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Abstract
Underwater captured images are often degraded with low contrast, color distortion, and
poor visibility caused by absorption and scattering when light travels through water. To
address these issues, we propose a novel underwater image restoration method which
aims at recovering the scene radiance with an accurate scene depth. Depending on the
accuracy estimation of scene depth obtained by combing the oblique gradient operator
and underwater light attenuation prior, the transmission map can be further precisely
determined. Moreover, we utilize the quad-tree subdivision to estimate the background
light by both considering smoothness and color difference. After acquiring the back-
ground light and transmission map, the scene radiance can be finally restored based on the
underwater image formation model. Experiential results demonstrate that the proposed
method has a good performance on dehazing, color correction and contrast enhancement.
Qualitative and quantitative comparisons with several state-of-the-art methods further
validate the superiority of the proposed method.

Keywords Underwater image restoration . Oblique gradient operator . Underwater light
attenuation prior . Scene depth

1 Introduction

With the development of commercial and scientific exploration in the underwater environ-
ment, the quality of underwater images and video sequences plays an important role in many
fields [38], such as object detection and classification [28, 59], and marine organisms tracking
[41]. Although specialized apparatus can improve the imaging quality, it is costly and power-
consuming. Moreover, they are inconvenient for us to capture underwater images during
diving and snorkeling activities. Thus, improving underwater image quality by developing
some image enhancement and restoration technologies has received wide attentions and
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interests due to its low cost. However, underwater image processing is challenging because of
the complexity and diversity of underwater environment. Light absorption and scattering are
two main factors to cause visible degradation of underwater captured images. The former
wavelength-dependent attenuation will cause color distortion that increases with the distance
when light travels through water, and the latter explains that light can be refracted and scattered
by water particles causing haze and blur. Therefore, it is meaningful to develop an effective
preprocessing method to correct color, enhance contrast, and improve sharpness of underwater
images for further applications.

In general, underwater image sharpening methods can be categorized into two types [25]:
enhancement-based methods and restoration-based methods. Enhancement-based methods
consider the quality perceived by human or the performance of computer vision, however,
ignoring the physical property of image degradation. Numerous enhancement methods have
been proposed to improve underwater image quality, for example, white balancing algorithm
[1, 35], histogram equalization (e.g. DHE [57], CLAHE [15]), unsharp masking operation
[51], and color-transfer technique [61] can be employed to remove color cast, increase the
contrast, and improve the sharpness, respectively. In contrast, restoration-based methods take
the underwater image formation model (UIFM) into account, wherein the parameters of the
physical model are deduced using extra priors or scene information. Since the scattering is a
function of distance and the transmission is variant within the image, many prior information-
based methods [3, 56] were proposed to estimate the transmission map.

Dark channel prior (DCP) [21] is a widely used prior information-based method for outdoor
image dehazing, which is based on the observation that the haze density can be regarded as a
useful depth clue to estimate transmission map. Since the simplified UIFM is similar to the
outdoor fogging model, a lot of UIFM-based methods derived from DCP are proposed for
underwater image restoration. Benefiting from DCP, the transmission map can be acquired
without estimating the depth map in advance. In [7], DCP was directly used to estimate the
depth of the turbid water and restore the clarity of underwater image. Chiang and Chen [8]
combined DCP with wavelength compensation to remove haze and correct color distortion for
improving the quality of underwater images. In [11], an underwater dark channel prior
(UDCP) was developed by only considering green and blue channels, since the red channel
cannot provide dependable information to estimate the transmission map. Afterward, Galdran
et al. [13] modified the DCP by inverting the red channel, considering that the intensity in red
channel rapidly decays as the distance increases. They also incorporated saturation component
into the red channel prior (RCP) to handle artificial illumination. In [58], Xie et al. proposed a
normalized total variation method based on RCP for restoring underwater images. Likewise,
Gao et al. [14] combined the red channel with the inverse of green and blue channels as a new
degraded image and proposed a bright channel prior approach to estimate the transmission
map. Recently, a generalization of DCP-based method for transmission estimation was
proposed in [46], and the relationship between image intensity and depth was modeled by
linear regression to estimate ambient light.

