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Abstract
Music Emotion Recognition (MER) has attracted much interest in the past decades. Many
deep learning methods have been applied to this field recently. However, the previous
methods for MER mostly utilized simple convolutional layers to extract features from the
original audio signals, in which representative emotion-related features cannot be extracted.
In this paper, we propose a novel method namedModularized Composite AttentionNetwork
(MCAN) for continuous MER. A sample reconstruction technique is proposed to enhance
the stability of the network. Specifically, a feature augmentation module is constructed to
extract salient features and we design a weighted attention module to control the focus of the
whole network. Furthermore, a style embedding module is introduced to enhance the detail
processing capability of the network. We conduct experiments on two datasets, that is, the
benchmark dataset DEAM and the newly proposed dataset PMEmo. The superior results
prove the effectiveness of our proposed MCAN. Especially qualitative analyses are given to
for explaining the performance of our model.
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1 Introduction

The demand for services that provide perceptual interaction capabilities has made affective
computing much more vital nowadays. Music is highly associated with human life due to the
ability to induce and convey emotions [51]. The development of digital technology has greatly
contributed to the tremendous growth of digital music libraries. The way that music informa-
tion is organized and retrieved has to update to satisfy the ever-increasing need for effective
information access [48]. As a consequence, the study of MER has become a hotspot and can be
utilized to improve Music Information Retrieval (MIR). The study of social tagging on
Last.fm1 shows that emotional tags are the third most frequently used category when people
search for music, which also indicates the importance of MER for MIR [48]. Furthermore,
emotion in music also plays an important role in music recommendation [13], therapy [11],
interaction [20], music automatic generation, and automatic soundtrack [55]. In general, MER
can be applied for automatic emotional annotation of music pieces, which can provide
technical support for different application scenarios, such as music information recommenda-
tion, cross-modal information interaction, and treatment of symptoms such as depression, etc.
From a long-term perspective, music is closely related to the expression of emotions, and MER
will become one of the important emotional interaction tools under the environment of
intelligent human-computer interaction.

Many participants have obtained considerable results on Music Emotion Classification
(MEC) task in the annual campaign at Music Information Retrieval Evaluation eXchange
(MIREX)2 since 2007. In the earlier time, researchers utilized machine learning methods in
MER, in which handcrafted features were needed. The difficulties of traditional algorithms,
such as Supported Vector Regression (SVR) [31] and Gaussian Mixture Model (GMM) [43],
are the extraction and selection of handcrafted features. However, the extraction process
requires a lot of music prior knowledge [10]. The omission of necessary features and the
inclusion of irrelevant features will both lead to undesirable results. Since Convolutional
Neural Networks (CNNs) could be applied to extract features from the original picture on
image classification tasks, researchers started to employ CNNs to automatically learn features
in audio processing tasks. The studies of Orjesek et al. [30] and Mao et al. [28] suggested that
CNNs similarly were appropriate to extract features from spectrograms but those features
outperformed handcrafted ones. Sarkar et al. [34] utilized VGGNet with reduction of layers for
music emotion classification task. This method has achieved better performance than tradi-
tional algorithms. However, methods based on CNNs ignored the sequential information, for
which the contextual relationship cannot be used effectively. RNN due to its ability to process
sequential data has shown great advantages in MER. Gated Recurrent Unit (GRU) and Long
Short-Term Memory (LSTM) have widely been used in MER. Referring to the results of the
“Emotion in Music” task at MediaEval [1], methods with LSTMmodules have achieved state-
of-the-art performance but still had difficulties in the extraction of handcrafted features. Then,
researchers attempted to combine the automatic feature extraction of CNNs and the sequential
information processing of RNN. A fusion model proposed by Dong et al. [12] verified the
effectiveness of combining CNNs and RNN. However, the existing fusion methods only
adopted simple CNNs and RNN, which cannot extract salient features and did not take the
deep relationship of sequential series into consideration.

1 Last.fm. Available: https://www.last.fm/
2 MIREX. Available: http://www.music-ir.org/mirex/wiki/
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According to Yang et al. [48], MER can be divided into two types. One is the MEC task
that emotions of music are sorted into specific classes. The other is the music emotion
regression task that annotations of music pieces are numerical values in two-dimensional
(valence and arousal) or three-dimensional (valence, arousal, and dominance) space. The
obtain of ground-truth for music emotion is more subjective than other annotations (e.g.,
genre, instrument). Dividing music emotion into numbers of classes is insufficient due to the
variety of emotion categories and the subjectivity of annotations. Continuous annotations can
realize the sufficient representation of music emotion by annotating the music pieces in
numerical ways [51]. Furthermore, referred to MacDorman et al. [26], the consistency of
annotations was low because the added dimension would lead to heavy cognitive burden on
annotators, so the expansion in dimension cannot prompt the recognition accuracy much.
Thus, the study of continuous MER in two dimensions is more reasonable.

The continuous MER task is to extract features based on raw audio, and propose a method
to learn the mapping relationship between music pieces and numerical emotion labels. In this
paper, we propose Modularized Composite Attention Network (MCAN) for continuous MER.
We take advantage of the adaptive salient-feature learning of CNNs and the weighting ability
of attention mechanism to optimize our model. As is shown in Fig. 1, the emotional model we
choose to represent emotions is a fuzzy dimensional model with valence (negative to positive)
and arousal (silent to energetic) axis proposed by Jun et al. [21], which is modified from
Thayer’s two-dimensional emotional model [40]. Inspired by the mixup [52] technique, we
propose a sample reconstruction technique to produce the noise input, which can highly
enhance the stability of the network. We construct a feature augmentation module based on
the two branches of filter bank output and handcrafted features. Attention mechanism is
introduced to extract salient features. A style embedding module is introduced to provide
sufficient emotion-related details. The Concordance Correlation Coefficient (CCC) is used to
construct the loss function to prompt the performance of MCAN.

