia (DVMM) laboratory at
Columbia University [31]. The method used statistical features based on one-dimensional and
two-dimensional moments which improve a similar methodology used in steganalysis [30].
Hsu and Chang [17] have proposed a novel method based on the function of camera response
and geometrical invariants in a semi-automatic routine. Image segmentation was incorporated
to make it fully automatic [18]. Dong et al. [6] have suggested a method based on run-length to
distinguish between original and fake images. This method was later surpassed by He et al.
[15]. Chen et al. [4]have reached a detection rate of 82.32% for the Columbia DVMM splicing
assessment dataset by comparing the weighted alignment of the components of the Fourier
transform on the image with the summation of the components using Support Vector Machine
(SVM) classifier. The Gray Level Co-occurrence Matrix (GLCM) of edge image was also used
for colored images to detect splicing forgery [39]. The edges of the chrominance component of
the image were exhibited as a Markov chain. The significant limitation of the method was that
only a single-color channel has been exploited for further processing. The feature dimension-
ality is kept low and an accuracy of 95.6% was attained on CASIA v2.0. Further, it has been
noticed that CASIA v2.0 has some drawbacks and the detection rate deteriorated to 78% with
Markov features after rectification of the dataset [32].

It has been observed from literature that Markov features can unveil the dependencies
among adjoining pixels whenever there is any small change owing to splicing operation [9, 14,
16, 40]. Markov features are extracted using transitional probabilities of the current and future
states of the image blocks. The sturdy capability of this matrix of transition probabilities is to
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indicate the correlation between the pixels. Hence, the method based on Markov-based
features on the color characteristics of an image is proposed. Quaternions in the discrete cosine
transform are used in various fields [12, 29] due to their applications for processing color
images. In the case of image tampering detection, the maximum of the procedures transforms
the color image into a grayscale image before the actual processing. Such algorithms do not
take the color characteristics of the image into account. However, these color characteristics
are important to distinguish between forged and original images as splicing operation modifies
the color characteristics of an image. To make use of the information from all the three
channels of the image, the concept of quaternions can be used. Quaternions are helpful in
removing the redundancy and can provide a quantitative analysis of the image. With the
implementation of quaternions, the detection accuracy of the composite image forgery detec-
tion algorithms can be improved by exploiting the color perversion. Thus, an algorithm for
uncovering forgery in digital images using quaternions in the frequency domain is proposed in
this article with very convincing results. The following are the two major reasons for proposing
an approach based on Block-QDCT (BQDCT):

1. Diverse regions in the image have distinctive content information and textural informa-
tion. We propose to apply overlapping Block-QDCT on the input image, and it can
maintain a strategic distance from the effects of inconformity produced by diverse regions
of natural image amid the process of regular DCT.

2. There are continuity, consistency, smoothness, periodicity and regularity between the
pixels of an unaltered image [21], and this relationship will be altered gradually when
processed for around 12 to 18 pixels, so the procedure of Markov-based Block-QDCT can
diminish the impact presented by distant pixels on the proposed statistical features.

Further, classification plays a major role in various digital image processing tasks. Various data-
driven approaches like machine learning or deep learning have demonstrated remarkable results
in most image processing or classification problems [3, 23, 28]. Different classifiers can be fused
together such that the outcome of the fusion of these classifiers can be more accurate as
compared to the single classifiers, comprising the best one [5, 24]. The elementary notion behind
fusing the results of various classifiers is that while making a decision regarding classification,
the final outcome should not be dependent on the results of a single classifier but instead all the
classifiers contribute in the decision making. In this paper, majority voting has been used to
process the outcomes of the classifiers. The contributions of the article are as follows:

3. It proposes an unprecedented forgery detection approach that uses Markov based transi-
tional probabilities on quaternions in frequency domain, i.e. the discrete cosine transform
as feature extraction from color images.

4. Markov-based features help in detecting the intrinsic changes that occur due to forgery
operations.

5. The extracted features are classified using fusion of various classifiers to obtain the best
results.

6. Evaluation of proposed approach with eight state-of- the-art manipulation detection
approaches has been displayed over three benchmark datasets.

7. Seven different performance metrics are calculated for three benchmark datasets using the
proposed approach and established that it either beat the existing methods or gives
promising outcomes in terms of accuracy.
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The remaining article is structured as follows. Section 2 explains the proposed methodology.
Section 3 gives the details about the experimental outcomes obtained from the simulations. At
last, concluding notes and findings of the experimental results are given in Section 4.

2 Proposed methodology

The block illustration of the proposed methodology is given in Fig. 1. Intra-block and
inter-block differences are utilized to formulate the feature vector in vertical, horizontal,
and diagonal directions on the quaternion discrete cosine transformation of an RGB image.
Also, the correlations between and within the blocks are considered along with major
diagonal and anti-diagonal quaternion discrete cosine transform (DCT) coefficients. The
final feature vector is created by calculating the correlations along every possible direction
on DCT coefficients of the image. Further, the feature vector is provided to the various
combinations of machine learning classifiers to perform the distinction between authentic
and fake image.