Another line of research focuses on estimating the transmission map by reasoning depth
information based on different priors. For example, the maximum intensity prior (MIP) [5]
extracted depth information by calculating intensity differences of color channels Dmip, and
estimated the transmission map by directly using Dmip rather than a depth map. Peng et al. [45]
proposed a novel method to estimate the scene depth using image blurriness and light
absorption (IBLA). In [44], they further extended it to determine the distance between the
closest scene point and the camera. Based on the analysis of a large number of underwater
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images, Song et al. [55] proposed an underwater light attenuation prior (ULAP) to estimate the
scene depth. Afterward, Zhou et al. [63] introduced a color-line model to handle the degrada-
tion problem in underwater environment and determined the local depth with a non-linear
optimization. In [43], the transmission map was estimated by an observation that the scene
depth is inversely proportional to the geodesic color distance from the background light.

In addition to these aforementioned methods, many other methods have been
also developed and achieved significant advances. Li et al. [32] proposed a dehazing approach
based minimum information loss principle and histogram distribution prior to improve the
contrast and visibility of underwater images. The concept of haze-lines for image dehazing was
adopted by [2, 40], which describes that the pixels that belong to the same color cluster will be
distributed on a straight line. Moreover, a range of variational methods [23, 24, 37] have been
proposed to solve the problem of underwater image degradation. In recent years, since deep
learning techniques have achieved great performance in natural image dehazing [49, 50], some
works [47, 48] attempt to adopt deep learning strategies to enhance and restore underwater
images. For example, Cao et al. [4] adopted a multi-scale architecture to estimate the scene
depth map. Ding et al. [10] presented a jointly wavelength compensation and dehazing
network (JWCDN) to estimate background light, wavelength attenuation and transmission
map simultaneously. Considering the depth map estimation as an image-to-image translation,
Zhang et al. [62] proposed a depth generative adversarial network (DepthGAN) to obtain high-
quality depth map.

Based on the overview of related work of underwater image restoration methods, we find
that the scattering effect can be naturally removed if the scene depth is considered. However,
most existing methods include a post-processing step to increase the visibility of image, which
may compromise the accuracy of the underlying scene radiance. In this paper, we suggest that
an accurate scene depth map is the key to successfully estimate the transmission map, and
propose a novel restoration method for improving underwater image quality without any post-
processing step. The main contributions of our work are as follows.

(a) An efficient underwater image restoration method is presented based on underwater
image formation model, which can effectively remove haze, improve color rendition,
and reveal more details.

(b) Rather than directly estimating the transmission map, we first combine the oblique
gradient operator (OGO) and underwater light attenuation prior to extract the scene
depth, and then recover the scene radiance depending on the UIFM.

(c) Instead of simply picking the brightest pixel, we introduce a new scheme to determine the
candidate region for estimating background light based on the quad-tree subdivision.

The rest of this paper is organized as follows. Section 2 briefly introduces the underwater
image formation model and characteristics of underwater light attenuation prior. In section 3,
the proposed method is described in detail. Section 4 presents the performance of the proposed
method including qualitative and quantitative comparisons, and application test. Finally, the
conclusion is provided in section 5.
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2 Background and foundation

2.1 Underwater image formation model

The degradation model of underwater images proposed by Jaffe [30] points out that the total
energy ET detected by a camera includes the direct component Ed, the forescattering Efs and the
backscattering Ebs. Thus, the concrete expression of UIFM can be written as a linear super-
position of these three components:

ET ¼ Ed þ Efs þ Ebs ð1Þ
In Eq. (1), Ed is the light reflected by the object; Efs is similar to Ed but has been scattered with
a small angle; and Ebs is the light reflected by other suspended particles. Assuming that the
forescattering can be neglected when the camera is close to the scene points, Schechner and
Karpel [52] defined the direct component Ed and backscattering Ebs by:

Ed ¼ Jt ð2Þ

Ebs ¼ B 1−tð Þ ð3Þ
where J is the scene radiance, B is a scalar that depends on the wavelength and t is the
transmission map that represents the percentage of the scene radiance reaching the camera.
Based on Schechner-Karpel model, the intensity of degraded underwater image in Eq. (1) can
be simplified as:

I c xð Þ ¼ J c xð Þtc xð Þ þ Bc 1−tc xð Þð Þ ð4Þ
where c ∈ (R, G, B) denotes the different color channels, Ic(x) is the captured underwater
image and Jc(x) is the undistorted underwater image. From Eq. (4), we can observe that to
recover Jc(x) from Ic(x), we first need to estimate background light Bc and transmission maps
tc(x). Following, we also utilize this widely used simplified underwater image formation model
[11, 13, 44] to restore the underwater image.