The main contributions of our work are summarized as follows:

1) We design a sample reconstruction technique. To combat the subjectivity of sentimental
labels, we construct noisy samples by random resampling through origin sampling in
dataset. The reconstructed samples will be input into the network as noise input. This
technique can help to enhance the stability of the network.

2) We propose a feature augmentation module. The filter bank output and handcrafted
features are extracted as the inputs of the network. Then we design an early fusion
architecture to make the two branches of features integrated together. This module can
help to provide more property details of music pieces.

3) We propose a weighted attention module for the extraction of salient features. Instead of
simply weighting by attention mechanism, the original feature map is added into the
weighted one to get the balanced feature map. This module can help to control the focus
of the network.

4) We construct a style embedding module. The metadata of music piece is transformed into
vector and fed into the regression part of the network. This module can help to strengthen
the ability of processing details of network.

The remaining of this paper is organized as follows: Section 2 demonstrates the related works
of MER focusing on different targets implemented by various algorithms. Section 3 describes
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the details of MCAN. Section 4 represents the specific configurations of our experiments and
analysis. Finally, we conclude our work and summarize the future work in Section 5.

2 Related work

Over the past decades, although it is a newly emerging field, the research in MER has
developed rapidly. Many machine learning methods have been applied to MER with the
extraction and selection of handcrafted features in the earlier time. Researchers gradually
adopted algorithms that performed well in image processing to audio processing. Consequent-
ly, many architectures based on CNNs have been widely used in MER. As is mentioned
above, MER can be classified into two types: categorical recognition and numerical prediction.
In the following paragraphs of this section, we will introduce the details of different ways for
feature extraction and methods for recognition applied in MER.

2.1 Feature extraction

Different emotional states of music are tightly associated with different patterns of acoustic
cues [48, 51]. Handcrafted features are essential while applying traditional machine learning
algorithms or methods based on RNN in MER. Yang et al. [48] comprehensively summarized
the commonly used tools (e.g., PsySound [6], MIRtoolbox [22], Marsyas [41]) for feature
extraction and selected feature sets. Researchers developed several libraries based on different
programming languages to extract features in five perceptual dimensions of music listening,
that is, energy, rhythm, temporal, spectrum, and melody. Grekow et al. [14] introduced the
newly proposed feature extraction tool called Essentia [4]. They concluded that features
extracted from raw audio were consisted of low-level, middle-level and high-level

Fig. 1 The valence-arousal emotion model
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representations. In terms of the selection of handcrafted features, researchers usually adopted
Principal Component Analysis (PCA) and Factor Analysis (FA) to reduce the dimensionality
of features [14, 48]. However, it is difficult to select comprehensive emotion-related features in
music only by traditional ways. The reduction of dimensionality can also easily lead to the
omission of essential features.

Consequently, many studies have attempted to adopt CNNs to automatically learn features.
Since CNNs have presented extraordinary ability for feature extraction in image classification
tasks, Mao et al. [28] applied it on spectrograms in speech emotion recognition task. All of
these demonstrated that CNNs could be adapted for adaptive feature extraction through raw
audio. Dong et al. [12] employed simple CNNs for feature extraction and the results suggested
that the extracted features outperformed several handcrafted-feature sets. However, some
methods with deep architectures, such as DenseNet [17] and ResNet [15], which saliently
performed better than simple CNNs [36] in image recognition, cannot contribute to better
results in audio processing tasks due to the insufficient data representation.

Although CNNs have been successfully utilized for feature extraction in MER, previous
methods did not take sufficient information of spectrograms into account. To solve these problems,
we propose a novel feature extraction module based on the feature augmentation module and the
weighted attention module, which can help to extract salient features through sufficient details.

2.2 Music emotion recognition

In categorical approach, emotions in music are annotated by different classes such as the basic
emotions (e.g., happy, angry, sad, and relaxing). Researchers assigned a piece of music with only
one class, which formed the study of single-label classification. The studies of [3, 33, 42] applied
machine learning methods such as SVR, K-Nearest Neighbor (KNN), and MLR. Deep learning
methods have also been utilized in MER. Sarkar et al. [34] employed VGGNet in single-label
classification and the results suggested that the deep learning methods were applicable in this
field. Many novel methods, such as Vector-Quantized Variational Auto-Encoder (VQ-VAE)
[19], RNN based on LSTM [2, 29], CNNs based on self-attention mechanism [38], and ResNet
based on frequency aware convolution [5], performed well in detecting emotion and theme in
music tracks at MediaEval2019.3 However, single-label is insufficient for representing emotions
in music due to the subjectivity of perceptions. Li et al. [23] divided music into different clusters
by SVMs. MERwas treated as a multi-label classification task in this method. Based on the same
classification approach, Wu et al. [46] proposed a novel hierarchical Bayesian model. Unfortu-
nately, because of the cognitive burden of humans and the ambiguous boundaries between
different emotions, the annotations for multi-label classification are difficult to obtain. Thus,
fuzzy classification is proposed to balance the simplicity of single-label classification and the
difficulty in obtaining labels of multi-label classification. Yang et al. [49] firstly attempted to
utilize the fuzzy classificationmethod forMER to deal with the subjective issue of annotations. In
this approach, the fuzzy vectors combined by the probabilities of different emotions were
computed to represent the emotions contained in a piece of music.