2.1 Constructing the quaternions

The notion of quaternions is very widely used in pure and applied mathematics. The quater-
nions are employed in three-dimensional computer graphics, texture analysis and computer
vision applications. In color image processing, quaternions have proved to be very efficient as
they consider all the three color channels and with the help of quaternions, a colored image can
be considered as a vector field holistically. A quaternion is an extended complex quadruple
having one real part and three imaginary numbers and is of the form as shown in (1).

aþ biþ cjþ dk ð1Þ

Input RGB 

image

8×8 

block

Green

Component

Blue

Component

Red

Component

Construct 

a 

quaternion

DCT transform 

on quaternion 

Calculate inter-

block and intra-

block difference 

2D arrays 

Apply a 

threshold T  

Calculate 

transition 

probability 

matrices  

Final feature 

vector of size 

(2T+1) 

(2T+1)×8 

Fig. 1 Block diagram of proposed methodology
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a, b, c and d are real numbers where a is the non-imaginary part of the quaternion and i, j and k
are the basic quaternion units which they satisfy the Hamilton rule [2]:

j ¼ k; jk ¼ i; ki ¼ jji ¼ −k; kj ¼ −i; ik ¼ − j ð2Þ
It also assures that i2 = j2 = k2 = ijk = −1. Quaternions are non-commutative for
multiplication and other basics of quaternions can be found in [2]. A quaternion can be created
from two complex numbers with the help of Clay-Dickson theorem [20]. All the three quaternion
units are orthogonal to each other. Let us assumem, n ε C, m = a + bi, n = c + di, a, b, c, d ε
R, then

q ¼ mþ nj; q ε Q; j2 ¼ −1 ð3Þ
Hence,

q ¼ aþ biþ cþ dið Þ j ¼ aþ biþ cjþ dij ¼ aþ biþ cjþ dk ð4Þ
The transformation given in (4) is used to create the quaternion from complex numbers. The
quaternions are also called as hyper-complex numbers [20]. More details on how to construct a
quaternion can be found in [20, 27]. Assume μ1, μ2 are the two axes of the unit quaternion and
they are mutually perpendicular, after that q can be disintegrated into two different complex
coordinates in the direction of μ1 and μ2.

q ¼ m
0 þ n

0
μ2;μ

2
2 ¼ −1 ð5Þ

where m’ = a’ + b’μ1, n = c’ + d’μ1, a’, b’, c’, d’ ε R then, q = a’ + b’μ1 + c’ μ2 + d’μ3.
Here, μ3 = μ1μ2 and μ3 is perpendicular to μ1 and μ2. For the problem being addressed in this
article, the coordinates of image (b, c, d) will be transformed into the coordinates (a’, b’, c’, d’)
under the three axes i.e.μ1, μ2 and μ3.

2.2 Discrete cosine transform on quaternions

In literature, most of the techniques based on the discrete cosine transform separate the color
channels of the image. For example, the image is changed to YCbCr color space, only Y
component is chosen for detection procedure [19, 21]. This is not helpful in exploiting the
correlation between all the color channels. On the other hand, QDCT can handle all the three
channels simultaneously and colored images can be handled in an integrated manner. A RGB
image can be denoted using quaternion matrix as shown in (6).

f q m; nð Þ ¼ f r m; nð Þiþ f g m; nð Þ jþ f b m; nð Þk ð6Þ
Where fr(m, n), fg(m, n) and fb(m, n) are red, green and blue color components of the image
[19]. In the proposed approach, forward quaternion discrete cosine transform (FQDCT) has
been used. FQDCT can be categorized into two types: left-handed and right-handed since
quaternion multiplication follows non-commutative rule.

2.3 Markov features of each block from discrete cosine transform on quaternions

The steps to calculate the Markov features are provided in [16] and it has been observed that
the Markov chain features in DWT and DCT domain have performed considerably well. In our
method, the primary stage to extricate the features differs from [16]. The original color images
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are split into sliding blocks of size 8 × 8. The block obtained after segmentation is still a
colored sub-image. The quaternion is formed from the R, G and B component of the sub-
image. Further, DCT is applied to obtained quaternion matrix. The coefficients of the
transformation are assembled in a matrix and the square root of real and the imaginary part
is computed. Thus, the final matrix is obtained by arranging the blocks according to the block
location. To compute Markov features from the QDCT coefficients, round the coefficients and
the absolute values for further processing. Next, compute vertical, horizontal, major diagonal
and minor diagonal distances (Qv, Qh, Qd and Q-d within blocks by applying (7) to (10).