Actually, accurate estimations of background light and transmission map are the basis for
underwater image restoration. The background light Bc is often considered to be the intensity
of the pixel with the maximum depth when assuming homogeneous lighting along the line of
sight. However, it is difficult to find the farthest pixel in a single image. In an in-air image, the
global air-light is often estimated as the color of the highest intensity pixel [21]. However,
objects that are brighter than the background will lead to an incorrect estimation in underwater
environment.

Following, the transmission tc can also be defined as an exponential decay function
correlated with scene depth:

tc xð Þ ¼ e−βcd xð Þ ð5Þ
where βc is the attenuation coefficient depends on wavelength, d(x) is the distance from the
camera to the scene point x. The scene depth d can be represented as a sum of the distance of
the nearest point to the camera d0 and infinity distance dn [56].
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2.2 Underwater light attenuation prior

Base on the above analysis, it can be concluded that the scene depth is a key clue to estimate
the transmission map. In the early years, Song [55] proposed an effective scene depth
estimation model using underwater light attenuation prior. The ULAP describes that there is
a strong correlation between the scene depth and the difference between the value of red
channel and the maximum value of G-B channel.

Since the absorption of red light can be an order of magnitude greater than the absorption of
blue and green light, the intensity of red channel will attenuate faster than that of green or blue
channels when the depth increases. To be specific, in the far region, the red light attenuates
seriously, leading to a large difference between the maximum value of G-B channel and the
value of red channel.

Based on the light attenuation prior, a linear model of the maximum value of G-B channel
and the value of R channel was developed to estimate the depth map:

d xð Þ ¼ θ0 þ θ1m xð Þ þ θ2v xð Þ ð6Þ
where m(x) is the maximum value of G-B channel, v(x) is the value of R channel, θ0, θ1, θ2 are
coefficients. To get the accurate values of parametersθ0, θ1, θ2, the authors manually select 100
proper depth maps obtained by [44] as the training data and train the model with a supervised
linear regression. Unfortunately, the ULAP method only considers the light attenuation, which
may fail in some cases as shown in Fig. 1. We can observe that some large blue objects in
an image are often incorrectly estimated to be farther. Besides, if the color of the water body
contains more red tones, it will be estimated to be closer than the foreground.

Fig. 1 Two failure examples of depth map estimation using ULAP
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3 Proposed method

The proposed method is composed of three main parts involving background light estimation,
scene depth estimation, and transmission map estimation, which will be explained in detail in
the following subsections. The flowchart of the proposed method is shown in Fig. 2.

3.1 Background light estimation

The background light refers to the waterbody color that depends on different water types. Most
existing methods believe that the color of water can be obtained from at least one pixel in the
image. Generally, the farthest region of an underwater image is often regarded as the candidate
region of background light.

We assume that there exists an area that does not contain objects, in which the intensity of
the pixels can reflect the color of the water body. Since the amount of light absorption varies
with different wavelengths, the dominating color in this area appears green or blue. At the
same time, such an area has a low variance. To detect the candidate area of background light,
we use an automatic searching method based on quad-tree subdivision [31]. Considering both
the color difference and smoothness of this candidate region, the score for each sub-block can
be set as:

Score ¼ SΔ þ Sσ ð7Þ
where SΔ is determined by calculating the max difference between G-B value and R value:

SΔ ¼ max max G xð Þ;B xð Þð Þ−R xð Þð Þ; x∈Ω ð8Þ
and Sσ is defined as:

Sσ ¼ −
1

3
∑

c∈ r;g;bf g
σc ð9Þ

where σ is the standard deviation of the pixel value in a selected region Ω.
After that, the block with the highest score will be further divided into smaller blocks until

the size of the block is smaller than a predefined threshold. The final background light is

Original image

Calculated gradient 

map by OGO

Rough depth map Refined depth map

Restored scene 

radiance

Estimated transmission 
map of red channel

Estimated transmission 
map of green channel

Estimated transmission 
map of blue channel

Calculated attenuation 

coefficient of each 

color channel

Quad-tree subdivision
Final candidate region 

marked with red rectangle

Estimated 

background light

Fig. 2 Flowchart of the proposed method
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calculated by averaging the pixel value inside the last block. The detailed algorithm is
described in Algo.1.

Algorithm 1Background light estimation

Following, four representative underwater images with different scenes (i.e. images with a
white object, horizontal perspective or top-down perspective images, and images with complex
foreground) are selected to demonstrate the effectiveness and robustness of quad-tree subdi-
vision method. Their results of background light estimation are presented in Fig. 3 and the final
selected block is filled with red color.