The fuzzy classification methods can deal with the subjective issue of emotional expression to a
certain extend. However, emotions are insufficient to be expressed with only several classes. There
will be a fine-grained issue while treating emotion recognition as a classification task [48]. Thus,
many researchers represented emotions in a two-dimensional space as is shown in Fig. 1. They

3 MediaEval2019. Available: http://www.multimediaeval.org/mediaeval2019/
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regarded MER as a numerical prediction task. Yang et al. [50] groundbreakingly applied models
such asMLR, SVR, andAdaBoost.RT to numerical regression forMER. Thereweremany state-of-
the-art methods based on RNN emerging for continuous prediction tasks since 2015. Orjesek et al.
[30] employed GRU as a unit in RNN. Chen et al. [7] proposed a model based on BLSTM for
multimodal emotion recognition. Their experimental results suggested that BLSTM performed
better than LSTM. The studies of [25, 27] have also shown the superiority of LSTM in processing
audio signals. Dong et al. [12] proposed a bidirectional convolutional recurrent sparse network, in
which CNN is adopted to extract the featuremaps through original spectrograms. In this method, the
disadvantages of handcrafted feature extraction could be avoided. Cheuk et al. [8] proposed a novel
method in traditional way, which is based on SVR and performedwell in regression task. In general,
because of the subjectivity of human annotations, assigning one piece of music with only one point
in a two-dimensional plane is still not enough. Thus, continuous probability distribution prediction is
proposed to match the original annotations. In this approach, the problem of labeling can be solved
fundamentally. Schmidt et al. [35] firstly treated MER as an issue of probability distribution. In this
method, the probability density function was learned from the original labels. Then, the features
extracted from audio and the annotations could be mapped in a linear way. However, models based
on probabilistic prediction are more susceptible to the impact of original annotations. Though
subjective factors could be eliminated in these methods, the establishment of the dataset would be
more rigorous and the application would be more restricted.

From a comprehensive perspective, the dimensional numerical prediction is more applica-
ble and reasonable. Although the previous methods have achieved great improvement in
different MER tasks by using deep learning techniques. Some of these methods used simple
CNNs to extract features from spectrograms, which ignored semantic relationship. Others did
not consider the sequential information. To better extract emotion-related features and employ
temporal relationship, we design a method based on the feature augmentation module and the
sequential processing module. Furthermore, we design a sample reconstruction technique to
enhance the stability of the network and the style embedding module to supply sufficient
details.

3 Modularized composite attention network

In this section, we introduce the proposed model MCAN. The architecture of MCAN is shown in
Fig. 2, which contains four main parts. The first one is the sample reconstruction technique, which
can help to make the network sensitive to slight difference among music pieces with near
emotional values. The second one is the feature augmentation module combined by the process-
ing of filter bank output and the handcrafted features. After integrating the two branches of
features, the feature map is fed into a weighted module based on self-attention. Then the output
will be input into the BLSTMmodule to process the sequential information. Furthermore, a style
embedding module is designed to provide sufficient details related to the expression of emotions.
We will introduce the main details of our model in the following paragraphs.

3.1 Sample reconstruction

According to Deshpande et al. [9], a spectrogram contains all the physical information of the
original audio. Thus, it can be a sufficient representation of audio signals. Compared to spectro-
grams, Pons et al. [32] used raw audio as an input, the results of which suggested that raw audio
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cannot greatly improve the performance. Furthermore, the processing of raw audio is more
complicated. The filter bank output is an intermediate product between Mel-spectrograms and
MFCCs. Compared with Mel-spectrograms, filter bank output includes the log operation,
eliminating some redundant information. Compared with MFCCs, filter bank output has not
undergone the conversion operation of MFCC and retains more details. Consequently, we extract
the filter bank output through raw audio, whose x-axis represents the information of time-domain
and y-axis denotes the information of frequency domain, as an input to the networks representing
the original characteristics of audio signals. The size of the each extracted filter bank output is
120*120. Furthermore, to solve the problem of insufficient data representation in the existing
methods, we extract the handcrafted features for each time window of music piece after
windowing, framing, and pre-emphasis. We extract 60 features from the commonly used
handcrafted features set [1] by features engineering as our handcrafted feature set. These features
are highly associated with the properties of music and can help to strengthen the information
acquisition ability of the network. The size of each extracted feature map is 60*60.

Since sentiment annotation is highly subjective, we propose a sample reconstruction method
for this problem. The main idea of sample reconstruction is to randomly resample two samples
in dataset with different sentiment annotation values, and construct a new sample by linear
combination based on these two samples. In addition, we introduce the reconstruction scale
parameter α to control the ratio of input noise. The reconstructed samples are input to the
network as noise input, and the introduction of noise can make the model more stable. Assume
that the sequence of filter bank output is XF = [x1f, x2f, …, xNf] and the sequence of
handcrafted features is XH = [x1h, x2h, …, xNh], where f,F denote filter bank output and h,H
denote the handcrafted feature. The sequence of labels is Y = [y1v, y2v, …, yNv] and Y = [y1a,
y2a, …, yNa], where v denotes the dimension of valence and a denotes the dimension of arousal.
N is the total size of samples. The sample reconstruction of each sample pairs is shown in Fig. 3.

Similar to mixup, the sample reconstruction is generally based on a generic vicinal
distribution as follows:

μ ex;eyjxi; yi� �
¼ 1

N
∑N

j¼1Εω D ex ¼ ωxi þ 1−ωð Þx j;ey ¼ ωyi þ 1−ωð Þy j
� �� �

ð1Þ

Fig. 2 The whole architecture of the proposed MCAN. Zf and Zh are the reconstruction noise calculated through
the process of sample reconstruction
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where μ ex;eyjxi; yið Þ denotes the mean value of ex;ey based on interpolation operations for
sample pairs (xi, yi). Εω represents the expectation calculation for ω. D represents the Dirac
mass calculation. ω is calculated by Beta (θ, θ) and θ ∈ (0, +∞) . In our sample reconstruction,
the noise sample pairs can be produced as follows:

xf
noi ¼ ωxf

i þ 1−ωð Þxf
j ð2Þ

xhnoi ¼ ωxhi þ 1−ωð Þxhj ð3Þ

yvnoi ¼ ωyvi þ 1−ωð Þyvj ð4Þ

yanoi ¼ ωyai þ 1−ωð Þyaj ð5Þ

where xi f, xj f are the filter bank output pairs, xi h, xj h are the handcrafted feature pairs, yiv, yjv