Qv u; vð Þ ¼ Q u; vð Þ–Q u; vþ 1ð Þ ð7Þ

Qh u; vð Þ ¼ Q u; vð Þ–Q uþ 1; vð Þ ð8Þ

Qd u; vð Þ ¼ Q u; vð Þ–Q uþ 1; vþ 1ð Þ ð9Þ

Q−d u; vð Þ ¼ Q uþ 1; vð Þ–Q u; vþ 1ð Þ ð10Þ

where Q (u, v) is the matrix containing the rounded off QDCT coefficients. Similarly compute
the vertical, horizontal, major diagonal and anti-diagonal differences between the blocks, i.e.
inter-block distances (Rv, Rh, Rd and R-d using (11) to (14).

Rv u; vð Þ ¼ Q u; vð Þ–Q u; vþ 8ð Þ ð11Þ

Rh u; vð Þ ¼ Q u; vð Þ–Q uþ 8; vð Þ ð12Þ

Rd u; vð Þ ¼ Q u; vð Þ–Q uþ 8; vþ 8ð Þ ð13Þ

R−d u; vð Þ ¼ Q uþ 8; vð Þ–Q u; vþ 8ð Þ ð14Þ

Since, difference values calculated in (7) to (14) are obtained in the form of integers and
contain a broad range. So, it is desirable to look for some methods like rounding and threshold.
For this, a threshold T is given which is a positive integer. If the value of an entity after
rounding in a different array obtained in (7) to (14) is more than T or less than -T, then the
value will be substituted with T or -T correspondingly using (15).

Anew ¼
−T ; Aold < −T
T ; Aold > T
Aold; otherwise:

8<
: ð15Þ
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Finally, calculate the transitional probabilities of the above obtained inter-block and intra-
block matrices using the equations given in (16) to (23).

PM1h i; jð Þ ¼ ∑m−2
u¼1∑

n
v¼1δ Qh u; vð Þ ¼ i;Qh uþ 1; vð Þ ¼ jð Þ
∑m

u¼1∑
n
v¼1δ Qh u; vð Þ ¼ ið Þ ð16Þ

PM1v i; jð Þ ¼ ∑m−1
u¼1∑

n−1
v¼1δ Qh u; vð Þ ¼ i;Qh u; vþ 1ð Þ ¼ jð Þ
∑m−1

u¼1∑
n−1
v¼1δ Qh u; vð Þ ¼ ið Þ ð17Þ

PM2h i; jð Þ ¼ ∑m−1
u¼1∑

n−1
v¼1δ Qv u; vð Þ ¼ i;Qv uþ 1; vð Þ ¼ jð Þ
∑m−1

u¼1∑
n−1
v¼1δ Qv u; vð Þ ¼ ið Þ ð18Þ

PM2v i; jð Þ ¼ ∑m−1
u¼1∑

n−1
v¼1δ Qv u; vð Þ ¼ i;Qv u; vþ 1ð Þ ¼ jð Þ

∑
m−1

u¼1
∑
n−1

v¼1
δ Qv u; vð Þ ¼ ið Þ

ð19Þ

PM3d i; jð Þ ¼ ∑m−16
u¼1 ∑n−16

v¼1 δ Rd u; vð Þ ¼ i;Rd uþ 8; vþ 8ð Þ ¼ jð Þ
∑m−16

u¼1 ∑n−16
v¼1 δ Rd u; vð Þ ¼ ið Þ ð20Þ

PM3−d i; jð Þ ¼ ∑m−16
u¼1 ∑n−16

v¼1 δ R−d uþ 8; vð Þ ¼ i;R−d u; vþ 8ð Þ ¼ jð Þ
∑m−16

u¼1 ∑n−16
v¼1 δ R−d u; vð Þ ¼ ið Þ ð21Þ

PM3h i; jð Þ ¼ ∑m−8
u¼1∑

n−8
v¼1δ Rv u; vð Þ ¼ i;Rv uþ 8; vð Þ ¼ jð Þ
∑m−8

u¼1∑
n−8
v¼1δ Rv u; vð Þ ¼ ið Þ ð22Þ

PM3v i; jð Þ ¼ ∑m−8
u¼1∑

n−8
v¼1δ Rh u; vð Þ ¼ i;Rh u; vþ 8ð Þ ¼ jð Þ
∑m−8

u¼1∑
n−8
v¼1δ Rh u; vð Þ ¼ ið Þ ð23Þ

Where i, j ε {−T, −T + 1,…, 0,… T-1, T}, m and n signify the number of rows and columns
respectively in the authentic image. δ(.) = 1, only if it satisfies all the arguments otherwise δ
(.) = 0. The obtained final count of the feature vector is given by (2 T + 1) × (2 T + 1) × 8.
In our experiments T is taken as 4. Hence, 648-dimensional feature vector is obtained. The
experiments were also run with thresholds 2, 3, 4 and 5. At threshold 2 and 3, the accuracy is
decreasing. On the other hand, when the threshold is taken greater than 4, there is no
significant change in the accuracy. Moreover the computational expense increases. So, T =
4 is chosen for further experimental work.
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2.4 Classification

The features are labeled as forged and authentic and are fed to classifiers fused in various
combinations. Decision level fusion is performed on the outputs of the classifiers as shown in
Fig. 2. For that, the majority voting algorithm is used in which the decisions from the
classifiers are preserved directly. No probabilistic modeling of the outputs is performed. That
is why combining the classifiers is such manner is simple and inexpensive [5]. In decision
level fusion, each classifier is allowed to make their decision independently. If there are N
classifiers for two-class classification problem, the ensemble output will be accurate if at-least
⌊N/2 + 1⌋ classifiers select the right class. Now, let’s undertake that each classifier has a
probability Pi of making a right decision. Then, the probability of ensemble combination of
giving a right decision follows a binomial distribution. For experimental work, 80% data is
considered for training and other 20% data is used for testing. The pseudo-code for the
ensemble classification is shown in Algorithm 1.