3.2 Scene depth estimation

To accurately estimate the distance from the farthest point to the closest one in an image, we
also take the image gradient in to consideration. The intensity of image gradient is a rough
estimation of depth information based on the observation that the regions of far scene points
are smoother than those of close scene points, producing a smaller gradient value.

The magnitude of image gradient Gmag is computed as:

Gmag ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gx

2 þ Gy
2

q
ð10Þ

whereGx andGy are calculated by applying horizontal and vertical operators to different patches in
an image. A 3×3 patch is presented in Fig. 4a. fc denotes the value of the central pixel and fk (k =
1,2,…8) is the value of its kth neighbor. This traditional calculation of gradient only indicates

Fig. 3 Examples of background light estimation
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changes along y and x axes. Thus it is unable to represent how illumination changes in an arbitrary
direction. Singh [54] used a combined oblique gradient profile prior (OGPP) on haze images and
can efficiently estimate their depth maps. The corresponding oblique gradient operator with a patch
size of 3×3 is presented in Fig. 4b and is defined as:

o m; nð Þ ¼ arctan
Gy

Gx

� �
¼ arctan

∑
8

k¼1
f c− f kð Þ
8

0
BB@

1
CCA ð11Þ

To better understand the process of estimating depth map, we give an example to illustrate
it, as presented in Fig. 5. Based on Eq. (11), we first use the OGO to generate the gradient

Fig. 4 a 3×3 image patch centered at fc, b oblique gradient operator

(a) (b)

(c)                           (d)

Fig. 5 Depth map estimation. a Original image, b the gradient magnitude map, c the depth map after
morphological dilation and hole-filling, d the refined depth map based on guided filter
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magnitude map Gmag of the degraded image as shown in Fig. 5b. Assuming that depth is
locally constant in a small path, we further apply the dilation operation and a hole-filling
algorithm to improve Gmag (shown in Fig. 5c), which is expressed as

Gdilate xð Þ ¼ Gmag xð Þ⊕SE ð12Þ

In Eq. (12), the morphological structuring element (SE) is square-shaped whose width is 7
pixels, and the dilation operation for an image I(x,y) using a structuring element b is defined as

I⊕b x; yð Þ ¼ max I x−s; y−tð Þ þ b
�
s; t

�n o
ð13Þ

Here, we use stretched map on the range [0, 1] to obtain the gradient-based depth map

dgmag xð Þ ¼ 1−Strch Gf ill xð Þ� � ð14Þ
where Gfill is the modified Gdilate after filling holes generated by flat regions and the stretching
function, which is defined as

Strch Vð Þ ¼ V−min Vð Þ
max Vð Þ−min Vð Þ ð15Þ

Finally, we utilize the guided filter algorithm [22] to further refine the depth map, as shown in
Fig. 5d.

Inspired by the ULAP, we also incorporate the rapid and effective depth estimation dulap
into Eq. (6) to guarantee a reliable depth map. This prior has been explained in Section 2.2, and
the coefficients θ0, θ1, θ2 are set to be 0.53214829, 0.51309827 and − 0.91066194, respec-
tively, according to the best learning results in [55].

The coarse depth map is computed by combining the depth map (dgmag) generated by image
gradient and the depth map (dulap) based on light attenuation prior

dc xð Þ ¼ wdulap þ 1−wð Þdgmag ð16Þ
where w is the weight to balance the effect of dulap and dgmag, which can be determined by the
information of red channel with the help of sigmoid function

w ¼ 1

1þ e−α1 r−α2ð Þ ð17Þ

where r is the average value of red channel, α1 is the parameter that controls the slope of the
curve, which is empirically set to 32, α2 is the center of the horizontal coordinate.

To get a more accurate scene depth, the distance between the nearest point and the camera
needs to be considered

d0 ¼ 1− max
c∈ r;g;bf g

max Bc−Ic xð Þj j
max Bc; 1−Bcð Þ

� �
ð18Þ

To demonstrate the effectiveness of the proposed scheme, five sample images and their depth
maps using different methods are shown in Fig. 6. The depth maps of UDCP [11] in Fig. 6b
are obtained by inverting Eq. (5) with d(x) = log Nrer (r) (tr(x)). The depth maps generated by
IBLA [44] and our proposed method are presented in Fig. 6c and d, respectively. It can be seen
that UDCP method presents unsatisfactory depth maps since it only identifies the distance
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between foreground and background. The IBLA method works well in most cases but
incorrectly estimates the white fish and the difference between objects in the foreground. In
contrast, our method can produce proper depth maps and the visual quality of the depth maps
shows much better. As shown in the first column of Fig. 6, for instance, only our method can
correctly estimate the depth with small values closer to the camera when the image has a white
object in the foreground.