are the label pairs in valence dimension, and yia, yja are the label pairs in arousal dimension. ω
∈ [0, 1] is a computed weight hyper-parameter. xf

noi; x
h
noi;y

v
noi;y

a
noi are the produced noise

samples.
After performing sample reconstruction, we have a more robust dataset containing noisy

information Z f ¼ xf 1
noi; x

f 2
noi;…; xf M

noi

h i
, Zh ¼ xh1noi; x

h2
noi;…; xhMnoi

� �
; and

Ynoi ¼ y1noi; y
2
noi;…; yMnoi

� �
. Zf is the noisy data of filter bank output combined by the m-th

reconstructed sample xf m
noi. M is the total size of noisy samples. Zh is the similarly reconstructed

sample set of handcrafted features. Ynoi is the reconstructed noisy label matrix and ymnoi ¼
yvmnoi; y

am
noi½ � represents the m-th sample labels in valence and arousal dimensions. Finally, the total

Fig. 3 The sample reconstruction technique applied to produce training noise samples by weighting the original
sample pairs by linear interpolation. a represents the reconstruction of data pairs and b represents the recon-
struction of label pairs
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size of data isM + N. The reconstructed samples can enhance the ability of network to learn the
mapping relationship between music pieces with different sentiment values.

3.2 Feature augmentation module

In previous methods, researchers often applied late fusion in feature construction, in which the
correlation among information in different perspectives were ignored. To fully exploit these
correlations, we design a feature augmentation module. In this module, the processed
handcrafted feature maps are embedded into the filter bank output ones, and then they are
concatenated together to get the early fusion results. The handcrafted features provide guid-
ance to the feature extraction module in a way of embedding, which enhances the represen-
tation of spectrum-based features.

The feature augmentation module is shown in Fig. 4. Given the filter bank output XF and
the handcrafted features XH. The XF is transformed into feature map XF

′ by a two-layer
convolutional network and one max pooling layer. The XH is transformed into feature map XH

′

in the similar way. Then the feature map XF
′ is reshaped by a convolutional layer to match the

size of XH
′ and the feature map XF

′′ is produced. XF
′′ and XH

′ is concatenated together to
construct the feature map XFH. The augmented feature map XFH

′ is finally gotten by a
combination of convolutional layer and max pooling layer. The whole calculation process is
expressed as follows:

X
0
FH ¼ f 4 f 2 f 1 X Fð Þð Þ⨁ f 3 XHð Þð Þ ð6Þ

where fn (·) represents the different calculation in part n. ⨁ is the concatenation calculation.
The feature augmentation module is based on information in different perspectives and the
augmented features are produced by embedding technique, which greatly improves the ability
of the network to extract salient features. In this way, the mapping relationship between data
and labels can be better learned.

Fig. 4 Feature augmentation module. The process of feature fusion between filter bank output and handcrafted
features
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3.3 Weighted attention module

Despite the richer details, the lack of focus will increase the cognitive load of the network. To
address the problem of cognitive load, we design a weighted attention module based on
attention mechanism and BLSTM module. Wang et al. [44] and Huan et al. [16] adopted
attention mechanisms in video emotion recognition and verified the ability of them to improve
performance. According to the superiority of attention mechanism in specialized data process-
ing, we introduce self-attention mechanism to control the focus of the processing of features.

Assume that the input feature map is X
0
FH ¼ x1fh; x

2
fh;…; xMþN

fh

h i
. A batch of samples at time t

in sequence can be expressed as X
0
FH

t¼ x1fh
t
; x2fh

t
;…; xMþN

fh
t

h i
. There are three weight

matrixes WQ, WK, WV as the hyper-parameters learned by the self-attention mechanism to
respectively obtain the query, key and value vectors. These vectors are calculated as:

qn
:t ¼ WQ � xnfht ð7Þ

kn:t ¼ Wk � xnfht ð8Þ

vn:t ¼ Wv � xnfht ð9Þ
where qn:t, kn:t, vn:t are the query, key and value vector in step t and sample n. To better utilize
the information carried by the former time steps, the weight vector can be calculated as:

a:tn ¼ softmax KT
n ; qn

:t� � ð10Þ
where a:tn is the weight vector applied to the value vector to aggregate the sequence informa-
tion together, for which the contextual information is weighted to analysis the emotion
contained in the whole music piece. KT

n ¼ kn:1; kn:2;……; kn:Tn
� �T

denotes the transition
of the matrix concatenated by the key vectors and Tn is the length of sequence. T is the
transpose operation. Softmax is the activation function. Then, the output cell of the self-
attention layer is computed as:

c:tn ¼ ∑Tn
i¼1a

it
n � v:in ð11Þ

where c:tn is the output of the context-attention layer in time step t and sample n. aitn denotes the
i-th element of vector a:tn . Then the feature maps processed by self-attention mechanism can be
represented as Xattn

FH ¼ xattn1fh ; xattn2fh ;…; xattnMþN
fh

h i
. The n-th sample can be represented as

xattnnfh ¼ c:1n ; c
:2
n ;…; c:Tn

n

� �
. Then the weighted sum feature maps XWS

FH can be calculated as:

XWS
FH ¼ 1−βð ÞX 0

FH þ βXatten
FH ð12Þ

where β is the parameter to control the weight of the original augmented feature maps and the
weighted feature maps. The whole calculation process is shown in Fig. 5.

