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Abstract
The growth of superfluous video content over the internet led to the emergence of highly
proficient video compression techniques. These novel techniques make optimal use of the
available varying bandwidths to deliver quality video content. The traditional techniques
of video compression are mainly based on block designs and remove the redundancies
using Discrete Cosine Transforms. Although these techniques perform well but these are
not adaptive to the varying bandwidth. A number of learning based video compression
schemes have been developed during previous years. Though some are performing
efficiently but these are not adaptable for mobile usage because of their flexibility lack
for varying reconstruction quality with varying bandwidth. In this paper, a lightweight
learning-based video compression architecture has been proposed that attempts to allow
variation in quality of the reconstructed video with the amount of data sent, without
requiring separate low-resolution versions of the same video. The proposed model is a
amalgamation of three tiny networks namely frame autoencoder, flow autoencoder and
motion extension network. The performance analysis reveals a significant improvement
in visual quality of the video frames but in tradeoff with frame reconstruction time. The
results have also been compared to some state-of-the-art techniques including H.264 in
terms of SSIM and PSNR.
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1 Introduction

The voluminous video content over the network lead to the emergence of more powerful and
efficient codecs. The increase in image or video quality standards put an extra challenge before
the compression standards to retain the good visual perception with better compression rate.
The compression strategies reduce the size of frames by eliminating the temporal and spatial
redundancies with an aim to achieve better compression rate while retaining the perceptual
quality of frames. The widely used traditionally designed codecs like H.264 or HEVC
primarily focuses on reducing rate distortion error. The surging demand of video streaming
looks for more efficient video storage, transmission and retrieval techniques.

The impressive results of deep learning based image compression fueled the further
researchers in the application of deep learning in video compression. Several DNN based
image compression networks were later extended for videos as well by incorporating motion
estimation and prediction strategies. End to end trainable autoencoder styled fully
convolutional networks were also proposed for video compression and some are resulted in
promising outputs as compared to state-of-the-art methods. Pure deep learning based com-
pression techniques are end to end trainable and optimizable.

The proposed video compression architecture, as motivated by the deep learning based
approaches, comprises of basically three small networks i.e. frame autoencoder for frame
compression, flow autoencoder for compression of estimated flow and motion extension
network for reconstruction of current frame. The frame is reconstructed based on previous
frame, current frame and its corresponding flow value. The results have been compared to
some state-of-the-art techniques including H.264 in terms of SSIM and PSNR.

In this paper, the detailed description of the work is presented in different sections.
Section 2 describes the related work done in the field of video compression using differnet
approaches. Section 3 presents the proposed architecure and its various components have been
described in the sub sections. Section 4 deals with the experimental setup, experimental
analysis, its comparison with state-of-the-art methods and ablation study respectively. Lastly
Section 5 concludes the whole work.

2 Related work

The video compression techniques encompass a pair of encoder and decoder. The video frames are
compressed by the encoder and reconstructed by the corresponding decoder. They both together
form a codec. The codec primarily reduces the number of bits for representation but the reduction in
number of bits usually results in reconstruction error. The initial video codes likemotion JPEGbased
on individual compression of video frames, hence based on image compression.

The emerging field of deep learning has a profound effect on image compression and
resulted in good quality compression [3, 13, 26, 29, 30]. These techniques mainly focus on
reducing the distortion error by training the autoencoder network with a suitable training set
[13, 26, 30]. Some of the autoencoder based networks made use of RNNs [2, 13, 30] to
achieve variable compression rate from the same network. The same concept later extended to
videos as well. Fully Convolutional networks are used for the applicability of the network to
the variable frame sizes. These models made use of entropy coding to eliminate the spatially
redundant information [3, 23, 26, 29, 30]. Some of the advanced models like Pixel-CNN are
based on probability driven adaptive arithmetic coding [25]. Different techniques of
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quantization are used to learn the binary format. Stochastic binarization has been used in the
model proposed by Toderici et al. Quantization based on soft assignment also been imple-
mented by Agustsson et al. [1]. All such models work in the same manner. Conclusively, it
was found that deep learning based image compression techniques gave good compression
rate with better image quality when compared to the traditional techniques like WebP [33] or
JPEG. Image interpolation is a popular and powerful technique used for image compression
which mainly employs a encoder-decoder network to predict the intermediate frame between
two reference frames [11, 12, 19, 24]. Image extrapolation also resulted better in predicting the
unseen frames [22, 31, 34]. But both these techniques are limited to small slow-motion videos.