3.3 Transmission map estimation

The scene depth acquired by our method needs to be further transformed to actual distance
using a constant scaling factor D∞:

d xð Þ ¼ D∞ � dc xð Þ þ d0ð Þ ð19Þ
Then, the transmission map for each channel can be estimated based on Eq. (5).

In most cases, the attenuation coefficient of red channel is determined as βr∈ 1
8 ;

1
5

	 

[44].

According to [32], the attenuation coefficient of green/blue channel can be further calculated
by green-red and blue-red ratios:

βc0

βr ¼ −0:00113λc0 þ 1:62517ð ÞBr ∞ð Þ
−0:00113λr þ 1:62517ð ÞBc0 ∞ð Þ ; c

0
∈ g; bf g ð20Þ

where Bc is the background light, and λc is the wavelength of each channel. The ranges of the
wavelength of different channels are 620 ~ 750 nm (red), 490 ~ 550 nm (green) and 400 ~
490 nm (blue) [8]. Here, we set D∞ = 8, βr ¼ 1

6 and λc for R-G-B channel as 620, 540 and

450, respectively. The transmission maps estimation is described in Algo.2.

(a)

(b)

(c)

(d)

Fig. 6 Comparison of depth estimation. a Original images, b the depth maps using UDCP, c the depth maps
using IBLA, d the depth maps using our proposed method
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Once the background light B and the transmission map t are obtained, we can
restore the scene radiance from Eq. (4). However, the light color area will be
excessively restored when the transmission t approaches zero. To assure the restored
results appear more natural, we set a constant t0 = 0.1 as a lower bound of
transmission t. Finally, the restored image J can be calculated using the following
modified equation:

J c xð Þ ¼ I c xð Þ−Bc

max tc xð Þ; t0ð Þ þ Bc ð21Þ

Algorithm 2 Transmission estimation

4 Experimental results and analysis

In this section, we first present some recovered results and perform a validation of the
proposed method. Then, the proposed method is compared with the other five
underwater restoration methods to evaluate their performance qualitatively and
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quantitatively. Finally, we extend to examine the results of our approach for applica-
tion in object segmentation.

4.1 Qualitative assessment

To verify the effectiveness of our proposed method, 20 underwater images with different
degraded scenes (i.e. bluish scene, greenish scene, hazy scene, low light scene, turbid scene)
are selected from the UIEB dataset [33], as presented in Fig. 7a. In the first row of Fig. 7a, we
can observe that these original images contain a large area of the pure water body. As
mentioned above, the estimation of the background light in this scenario is easy to be obtained.
On the contrary, as shown in the bottom row of Fig. 7a, these degraded images contain thin
mist or almost no water area. Most of them are close-up scenes of fish and coral reefs whose
scene depth varies little. From Fig. 7b, it can be seen that the foreground color of these restored
images has been well improved because more red color is reproduced. These satisfying results
demonstrate our proposed method can effectively remove haze, as well as correct color
and reveal more valuable information.

Furthermore, we compare the performance of our method with other five recent competitive
methods including MIP method [5], wavelength compensation and image dehazing (WCID)
method [8], UDCP method [11], IBLA method [44] and ULAP method [55]. In Fig. 8, due to
the space limitation, we present six representatives that contain different characteristics in the
scene. MIP method attempts to get the so-called depth using differences between the maxi-
mum value of red channel and green, blue channel Dmip and estimate the transmission through
a simple shifting of Dmip. As can be seen from Fig. 8b, MIP method has a little effect on
dehazing. Specifically, when the haze is thick, the color becomes pale, the differences of the
value Dmip among different patches are very small, leading to an inaccurate estimation of
depth. Similarly, the restored image generated by the WCID method are also unsatisfactory, as
shown in Fig. 8c, despite the fact that the haze can be removed to some extent. UDCP method
finds the brightest pixels in the dark channel as an estimation of the background light,
generating a darker scene radiance. Although UDCP method has a good performance on
dehazing, the whole restored results become darker and the color cast is even more serious.
That’s because it is derived from DCP method and the estimated transmission of the whole
scene has similar values. Additionally, as shown in Fig. 8d, UDCP renders the restored images