Finally, to better capture the relationship within contextual information, the weighted sum
feature maps are input into the BLSTM module for sequential processing. LSTM module,
which can solve the issue of gradient vanishing, has a memory cell to store information with an
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input gate, an output gate and a forget gate. The calculation of the forward BLSTM layer is as
the following equations:

it ¼ σ1 Wixt þ Uict−1 þ bið Þ ð13Þ

ot ¼ σ1 Woxt þ Uoct−1 þ boð Þ ð14Þ

f t ¼ σ1 Wf xt þ U f ct−1 þ bf
� � ð15Þ

ct ¼ f t⨂ct−1 þ it⨂σ2 Wcxt þ bcð Þ ð16Þ

ht ¼ σ2 ot⨂ctð Þ ð17Þ
where it, ot ,ft are respectively the input gate vectors, the output gate vectors, and the forget gate
vectors. W, U, b are respectively weight matrixes and bias vectors for each gate. ⨂ represents
the element-wise multiplication. We set the activation function σ1 as the sigmoid function. σ2

is the hyperbolic tangent function (Tanh). Both the forward and backward recurrent operations
are in a similar way of computation according to the equations above.

3.4 Style embedding module

The emotional expression of music is highly related to the style. Pop music focuses on the
expression of the human voice, while rock music focuses on the expression of the instrument.
The dataset we used covers 8 musical styles, specifically classical, rock, blues, folk, jazz,
country, electronic, and pop. To take advantage of the style information in metadata, we design
a style embedding module. Given the flatten output from BLSTM module is VFH, and this

Fig. 5 Weighted attention module. The process of self-attention mechanism, weighted sum and sequential
processing
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vector is converted to V
0
FH by a fully connected layer. The style vector Vs is generated by one-

hot encoding. To control the range of the vector, V
0
FH is normalized by a min-max scaler, and

the calculation is as:

V
0
FH ¼ V

0
FH−min V

0
FH

� �
max V

0
FH

� �
−min V

0
FH

� � ð18Þ

where min, max are the operations to calculate the minimum and maximum value of V
0
FH .

Then the concatenated vector VE can be calculated as:

VE ¼ V
0
FH⨁VS ð19Þ

where ⨁ is the concatenation operation. Finally, the processed vector will be input into the
later fully connected layer to construct the regression module. The style embedding module is
shown in Fig. 6.

The average deviation like Mean Absolute Error (MAE), Mean Squared Error (MSE) [54]
or ϵ-insensitive MAE [18] and the correlation coefficient like Pearson’s Correlation Coeffi-
cient (PCC) [39, 45] are often used as the loss function in previous continuous emotion
recognition tasks. The performance of the networks is determined by the minimization of
average deviation criteria but the maximization of correlation coefficients. The task “Emotion
in Music” in MediaEval has been a benchmark in MER since 2013 [1], in which CCC is one of
the metrics for continuous emotion recognition. Another benchmark in MER, which is the
Multimodal Affect Recognition Sub-Challenge (MASC) of Audio-Visual Emotion Challenge
(AVEC)4 since 2015, also utilize CCC as the criterion. Therefore, CCC is widely applied in
continuous emotion recognition because the characteristics of both the two types of metrics
have been considered. It has been proven to perform better than other metrics in previous
researches.

Thus, we also utilize CCC loss as the objective function in our experiments. Yb ¼
y1b; y

2
b;……; yNb

b

� �
is the vector of labels of the mini-batch b and Nb is the number of music

pieces within mini-batch b. bYb ¼ by1b;by2b;……;byNb
b

h i
is the prediction vector. The PCC of each

mini-batch of music piece is computed as:

PCCb ¼
∑Nb

i¼1 yib−Yb

� � byib−bYb

� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑Nb

i¼1 yib−Yb

� �2
∑
i¼1

Nb byib−bYb

� 	2
s ð20Þ

where PCCb denotes the PCC of the music piece mini-batch b. yib;byib are respectively the

ground-truth and the prediction of music piece i. Yb; bYb are separately the mean value of the
labels and the predictions. The CCC loss mini-batch b is calculated as:

CCCb ¼
2PCCbσYbσbYb

σYb
2 þ σbYb

2 þ μbYb

−μYb

� 	2 ð21Þ

4 AVEC. Available: https://avec-db.sspnet.eu/
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Lossb ¼ 1−CCCb ð22Þ
where μYb

¼ Yb;μbYb
¼ bYb are respectively the mean value of labels and predictions.σYb

2 ¼
∑Nb

i¼1 yib−μYb

� �2
= Nb−1ð Þ, σbYb

2 ¼ ∑Nb
i¼1 byib−μbYb

� �2
= Nb−1ð Þ are separately the variance of labels

and predictions. Therefore, the average batch loss is calculated as the average CCC loss:

LossTotal ¼ ∑Nbatch
i¼1 Lossi
Nbatch

ð23Þ

where LossTotal denotes the average training loss of all the music pieces. Lossi is the CCC loss
of mini-batch Nb is the total size of the total mini-batches.

4 Experiments and results

4.1 Datasets

We use two public continuous music emotion datasets to train and validate the proposed
model. To guarantee the input conveyed to the networks in the same format, the original audio
is transformed to the same down sampled rate 22,050 Hz, WAV format, mono channel, and 16
bits PCM encoding. The details of the two datasets are as follows.

Fig. 6 Style embedding module. The process of style embedding
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DEAM5: 1802 songs with valence and arousal annotations. The dataset is established by
Aljanaki et al. [1] and is the largest benchmark in continuous music emotion recognition.
However, the consistency of annotations is low due to the different periods of annotating and
subjectivity. Thus, we choose the subset of DEAM called 1000 songs6 (744 segments of 45 s)
with higher consistency for the same period annotation according to Soleymani et al. [37]. In
our experiments, we split the dataset into three parts, that is, 434 pieces for training, 155 pieces
for validating, and 155 pieces for testing to verify the performance of MCAN. To match the
per second (from 15,000 ms to 44,500 ms) dynamic valence and arousal annotations scaled in
[−1, 1], we split each original raw audio into 60 subsegments (500 ms per) without overlapping
discarding 15,000 ms from the beginning of every music segment.