Algorithm 1 Majority voting based Ensemble method.

Representation :
M: Number of the classifiers, N: Classifiers, D: Total number of test instances, +1: 

Class label for forged images, -1: Class label for original images, YD: It represents 

predicted output of the ensemble model 

Input: M, N and D 

Procedure Enmseble():
for i = 1 to D do 

for j = 1 to M do 

Final_predictioni = Majority(Predictionij)

end for 

end for 

end procedure 

Output: YD

3 Experimental outcomes

The experimentations have been implemented on Windows 10–64 bit personal computer with
16GB of RAM and Intel(R) Core-i7 processor. The code is written using Python programming
language and to speed up the process of feature extraction, CUDA API is used. The details of
the datasets and various experiments explicated to confirm the accuracy of the proposed
method are given below:

3.1 Datasets used

Three standard datasets for image tampering detection have been used for assessment of the
proposed approach which are available freely. The datasets considered in this work are Copy-
move forgery detection (CoMoFoD) [34] dataset, CASIA version 1.0 [7] and CASIA version
2.0 [7] datasets. The two datasets viz. CASIA version 1.0 and CASIA version 2.0 are delivered
by Chinese Academy of Sciences. Several manipulations are performed viz. rotation, transla-
tion, scaling, distortion and various combinations of such geometrical operations. Various
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post-processing methods, like blur, noise, color reduction, JPEG compression, etc. are also
incorporated to the images of these datasets. The particulars of the datasets are mentioned in
Table 1.

3.2 Performance metrics

The performance of the detection method is established by how appropriately the suggested
method is capable of classifying the images into authentic and manipulated class. Different
performance metrics are calculated for validating the proposed approach. All the metrics are
described below:

Accuracy: It is the ratio of accurately identified images with total number of identified
images. It is calculated using (24).

Accuracy ¼ TP þ TN
TP þ FPþ TN þ FN

� 100 ð24Þ

where TP is True Positives, TN is True Negatives, FP is False Positives and FN is False
Negatives.

Table 1 Details of datasets used for evaluation

Dataset Number of original images Number of modified images Image resolution Image format

CoMoFoD 200 10,200 512×512 JPEG, PNG
CASIA v1.0 800 925 384×256 JPEG
CASIA v2.0 7491 5123 240×160 to

900×600
JPEG, BMP, TIFF

Classification

models

N
ew

 d
ata

P1 P2 Pn

Pf

Training Set

C1 CnC2

Predictions

Final Predictions

Voting

Fig. 2 Fusion of classifiers
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Precision: Precision is given as the number of image feature vectors correctly categorized as
forged upon total number of image feature vectors labelled as forged and is given by (25).

Precision ¼ TP
TP þ FP

ð25Þ

Root Mean Squared Error (RMSE): For finding out the classifier ensemble with low error-rate,
RMSE metric has been calculated as shown in (26). For binary classification problems, RMSE
helps to shed light on how distant the classification model is from giving the correct answer.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1

byi−yi
� �2

n

vuut ð26Þ

where byi is the predicted outcome, yi is the actual outcome and n is the total number of images
tested using a particular classifier.

True Positive Rate (TPR): TPR reflects the classification model’s ability to detect the image
features belonging to the forged class. Hence, higher the TPR, better is the classification
model.

TPR ¼ TP
TP þ FN

ð27Þ

False Rejection Rate (FRR): FRR determines the frequency at which the classification model
makes a mistake by classifying a forged image as authentic. It is calculated using (28).

FRR ¼ FN
FN þ TP

ð28Þ

F1-score: It is calculated using (29) and the highest possible value of F1-score is 1. The highest
value indicates the perfect classification model. It indicates the balance between recall and
precision by taking into account both the false negatives and false positives in contrast to
accuracy.

F1−score ¼ 2TP
2TP þ FP þ FN

ð29Þ

Area Under the Curve (AUC): AUC is the measurement metric for indicating performance of
classification models at numerous threshold settings. Receiver Operating Characteristics
(ROC) curve is obtained by plotting TPR and FPR at diverse points. The area under ROC
curve hence gives a value that determines how correctly the model classifies forged images as
forged and original images as original.