(a)

(b)

Fig. 7 Examples for presenting the performance of our proposed method. aOriginal images, b the corresponding
restored results of our proposed method
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in a bluish or greenish tone at the foreground due to a wrong estimated transmission. Although,
the dehazing effects of IBLA and ULAP methods are not as good as UDCP method, IBLA
method can recover more details, as shown in Fig. 8e (i.e. the top left corner and the bottom
left corner of the last two images), yet there remains some fuzzy. Likewise, Fig. 8f demon-
strates that the thin haze is also not removed by ULAP method. Moreover, the contrast
enhancement of ULAP is not obvious. Since the normalized residual energy

ratios Nrerc ¼ e−βc used in ULAP is fixed, it cannot be adjusted according to various scenes
and thus producing visually unnatural results. On the contrary, the recovered results of our
proposed method achieve superior performance on dehazing, enhancing contrast, and reveal-
ing more details due to the more accurate depth estimation, as shown in Fig. 8g.

4.2 Quantitative assessment

Following, we conduct some quantitative evaluations on the restored results in Fig. 8. Because
of the unavailability of ground truth, it is difficult to evaluate the quality of underwater images
using full-referenced metrics [18, 36]. Besides, some no-reference (NR) quality assessment
methods [16, 17, 19, 20, 53] designed for in-air images are also not suitable for underwater
images with various degradations, including haze effect, low contrast and non-uniform color
distortion. Therefore, some no-reference metrics [42, 60] specially designed for evaluating
underwater images quality are emerging. Here, we adopted six NR metrics including under-
water color image quality evaluation (UCIQE) [60], underwater image quality measure
(UIQM) [42], no-reference quality assessment of contrast-distorted images (CDIQA) [12],
fog aware density evaluator (FADE) [9], no-reference quality metric of contrast (NIQMC) [19]

(a) (b) (c)             (d)             (e)            (f)             (g)

Fig. 8 Comparison of restored results by different methods. a Original images, b-g the restored results by using
MIP method, WCID method, UDCP method, IBLA method, ULAP method and the proposed method,
respectively
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and blind image quality measure of enhanced images (BIQME) [20], to quantitatively evaluate
the performance of these compared restored methods. Their calculated results of Fig. 8 are
listed in Tables 1 and 2, respectively.

As shown in Table 1, it can be seen that our proposed method achieves the highest UCIQE
values comparing with MIP, WCID, UDCP, IBLA and ULAP. Moreover, the obtained
UCIQE values of our method are more stable. For example, for image 5, the UCIQE values
obtained by MIP and UDCP are even lower than that of the original image. However, in most
cases, the values obtained by the proposed method are higher than 0.6, which indicates that our
method can achieve a better balance among chroma, contrast and saturation. Also, for UIQM,
the results presented in Table 1 show that the results of our method outperform the other
methods in most cases except image 3 of Fig. 8c generated by UDCP with the highest value of
1.4701. While combining with the qualitative assessment, the results of UDCP suffer from
underexposure problem even though it sometimes boosts its UIQM scores. In contrast, our
method achieves better visual result in increasing contrast and has minimal performance
fluctuation compared with other methods.

Table 2 demonstrates the quantitative measures of CDIQA, FADE, NIQMC and BIQME.
The obtained highest values of CDIQA and NIQMC values by our method indicate that it can
significantly enhance the contrast. For FADE, it is clear that both UDCP and our method
outperform the other four compared methods. UDCP method ranks as the first/second with
respect to the ability to recover scene visibility. Likewise, WCID can also perform well on
some specific scenes (i.e., Image 3 and Image 5). Although our proposed method does not rank
first in these two images, it can still rank in the top three among all the methods, demonstrating
that our method can efficiently remove the haze and produce a relatively clear scene. In terms
of NIQMC, the proposed method scores above 4.9 on all six examples. For BIQME, we can
observe that WCID, UDCP, IBLA and ULAP show unsatisfactory results and even yield
lower scores than the original image 6. MIP achieves a specific high BIQME score on Image 6
but performs unevenly in the other five tested images. All in all, the proposed method has
better robustness and achieves high scores across various metrics.