PMEmo7: 794 popular songs with valence and arousal annotations. This dataset is estab-
lished by Zhang et al. [53], in which lyrics and comments are added in 2019 to make this
dataset much more suitable for cross-modal research. In our experiments, we utilize this
dataset in mono-modality to validate the generalizability of MCAN. The value of dynamic
annotations in PMEmo is in the range [0, 1]. We remove the samples without sufficient
annotations and the total chosen size is 206 pieces (164 for training, 21 for validating, and
21for testing). Additionally, we filter out all the chosen samples with the dynamic annotations
in the range of 15,000 ms to 45,000 ms. Consequently, we split the chosen raw audio into 60
subsegments (500 ms per) without overlapping to match the dynamic annotations.

4.2 Experimental settings

To prompt the performance of MCAN, we apply the mixup [52] technique before the
spectrograms being transferred to the first convolutional layer, in which we set α as 0.2 to
limit the weight parameter ω mentioned in Section 3. The batch size is set as 15, not only
because of the limitation of the experimental environment, but also to facilitate the calculation
of Lossper. We use Adam optimizer to modify the model while training. The learning rate is
0.001 in the beginning, which will decrease by 1/10 every 10 epochs. The dropout technique is
used after BLSTM and context-attention layers to prevent overfitting on the training dataset,
where the ratio of dropout is respectively 0.3 and 0.2. L2 regularization is also applied to the
weights of the fully connected layer. Our experiments are performed in the PyTorch frame-
work written in python and are carried out on NVIDIA GeForce GTX 1080 with 32 GB on-
board memory.

5 Results and evaluation

In this section, we introduce the experiments conducted in MCAN. Metrics we choose to
evaluate the performance of MCAN are the Root Mean Squared Error (RMSE), MAE, and
CCC. According to the distribution of annotations, they obey the normal distribution, which is
the premise to use PCC. Thus, CCC that is based on PCC can be used as the evaluation
indicator. RMSE enables the network to converge faster while MAE is more sensitive to the
outliers. Thus, we use both RMSE and MAE as auxiliary metrics in our experiments. CCC is

5 DEAM. Available: http://cvml.unige.ch/databases/DEAM/
6 1000 Songs. Available: http://cvml.unige.ch/databases/emoMusic/
7 PMEmo. Available: http://www.next.zju.edu.cn/research/pmemo/amp/
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utilized for the main analysis of the performance of MCAN while the hypothesis is accepted
within the confidence (p < 0.05) of the T-test. RMSE and MAE are employed as judgments
while the CCC fails to satisfy the T-test.

5.1 Parameter adjustment

In order to observe the influence of different parameters on the experimental results and obtain
better experimental results, we conduct parameter adjustment experiments on DEAM dataset.
The parameters observed in these experiments are α and β, where α is the parameter
introduced in section 3.1 to control the proportion of reconstructed samples and β is the
weight parameter introduced in section 3.3 to control the summation of features. The results on
testing dataset of the adjustment experiments are shown in Figs. 7 and 8.

In the adjustment experiment of parameter α, other variables are kept unchanged. As is
shown in Fig. 7, the optimal solution can be obtained on all metrics when α is set between 0.1
and 0.2, which means that introducing this parameter can effectively control the performance
of the model. If the sample reconstruction technique is not applied, that is, when α = 0, the
results will be worse. It illustrates the importance of sample reconstruction. Furthermore, when
α is over 0.2, the results get worse as parameter α increases. It shows that too much sample
reconstruction will disturb the learning ability of the model, so it is necessary to control the
proportion of reconstructed samples. This parameter is set as 0.18 in our experiment. In
general, the introduction of parameter α can help to control the number of reconstructed
samples, and has a great contribution to the improvement of the results.

In the adjustment experiment of parameter β, other variables are kept unchanged. As is
shown in Fig. 8, the optimal solution can be obtained on all metrics when β is set between 0.4
and 0.6, which indicates the validity of the weighted attention module. If the attention
mechanism is not applied, that is, when β = 0, the results will be worse. It verifies the
effectiveness of introducing self-attention mechanism for fine-grained processing of features.
Furthermore, when β exceeds 0.6, the results get worse as parameter β increases. This
illustrates that it is necessary to control the weight while performing feature fusion on original

Fig. 7 The value of metric varies by parameter α in valence and arousal dimensions
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features and processed ones. This parameter is set as 0.49 in our experiment. To sum up, the
introduction of parameter β can help to balance the influence of different features, and can
effectively control this situation to improve the performance of the model.

5.2 Ablation study

To validate whether the techniques utilized in our model can improve the performance, we
selectively remove some operations and conduct a series of comparative experiments on
DEAM dataset, which mainly contains the following four cases:

Case1: The sample reconstruction technique is removed.
Case2: The branch of handcrafted features is removed, which means no feature augmen-
tation. In this case, the sample reconstruction is only aimed at the filter bank output.
Case3: The weighted attention module is removed, which means no self-attention
mechanism and no BLSTM module.
Case4: The style embedding module is removed.