3.3 Classification

Various experimentations are performed on three benchmark datasets. Firstly, individual
classifier model viz. k-Nearest Neighbor, Linear Support Vector Machine (SVM), Decision
Tree, Multi-Layer Perceptron (MLP) and Random Forest have been constructed and tested on
features from the above mentioned datasets. The results can be seen in Table 2. The values of
the metrics obtained from this experimentation are used to highlight the improvements
achieved by the proposed method with ensemble classifiers. For k-NN, 5 nearest neighbor
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are considered and the distance metric used is Euclidean distance. For Linear SVM, linear
kernel function is used and the kernel scale is set to 1. For construction of Decision Tree
model, maximum number of splits is taken as 100 and Gini’s diversity index is used as the split
criterion. Multi-Layer Perceptron is constructed using 20 hidden neurons with sigmoidal
function as the activation function in hidden layer and softmax function at output layer. For
Random Forest classifier, number of trees is taken as 50. Further to test the features extracted
from these datasets, four ensemble combinations of different classifiers mentioned above are
structured whose details are given in Table 3. Ensemble classifiers are beneficial as they result
in lower error and less over-fitting. Various performance metrics are used for evaluation which
is discussed in previous section. The experimental results on CASIA v2 dataset, CASIA v1
dataset and CoMoFoD dataset are given in Tables 4, 5 and 6 respectively. Accuracy, RMSE
and AUC for different datasets under consideration are graphically shown in Figs. 3, 4 and 5,
respectively. It can be observed from the results that the ensemble classifiers obtained better
results as compared to individual classifier in case of all three benchmark datasets.

Table 2 Performance of individual classifier on benchmark datasets

Dataset Classifier Accuracy Precision F1-Score TPR FRR AUC

CASIA v1 k-NN 63.74 62.63 0.616 66.59 0.393 0.640
Linear SVM 80.56 77.43 0.786 81.21 0.203 0.760
Decision Tree 72.34 68.88 0.698 73.59 0.292 0.730
MLP 82.04 85.29 0.817 85.88 0.216 0.770
Random Forest 74.54 70.43 0.715 71.85 0.320 0.730

CASIA v2 k-NN 89.24 91.11 0.897 90.24 0.116 0.893
Linear SVM 90.47 91.16 0.901 91.77 0.109 0.901
Decision Tree 82.46 82.28 0.824 82.41 0.175 0.820
MLP 92.05 90.36 0.920 90.42 0.063 0.928
Random Forest 90.70 89.69 0.907 89.69 0.083 0.901

CoMoFoD k-NN 93.12 91.41 0.935 92.71 0.065 0.930
Linear SVM 94.97 92.06 0.921 91.78 0.017 0.990
Decision Tree 90.84 91.52 0.913 90.55 0.089 0.890
MLP 92.51 92.21 0.930 91.12 0.063 0.908
Random Forest 93.84 92.20 0.939 91.98 0.043 0.938

Table 3 Different fusion combina-
tions used for experiments Ensemble Algorithm 1 Algorithm 2 Algorithm 3

Ensemble 1 Linear SVM Decision Tree Random Forest
Ensemble 2 Linear SVM KNN Random Forest
Ensemble 3 Linear SVM MLP Random Forest
Ensemble 4 k-NN Linear SVM Decision Tree

Table 4 Results of decision fusion
on CASIA V2 Dataset CASIA Version 2 Accuracy Precision RMSE TPR FRR AUC

Ensemble 1 93.80 93.9 24.89 93.8 0.60 0.938
Ensemble 2 93.57 93.6 25.34 93.6 0.60 0.936
Ensemble 3 93.57 93.6 25.34 93.6 0.60 0.936
Ensemble 4 76.74 76.8 48.22 76.7 0.23 0.765
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Table 5 Results of decision fusion
on CASIA V1 dataset CASIA Version 1 Accuracy Precision RMSE TPR FRR AUC

Ensemble 1 81.97 82.0 42.45 82.0 0.18 0.817
Ensemble 2 77.03 77.1 47.92 77.0 0.23 0.768
Ensemble 3 82.55 82.5 41.76 82.6 0.18 0.823
Ensemble 4 76.74 76.3 48.22 76.7 0.23 0.765

Table 6 Results of decision fusion
on CoMoFoD dataset Copy Move Data Accuracy Precision RMSE TPR FRR AUC

Ensemble 1 98.56 98.6 11.98 98.6 0.10 0.986
Ensemble 2 99.28 99.3 8.47 99.3 0.07 0.993
Ensemble 3 99.28 99.3 8.47 99.3 0.07 0.993
Ensemble 4 99.04 99.1 9.78 99.0 0.09 0.991

Fig. 3 Accuracy using different ensemble method

Fig. 4 RMSE using different ensemble method

4528 Multimedia Tools and Applications (2023) 82:4517–4532



3.4 Evaluation in comparison with state-of-art approaches

The results obtained from the experiments are compared and analyzed with state-of-the-art
methods on various datasets. The method proposed in this paper outperformed [16, 19] in
terms of accuracy on CASIA v1.0 dataset as shown in Table 7. The method in [16] processed
color images, whereas [19] used the chrominance component of YCbCr model and our method
uses all the three color components of an RGB image. The comparison of previous algorithms
on CASIA v2.0 is shown in Table 8. The results obtained CoMoFoD dataset are also
compared with state-of-art methods as shown in Table 9. In [8], the statistical properties of