To further evaluate the effectiveness and robustness of the proposed method, we carry out
some experiments on UIEB [33] dataset and RUIE [39] dataset. Table 3 summarizes their
average scores of UCIQE, UIQM, CDIQA, FADE, NIQMC, and BIQME of restored images

Table 1 Quantitative comparison of UCIQE and UIQM metrics. (The bold values represent the best results)

Metrics Methods Image 1 Image 2 Image 3 Image 4 Image 5 Image 6

Original 0.3781 0.4063 0.5176 0.4308 0.5056 0.3971
MIP 0.4011 0.4324 0.5701 0.6010 0.4479 0.4616
WCID 0.4129 0.4435 0.5839 0.5268 0.5212 0.4375

UCIQE UDCP 0.5967 0.5618 0.6162 0.6055 0.4776 0.4877
IBLA 0.5155 0.5445 0.5971 0.6125 0.5274 0.4967
ULAP 0.5136 0.5425 0.6305 0.6023 0.5804 0.5059
Proposed 0.6014 0.6361 0.6775 0.6674 0.6314 0.5515
Original 0.7075 0.6751 1.1399 0.8853 0.7593 1.1127
MIP 0.7730 0.7412 1.2446 1.2236 0.8572 1.3685
WCID 0.9599 0.8636 1.3736 1.1738 1.1927 1.3991

UIQM UDCP 1.3076 1.0977 1.4701 1.2548 1.3522 1.6229
IBLA 1.0801 1.0289 1.2876 1.2364 1.0011 1.3174
ULAP 1.1529 1.1383 1.3129 1.2626 1.1813 1.3414
Proposed 1.3961 1.2581 1.3856 1.3549 1.3580 1.6837
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by using different compared methods. It is worth noting that the results of our proposed
method are superior to other five state-of-art methods in terms of these six objective NR
quality assessment metrics. To sum up, both qualitative and quantitative experimental results
demonstrate that our method can achieve better performance in removing haze and improving
contrast.

Table 2 Quantitative comparison of CDIQA, FADE, NIQMC and BIQME metrics. (The bold values represent
the best results)

Metrics Methods Image 1 Image 2 Image 3 Image 4 Image 5 Image 6

Original 2.3225 2.5384 2.7024 2.7574 2.0715 2.4868
MIP 2.2170 2.5372 3.3085 3.4468 2.1608 2.6914
WCID 2.2446 2.4983 2.9321 2.5901 2.3518 2.1476

CDIQA UDCP 3.2274 2.2224 3.2933 3.3894 2.0681 2.2568
IBLA 2.7071 2.9163 3.4586 3.4594 2.4735 3.0334
ULAP 2.8574 2.8705 3.4576 3.4578 2.5681 3.0713
Proposed 3.4264 3.3690 3.4603 3.4632 2.8406 3.0974
Original 1.0394 1.1922 0.9332 0.6417 1.2135 0.3688
MIP 0.9450 1.0498 0.7638 0.3486 1.4800 0.2737
WCID 1.2074 0.7082 0.4457 0.3833 0.6055 0.3669

FADE UDCP 0.4273 0.6495 0.4401 0.3144 0.5384 0.2273
IBLA 0.7992 0.8569 0.6828 0.3380 1.3038 0.5550
ULAP 0.7655 1.0719 0.5778 0.4015 0.7291 0.4631
Proposed 0.4216 0.6024 0.5020 0.2833 0.6514 0.1778
Original 2.6765 3.0924 4.3697 3.3297 4.0674 3.4926
MIP 2.8521 3.2693 4.8793 3.8670 4.9383 4.0896
WCID 3.1411 3.1926 4.7210 3.9415 3.6724 3.2482

NIQMC UDCP 4.4408 3.7687 5.1418 3.5175 4.7101 4.1119
IBLA 4.1903 4.4282 5.0231 4.2498 5.0877 4.3685
ULAP 4.2383 4.4275 5.2134 4.5501 5.1789 4.6646
Proposed 4.9394 4.9937 5.4556 4.9121 5.4544 4.9155
Original 0.4022 0.4621 0.5105 0.4635 0.4727 0.5238
MIP 0.4093 0.4564 0.5705 0.4915 0.5728 0.6105
WCID 0.3896 0.4300 0.6537 0.5374 0.4901 0.4810

BIQME UDCP 0.5639 0.5599 0.6717 0.3932 0.5322 0.4658
IBLA 0.4602 0.5256 0.5947 0.4642 0.5781 0.4202
ULAP 0.4475 0.5457 0.6096 0.6223 0.5515 0.5177
Proposed 0.6457 0.5887 0.6634 0.6372 0.5939 0.5263