The above-ablated models are named Case1, Case2, Case3, and Case4 respectively. Tables 1
and 2 show the results of the testing dataset on DEAM of different versions. MCAN performs
better than any of the ablation versions. Modification tricks that we apply in our model are
helpful for the prediction. Take the results of CCC as an example, the values of CCC (p <
0.05) in valence are 0.155 in Case2 and 0.185 in Case3. Comparing the above values to the
result 0.309 of MCAN, the value of CCC has improved significantly, which suggests that the
feature augmentation module and the weighted attention module are both effective in this task.
The adjustment experiment of parameter β has also confirmed the contribution of feature
fusion in these modules. The construction of these modules can contribute to extract features
highly related to the expression of emotions. The values of CCC (p < 0.05) in arousal are
evenly 0.379 in Case1 and 0.402 in Case4. Comparing the above values to the result 0.502 of

Fig. 8 The value of metric varies by parameter β in valence and arousal dimensions
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MCAN, the value of CCC has increased, which illustrates that the sample reconstruction
technique and the style embedding module can also help to prompt the precision of predictions
and they have similar contributions according to the close values. The former makes the
network more robust by adding noisy samples, while the latter makes the network more
sensitive in processing of details by embedding style vectors. Furthermore, the adjustment
experiment of parameter α has also shows the contribution of sample reconstruction technique.
Comparing different ablation versions, it can be seen that the feature augmentation and the
weighted attention module with higher values of CCC are the main techniques that help
improving the performance of MCAN. The results of RMSE and MAE have an analogous
tendency and have decreased a lot while applying MCAN, which further demonstrates the
usefulness of the adopted algorithms.

5.3 Results on DEAM and PMEmo

Figure 9 illustrates the variation of training CCC loss on DEAM and PMEmo datasets in
valence and arousal dimensions. The convergence occurs in epoch among the range of (60, 80)
on both two datasets and also in different dimensions of emtion, which demonstrates that the
perception of emotion is of great commonality andMCAN is able to perceive this commonality.
The training loss has close downward trend in two different datasets, which suggests that
MCAN is effective in the task of numerical prediction for emotion in music. MCAN has similar
performance on the same type of dataset, indicating that it has strong ability of generalization.

Tables 3 and 4 represent the values of metrics while testing, which demonstrates the
relationship between different perceived emotions of humans and validates the generalizability
of MCAN. For example, the values of CCC (p < 0.05) reach evenly 0.309 in valence and
0.502 in arousal on the DEAM testing dataset. The values are 0.215 and 0.401 on the PMEmo

Table 2 The results of the ablation study in arousal on testing datasets of DEAM

CCC RMSE MAE

MCAN 0.502±0.287 0.109±0.011 0.764±0.023
Case1 0.405±0.314 0.147±0.072 0.842±0.082
Case2 0.337±0.329 0.210±0.098 0.997±0.073
Case3 0.379±0.298 0.192±0.025 1.008±0.017
Case4 0.402±0.324 0.138±0.102 0.934±0.124

The bold MCAN means that MCAN is the complete version of our method. The bold values of different metrics
mean that MCAN performs better than other ablation ones in arousal dimension. The higher the value of the CCC
indicator, the better the performance. Lower values for the RMSE and MAE metrics indicate better performance

Table 1 The results of the ablation study in valence on testing datasets of DEAM

CCC RMSE MAE

MCAN 0.309±0.358 0.112±0.010 0.811±0.009
Case1 0.252±0.402 0.165±0.066 0.992±0.040
Case2 0.155±0.331 0.223±0.125 1.089±0.117
Case3 0.185±0.244 0.201±0.097 1.095±0.102
Case4 0.210±0.421 0.155±0.132 0.983±0.127

The bold MCAN means that MCAN is the complete version of our method. The bold values of different metrics
mean that MCAN performs better than other ablation ones in valence dimension. The higher the value of the CCC
indicator, the better the performance. Lower values for the RMSE and MAE metrics indicate better performance
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testing dataset. From these values, it can be seen that the results on DEAM and PMEmo are in
the similar range and tendency in both valence and arousal dimensions. The two datasets are
annotated by different groups of people, under the condition of which the results mentioned
above demonstrate that the ability of humans to perceive emotion is close. The results also
suggests that MCAN is well applicable for continuous MER on similar datasets with dynamic
annotations. In other words, MCAN has the ability of generalization and is very stable in
different situations.

5.4 Comparison with other methods

We compare MCAN with five methods, and the details of these methods are as follows:

The top-three baselines: BLSTM-RNN, BLSTM-ELM, and Deep LSTM-RNN [1],
which are applied in the “Emotion in Music” task at MediaEval. All of these have
received desirable results in continuous MER, and these methods are regarded as the
benchmark ones in MER tasks.

Fig. 9 Running loss Losstotal varies by epoch in valence and arousal dimensions on DEAM and PMEmo training
datasets

Table 3 The representation of the
results in valence on different test-
ing datasets

CCC RMSE MAE

DEAM 0.309±0.358 0.112±0.010 0.811±0.009
PMEmo 0.215±0.265 0.144±0.102 0.892±0.030

Table 4 The representation of the
results in arousal on different test-
ing datasets

CCC RMSE MAE

DEAM 0.502±0.287 0.109±0.011 0.764±0.023
PMEmo 0.401±0.315 0.135±0.057 0.901±0.103
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The two state-of-the-art methods: The first one is the method called BCRSN [12], in
which CNNs and LSTMmodule are applied together to construct the method. The second
one is a novel method based on the combination of an effective dimensionality reduction
algorithm and SVR [8], which can be descripted as TNN + SVR.

Tables 5 and 6 represent the performance of different models on the DEAMand PMEmo testing
dataset. Compared to the top-three baselines,MCANoutperforms thesemodels for the ability to
extract salient features through original spectrograms. The values of CCC have improved
significantly and the values of RMSE and MAE have decreased obviously while applying
MCAN, which indicates that the proposed MCAN can effectively extract emotion-related
features and contribute to better performance. Taking the results in the ablation experiments
into consideration, the combined effect of the sample reconstruction technique, the feature
augmentation, the weighted attention module and the style embedding module makes MCAN
perform well. From the perspective of data representation, there are sufficient data representa-
tion in details in our method. The handling of details makes MCAN more stable and accurate.