Fig. 5 Area Under the Curve using different ensemble method

Table 7 Comparison of accuracy
on CASIA version 1.0 dataset Method Dimensionality Accuracy

He et al. [16] 100 89.76%
Hussain et al. [19] – 80.71%
Proposed method 648 82.55%

Table 8 Comparison of accuracy
on CASIA version 2.0 dataset Method Dimensionality Accuracy

Shi et al. [31] 266 84.86%
Li et al. [26] 972 92.38%
He et al. [16] 100 93.42%
Proposed method 648 93.80%

Table 9 Comparison of accuracy
on CoMoFoD Method Dimensionality Accuracy

Du et al. [8] – 98.0%
Lee et al. [25] 12 98.8%
Ustubioglu et al. [35] – 94.0%
Thirunavukkarasu [33] – 99.0%
Proposed method 648 99.28%
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AC coefficients of JPEG compressed image are used with a standard deviation of non-zero
DCT coefficients to give an accuracy of 98.0%. In [25], histogram of oriented Gabor
magnitude is utilized to extract features, and then the compact features are served to SVM
for classification.

4 Conclusion

In most of the detection algorithms proposed by researchers in recent times, the colored input
image is changed into a grayscale image prior to any pre-processing. Most of the methods
disregard the color statistics of the image. In the suggested method, a digitally colored image
can be processed in terms of a quaternion by taking all the color channels as imaginary
components of the quaternion. The detection rate of the image forgery detection method is
upgraded by using the property of quaternions to eliminate the redundancy and to represent the
digital image in its entirety as a vector. An algorithm based on transition probabilities on
quaternions of the image DCT coefficients is put forward in this article. The crux of the article
is the passive detection of color images by expanding the attributes of transition probability
from the frequency domain to unveil the dependencies among adjoining pixels wherever there
is even a tiny change in pixels of the image due to the malicious tampering. The feature-set
obtained is fed to an ensemble of classifiers and the majority voting is used to get the final
output of classification. The performance of the approach is presented in terms of seven
different performance metrics. The experiments are performed on three benchmark datasets
viz. CoMoFoD dataset, CASIA version 1.0 and CASIA version 2.0 datasets. The proposed
approach beats existing approaches over the CoMoFoD dataset and yields competitive out-
comes for CASIA version 2.0 dataset.

In future, the Markov-based features will be tested along-with deep features extracted from
different pre-trained architectures in order to improve the detection accuracy for forged images.
By using the fusion concept, different kinds of characteristics of the images can be included in
the analysis which further helps in increasing the efficiency of an approach.

Acknowledgements This work was supported by the Technical Education Quality Improvement Project III
(TEQIP III) of the Ministry of Human Resource Development (MHRD), Government of India, assisted by the
World Bank (Sanctioned to UIET, Panjab University, Chandigarh, India) under Grant P154523.

Declarations

Conflict of interest All the authors declared that they have no conflict of interest in this work.

References

1. Ali M, Deriche M (2015) A bibliography of pixel-based blind image forgery detection techniques. Signal
Processing : Image Communication 39:46–74. https://doi.org/10.1016/j.image.2015.08.008

2. Barbic J (2011) Quaternions and Rotations. University of Southern California CSCI 520:1–12
3. Chaudhary P, Gupta DK, Singh S (2021) Outcome prediction of patients for different stages of Sepsis using

machine learning models. In: Hura G, Singh A, Siong Hoe L (eds) Advances in communication and
computational technology, vol 668. Springer, Singapore, pp 1085–1098

4530 Multimedia Tools and Applications (2023) 82:4517–4532

https://doi.org/10.1016/j.image.2015.08.008


4. W. Chen, Y. Q. Shi, and W. Su, “Image splicing detection using 2D phase congruency and statistical
moments of characteristic function,” in Proceedings of SPIE - The International Society for Optical
Engineering, 2007, vol. 6505. https://doi.org/10.1117/12.704321.