Table 3 Comparison of average UCIQE, FADE, NR-CDIQA, NIQMC, BIQME of different restored methods
on UIEB dataset and RUIE dataset. (The bold values represent the best results)

Datasets Metrics\Methods MIP WCID UDCP IBLA ULAP Proposed

UCIQE 0.5194 0.5369 0.5331 0.5452 0.5560 0.5864
UIQM 1.2205 1.3127 1.2908 1.2519 1.2794 1.3600

UIEB CDIQA 2.9343 2.6633 2.8406 3.1229 3.1010 3.1613
FADE 0.6313 0.5302 0.4698 0.6103 0.5541 0.4688
NIQMC 4.4825 4.1308 4.4121 4.7383 4.7523 5.0069
BIQME 0.5540 0.5452 0.5903 0.5444 0.5703 0.5930
UCIQE 0.4407 0.4591 0.4909 0.4901 0.4446 0.5066
UIQM 0.9887 1.1152 1.2311 1.1607 1.0681 1.2397

RUIE CDIQA 2.6670 2.5218 2.7460 2.8107 2.7440 2.8412
FADE 0.5606 0.6728 0.4772 0.5647 0.5371 0.4650
NIQMC 3.6613 2.9095 3.8579 4.2694 3.8589 4.3157
BIQME 0.5564 0.4578 0.5492 0.5461 0.5533 0.5596
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4.3 Application test

To further assess the performance of the proposed method, we attempt to examine its
application in image segmentation. Image segmentation is a critical and essential task of many
computer vision applications [26, 27, 29, 34]. In this section, we employ the original
implementation of chan-vese model [6], which is an important image segmentation model
based on regional information, to evaluate the performance of our work.

Due to the limited space, we simply display two examples, as shown in Fig. 9. It can be
seen from Fig. 9 that the restored results of MIP, UDCP, ULAP and IBLA have large error in

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 9 Applications in image segmentation. a Original images and segmentation results, b-g the restored images
and their corresponding segmentation results by using MIP method, WCID method, UDCP method, IBLA
method, ULAP method and our proposed method, respectively
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segmentation of Image 1, and WCID cannot even detect the fish. However, our proposed
method can accurately extract the edge information of the fish. The results of Image 2
recovered by ULAP, IBLA and our method also show that the restored version with high
visibility and contrast can achieve good separation. Furthermore, their performance of different
compared methods are tested using two simple metrics: intersection over union (IoU) and dice
similarity coefficient (DICE), which are the most commonly used indexes in evaluating image
segmentation. Both the two metrics are used to measure the similarity between the segmen-
tation result and the standard mask (manually segmented). The results in Table 4 show that the
proposed method achieves the higher scores than the other five methods, which suggests that
our method can improve the accuracy of conventional segmentation as a pre-processing step.

5 Conclusion

We present a novel restoration method for improving the quality of underwater image. The
proposed method is based on an assumption that the intensity of the image gradient is a rough
estimation of depth information. Initially, we utilize the quad-tree subdivision to estimate the
background light by both considering smoothness and color difference. Afterward, an oblique
gradient operator and underwater light attenuation prior are combined to estimate the scene
depth. Subsequently, the transmission map is calculated relying on the acquired background
light and scene depth. Finally, the scene radiance can be obtained based on the UIFM without
any post-processing. Experimental results demonstrate that the proposed method achieves a
good performance across different degraded scenes. The qualitative and quantitative compar-
isons further show that the proposed method outperforms the other five compared methods.
Despite of the good performance, our proposed method also has some limitations. One is that it
is not satisfactory to recovering non-uniform illumination image caused by auxiliary light
sources. In future work, we intend to enhance and restore underwater image under more
challenging conditions.
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Table 4 Quantitative comparison of IoU and DICE metrics. (The bold values represent the best results)

Methods Original MIP WCID UDCP IBLA ULAP Proposed method

Image 1 IoU 0.4948 0.5284 0.0150 0.7099 0.6635 0.5021 0.8619
DICE 0.6620 0.6914 0.0296 0.8304 0.7977 0.6685 0.9258

Image 2 IoU 0.2609 0.2910 0.3772 0.5287 0.5802 0.3778 0.5960
DICE 0.4139 0.4508 0.5477 0.6917 0.7343 0.5484 0.7469
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