Fig. 10 Comparison of performance on DEAM training dataset. a: Time-consuming training per epoch
comparison chart of different methods. b: Losstotal comparison chart of different methods

Table 5 The comparison of the performance in valence on different models and testing datasets

CCC RMSE MAE

DEAM MCAN (ours) 0.309±0.358 0.112±0.010 0.811±0.009
Deep LSTM-RNN 0.012±0.421 0.256±0.201 1.040±0.102
BLSTM-RNN 0.001±0.240 0.314±0.098 1.019±0.097
BLSTM-ELM 0.049±0.425 0.320±0.186 1.108±0.152
BCRSN 0.295±0.330 0.123±0.103 0.925±0.097
TNN+SVR 0.311±0.212 0.125±0.074 0.954±0.079

PMEmo MCAN (ours) 0.215±0.265 0.144±0.102 0.892±0.030
Deep LSTM-RNN 0.009±0.105 0.310±0.042 1.127±0.098
BLSTM-RNN 0.001±0.536 0.305±0.099 1.201±0.102
BLSTM-ELM 0.032±0.378 0.241±0.101 1.039±0.099
BCRSN 0.209±0.415 0.158±0.090 0.959±0.102
TNN+SVR 0.213±0.255 0.149±0.101 0.889±0.059

The bold entries mean better performance in valence dimension. The higher the value of the CCC indicator, the
better the performance. Lower values for the RMSE and MAE metrics indicate better performance
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Furthermore, we also compare MCAN with the state-of-the-art methods. As is shown in
Tables 5 and 6, MCAN is not the best in all conditions. As for the DEAM dataset, TNN +
SVR performs better than MCAN on the evaluation of CCC in valence dimension, and
BCRSN performs better than MCAN on the evaluation of RMSE in arousal dimension. As
for PMEmo dataset, TNN + SVR performs better than MCAN on the evaluation of MAE in
valence dimension, and BCRSN performs better than MCAN on the evaluation of RMSE in
arousal dimension. However, compared with the values of TNN + SVR or BCRSN on these
indicators, the values of MCAN’s are not far behind those ones, which are less than 1%. From
another point of view, compared with BCRSN, the values of other indicators of MCAN have
been improved about 8%, and compared with TNN + SVR, the values of other indicators of
MCAN have also been improved about 9%. Compared with BCRSN and TNN + SVR, the
data representation of MCAN is more adequate and the process of feature extraction is finer.
The automatic feature extraction through spectrogram and the handcrafted feature extraction
are combined together in MCAN, which makes it perform better than the two state-of-the-art
methods. Furthermore, the sample reconstruction technique can help to strengthen the stability
of the network. The feature augmentation and the weighted attention module can help to
extract salient features. The style embedding module can help to enhance the learning
capability of the network. Overall, MCAN performs better than all methods compared.

Figure 10(a) shows the training time of different methods evenly on the DEAM training
dataset and Fig. 10(b) represents the average CCC loss on the DEAM training dataset. It can be
seen that MCAN outperforms other methods in both valence and arousal dimensions but it
costs a relatively long time-consuming. Compared with the top-three baselines, the perfor-
mance of MACN is improved significantly, which indicates that the salient features extracted
from spectrograms and handcrafted features are important in MER. Compared with the two
state-of-the-art methods, the CCC loss drop obviously, which demonstrates that the detailed
feature extraction is essential in MER. Comparing the top-three baselines and other methods, it
is obvious that the architectures combined with CNNs and LSTM can extract emotion-related
semantic features better. These features outperform those extracted by basic networks. Addi-
tionally, the results of MACN illustrate that the combination of sample reconstruction, feature
augmentation, weighted attention module and style embedding module can achieve state-of-
the-art performance in continuous MER.

Table 6 The comparison of the performance in arousal on different models and testing datasets

CCC RMSE MAE

DEAM MCAN (ours) 0.502±0.287 0.109±0.011 0.764±0.023
Deep LSTM-RNN 0.195±0.347 0.215±0.057 1.002±0.007
BLSTM-RNN 0.210±0.365 0.231±0.104 1.108±0.102
BLSTM-ELM 0.213±0.423 0.179±0.103 1.078±0.097
BCRSN 0.472±0.302 0.101±0.100 0.875±0.022
TNN+SVR 0.279±0.412 0.185±0.081 0.914±0.103

PMEmo MCAN (ours) 0.401±0.315 0.135±0.057 0.901±0.103
Deep LSTM-RNN 0.165±0.298 0.298±0.050 1.295±0.040
BLSTM-RNN 0.197±0.320 0.218±0.097 1.215±0.045
BLSTM-ELM 0.202±0.254 0.185±0.105 1.183±0.100
BCRSN 0.320±0.329 0.132±0.059 0.997±0.057
TNN+SVR 0.315±0.229 0.145±0.022 1.002±0.104

The bold entries mean better performance in arousal dimension. The higher the value of the CCC indicator, the
better the performance. Lower values for the RMSE and MAE metrics indicate better performance
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6 Conclusion and future work

In this paper, we propose a novel MCAN to extract salient emotion-related feature maps from
filter bank output and handcrafted features. The sample reconstruction technique can strengthen
the stability of the network and contribute to better performance. The feature augmentation
module makes the process of feature extraction more fine-grained, and it is helpful for extracting
salient features. The weighted attention module is useful for controlling the focus of the network
and processing the sequential information in details. Especially, the style embedding can help to
enhance the learning ability of the network. The superior results on the benchmark dataset DEAM
and the new proposed PMEmo represent the effectiveness and versatility of MCAN.

However, there are shortcomings of the proposed MCAN. Firstly, the training time of our
model is relatively long. Secondly, our model is unstable while dealing with drastic short-term
variance in emotions. Finally, our model has flaws in handling outliers. In the future, we will
concentrate on simplifying the structures of our method and reducing the parameters contained
in models. Additionally, we will consider fusing information of extra modality (e.g., electro-
encephalogram (EEG), lyric [24, 47]) to achieve more accurate prediction and improve the
stability of the method.
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