5. Chitroub S (2010) Classifier combination and score level fusion: concepts and practical aspects. Int J Image
Data Fusion 1(2):113–135. https://doi.org/10.1080/19479830903561944

6. Dong J, Wang W Tan T, Shi Y. (2009) “Run-length and edge statistics based approach for image splicing
detection,” in International Workshop on Digital Watermarking (IWDW), Lect Notes Comput Sci 5450, pp.
76–87

7. Dong J, Wang W, Tan T (2013) “CASIA Image Tempering Detection Evaluation Database (CAISA
TIDE)”, in 2013 IEEE China Summit and International Conference on Signal and Information
Processing, pp. 422–426. https://doi.org/10.1109/ChinaSIP.2013.6625374

8. Dua S, Singh J, Parthasarathy H (2020) Image forgery detection based on statistical features of block DCT
coefficients. Procedia Computer Science 171(2019):369–378. https://doi.org/10.1016/j.procs.2020.04.038

9. El-alfy EM, Qureshi MA (2015) Combining spatial and DCT based Markov features for enhanced blind
detection of image splicing. Pattern Anal Applic 18:713–723. https://doi.org/10.1007/s10044-014-0396-4

10. Elaskily MA, Aslan HK, Elshakankiry OA, Faragallah OS (2017) “Comparative Study of Copy-Move
Forgery Detection Techniques,” in Intl Conf on Advanced Control Circuits Systems (ACCS) Systems &
2017 Intl Conf on New Paradigms in Electronics & Information Technology (PEIT), pp. 193–203

11. Farid H (2009) Image forgery detection. IEEE Signal Process Mag 26(2):16–25. https://doi.org/10.1109/
MSP.2008.931079

12. Feng W, Hu B (2008) Quaternion Discrete Cosine Transform and its Application in Color Template
Matching. Congress Image Signal Process:252–256. https://doi.org/10.1109/CISP.2008.61

13. Haouzia A, Noumeir R (2008) Methods for image authentication : a survey. Multimed Tools Appl 39(1):1–
46. https://doi.org/10.1007/s11042-007-0154-3

14. Hashmir MF, Keskar AG (2015) Image forgery detection and classification using HMM and SVM
classifier. International Journal of Security and its Applications 9(4):125–140

15. He Z, SunW, LuW, Lu H (2011) Digital image splicing detection based on approximate run length. Pattern
Recogn Lett 32(12):1591–1597. https://doi.org/10.1016/j.patrec.2011.05.013

16. He Z, LuW, SunW, Huang J (2012) Digital image splicing detection based on Markov features in DCT and
DWT domain. Pattern Recogn 45:4292–4299

17. Hsu Y-F, Chang S-F (2006) “Detecting Image Splicing Using Geometry Invariants And Camera
Characteristics Consistency,” in International Conference on Multimedia and Expo (ICME), pp. 549–552

18. Hsu Y-F, Chang S-F (2007) “Image Splicing Detection using Camera Response Function and Automatic
Segmentation,” in 2007 IEEE International Conference on Multimedia and Expo, pp. 28–31

19. Hussain M, Saleh SQ, Aboalsamh H, Muhammad G, Bebis G (2014) “Comparison between WLD and LBP
Descriptors for Non-intrusive Image Forgery Detection,” in Proc. of IEEE International Symposium on
Innovations in Intelligent Systems and Applications (INISTA), pp. 197–204

20. Kantor I, Solodovnikov A, Shenitzer A (1989) Hypercomplex numbers : an elementary introduction to
algebras. Berlin: Springer: Springer-Verlag New York

21. Kaur M, Walia S (2016) Forgery detection using noise estimation and HOG feature extraction. Int J
Multimed Ubiquitous Eng 11(4):37–48. https://doi.org/10.14257/ijmue.2016.11.4.05

22. Kaur A, Walia S, Kumar K (2018) “Comparative analysis of different keypoint based copy-move forgery
detection methods,” in 2018 Eleventh International Conference on Contemporary Computing (IC3), pp.
172–176

23. Kumar M, Gupta DK, Singh S (2021) Extreme event forecasting using machine learning models. In: Hura
G, Singh A, Siong Hoe L (eds) Advances in communication and computational technology, vol 668.
Springer, Singapore, pp 1503–1514. https://doi.org/10.1007/978-981-15-5341-7_115

24. Kuncheva LI, Whitaker CJ, Shipp CA, Duin RPW (2003) Limits on the majority vote accuracy in classifier
fusion. Pattern Anal Applic 6(1):22–31. https://doi.org/10.1007/s10044-002-0173-7

25. Lee J-C (2015) Copy-move image forgery detection based on Gabor magnitude. J Vis Commun Image
Represent 31:320–334. https://doi.org/10.1016/j.jvcir.2015.07.007

26. Li C, Ma Q, Xiao L, Li M, Zhang A (2017) Image splicing detection based on Markov features in QDCT
domain. Neurocomputing 228:29–36. https://doi.org/10.1016/j.neucom.2016.04.068

27. Moxey CE, Sangwine SJ, Member S, Ell TA (2003) Hypercomplex correlation techniques for vector
images. IEEE Trans Signal Process 51(7):1941–1953

28. Saxena A, Gupta DK, Singh S (2021) An animal detection and collision avoidance system using deep
learning. In: Hura G, Singh A, Siong Hoe L (eds) Advances in communication and computational
technology, vol 668. Springer, Singapore, pp 1069–1084. https://doi.org/10.1007/978-981-15-5341-7_81

29. Schauerte B, Stiefelhagen R (2012) “Quaternion-based Spectral Saliency Detection for Eye Fixation
Prediction Related Work,” in 12th European conference on Computer Vision, pp. 116–129

4531Multimedia Tools and Applications (2023) 82:4517–4532

https://doi.org/10.1117/12.704321
https://doi.org/10.1080/19479830903561944
https://doi.org/10.1109/ChinaSIP.2013.6625374
https://doi.org/10.1016/j.procs.2020.04.038
https://doi.org/10.1007/s10044-014-0396-4
https://doi.org/10.1109/MSP.2008.931079
https://doi.org/10.1109/MSP.2008.931079
https://doi.org/10.1109/CISP.2008.61
https://doi.org/10.1007/s11042-007-0154-3
https://doi.org/10.1016/j.patrec.2011.05.013
https://doi.org/10.1109/ChinaSIP.2013.6625374
https://doi.org/10.1007/978-981-15-5341-7_115
https://doi.org/10.1007/s10044-002-0173-7
https://doi.org/10.1016/j.jvcir.2015.07.007
https://doi.org/10.1016/j.neucom.2016.04.068
https://doi.org/10.1007/978-981-15-5341-7_81


30. Y. Q. Shi, and D. Zou, and, W. Chen, and C. Chen, “Image steganalysis based on moments of characteristic
functions using wavelet decomposition, prediction-error image, and neural network,” in IEEE International
Conference on Multimedia and Expo, 2005, pp. 1–4. https://doi.org/10.1109/ICME.2005.1521412.

31. Shi YQ, Chen C, Chen W (2007) “A Natural Image Model Approach to Splicing Detection,” in 9th
workshop on Multimedia & security, pp. 51–62

32. Sutthiwan P, Shi YQ, Zhao H, Ng TT, Su W (2011) Markovian Rake Transform for Digital Image
Tampering Detection. Trans Data Hiding Multimed Sec VI Lect Notes Comput Sci 6730:1–17

33. Thirunavukkarasu V, Kumar JS, Chae GS, Kishorkumar J (2017) Non-intrusive forensic detection method
using DSWT with reduced feature set for copy-move image. Wirel Pers Commun 98:1–19. https://doi.org/
10.1007/s11277-016-3941-1

34. Tralic D, Zupancic I, Grgic I, Grgic M (2013) “CoMoFoD - New Database for Copy-Move Forgery
Detection,” in 55th International Symposium ELMAR, pp. 25–27

35. Ustubioglu B et al (2016) Improved copy-move forgery detection based on the CLDs and colour moments.
Imaging Sci J 64(4). https://doi.org/10.1080/13682199.2016.1162922

36. Walia S, Kumar K (2017) Pragmatical investigation of frequency-domain and spatial-structure based image
forgery detection methods. Intern J Comput Intell IoT 1(2):240–245

37. Walia S, Kumar K (2018) An Eagle-Eye View of Recent Digital Image Forgery Detection Methods. Smart
Innov Trends Next Gener Comput Technol 828:469–487. https://doi.org/10.1007/978-981-10-8660-1

38. Walia S, Kumar K (2019) Digital image forgery detection: a systematic scrutiny. Australian Journal of
Forensic Sciences 51(5):488–526. https://doi.org/10.1080/00450618.2018.1424241

39. W. Wang, J. Dong, and T. Tan, “Image tampering detection based on stationary distribution of Markov
chain,” in IEEE International Conference on Image Processing, 2010, pp. 2101–2104. https://doi.org/10.
1109/ICIP.2010.5652660.

40. Zhao X, Wang S, Li S, Li J (2015) Passive image splicing detection by a 2-D noncausal Markov model.
IEEE Transactions on Circuits and Systems for Video Technology 25(2):185–199

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

Affiliations

Savita Walia1 & Krishan Kumar1 & Munish Kumar2

Savita Walia
s.walia24@pu.ac.in

Krishan Kumar
k.salujauiet@gmail.com

1 University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India
2 Department of Computational Sciences, Maharaja Ranjit Singh Punjab Technical University,

Bathinda 151001, India

4532 Multimedia Tools and Applications (2023) 82:4517–4532

https://doi.org/10.1109/ICME.2005.1521412
https://doi.org/10.1007/s11277-016-3941-1
https://doi.org/10.1007/s11277-016-3941-1
https://doi.org/10.1080/13682199.2016.1162922
https://doi.org/10.1007/978-981-10-8660-1
https://doi.org/10.1080/00450618.2018.1424241
https://doi.org/10.1109/ICIP.2010.5652660
https://doi.org/10.1109/ICIP.2010.5652660
http://orcid.org/0000-0003-0115-1620

	Unveiling digital image forgeries using Markov �based quaternions in frequency domain and fusion of machine learning algorithms
	Abstract
	Introduction
	Proposed methodology
	Constructing the quaternions
	Discrete cosine transform on quaternions
	Markov features of each block from discrete cosine transform on quaternions
	Classification

	Experimental outcomes
	Datasets used
	Performance metrics
	Classification
	Evaluation in comparison with state-of-art approaches

	Conclusion
	References