The traditional video codes like H.264 or HEVC [15] are primarily manually designed and
evolved with frequent developments. Their work strategy mainly relies on isolating the video clip
into I or Image frames and referencing, P or B frames, and compressing I frames directly with
prediction of referencing frames. These traditional techniques, though giving good results but as
they evolved with incremental developments, their end to end optimization is not possible. A lot
of machine learning based enhancements to the traditional codecs were proposed to improve the
compression quality and efficiency. Some of the popular techniques are intra– prediction coding
[10] andmotion compensation and interpolation [21, 27, 35, 39]. Rate control and post processing
refinement like approaches also lead to the improved results [4, 9, 17, 18, 28, 32, 36–38].

Encoding complexity is one of the major challenge in traditional codecs like HEVC. To
address this challenge, several different techniques have been proposed [7, 8, 16]. In [8], a
significant encoding complexity improvement has been achieved by proposing a new tech-
nique for non-skipped coding blocks. This technique employs entropy value for early non-
Asymmetric Motion Partitioning detection and resulted in about 40% encoding time reduction
with almost same video quality. Another promising technique for reducing encoder complexity
has been proposed comprising of motion activity classification and early PU decision. In this
technique, depth correlations and spatio temporal analyses have been used to make early PU
decision in each CU level [16]. In addition to these developments in traditional codecs, a surge
in development of pure deep learning based video architectures and frameworks have been
observed. DeepCoder, a pure CNN based video compression architecture has been proposed.
This network is based on encoding the quantized feature maps into binary stream using Scalar
quantization and Huffman coding [5]. This model achieves limited efficiency but presents
huge potential for further explorations. Several different deep learning based techniques for
video compression has been presented in [6].

Most of the popular techniques make use of optical flow based motion estimation to extract
and represent the motion information. A lot of optical flow estimation techniques including
both traditional differential equations based and machine learning based are invented. Moti-
vated by the same developments in the field of deep learning based video compression, the
proposed work architecture in this paper comprises of flow driven reconstruction of frames. In
this paper, Frame AutoEncoder Network module is utilized for better image generation for
available current data. The previous reconstructed frame information is utilized in Motion
Extension Network. This method is chosen to have better modularity in Network architecture.

3 Proposed architecture

The architecture is an amalgamation of three separate networks. A frame compression/
decompression network, a flow vector compression/decompression network, and finally a
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motion extension/frame reconstruction network. The frame and flow compression/
decompression networks are composed of encoder and decoder networks. The relationship
between the modules is as follows:

Step 1: Frame Compression
We use a recurrent ConvGRU based encoder model to encode the frame with

varying degrees of compression quality.
Step 2: Flow Vector Estimation

This is done using the traditional Farneback flow estimation method. The flow
vectors between every two frames are estimated.

Step 3: Flow Vector Compression
The estimated flow vectors from step 2 are compressed using a standard CNN

based encoder network with Generalized Divisive Normalization (GDN) layers as
the nonlinearity.

Step 4: Frame Decompression
A ConvGRU based decoder model is used to decompress the encoded videos

from step 1 according to the degree of compression.
Step 5: Flow Vector Decompression

A CNN based decoder network with Inverse GDN as the nonlinearity is used to
decompress the flow vectors.

Step 6: Motion based Frame Reconstruction
A three pronged CNN based network is used to estimate the current video frame

from the reconstructed frame from step 4, the reconstructed flow vector from step 5,
and the previous output video frame.

3.1 Network architecture

A high-level overview of the proposed network architecture is given in Fig. 1. It is mainly
comprised of Frame Compression Autoencoder Network, Flow Vector Estimation Network
and Motion-based Reconstruction Network. The architectures of the intermediate networks are
also given below individually. The relationship between the modules is presented in Fig. 1. In
the frame autoencoder, ConvGRU has been used in one of the five layers both in encoder and
decoder sides. Moreover, Flow autoencoder has also been used to compress the flow values
and decompressed before the next frame generation, reconstructed by motion extension
network. The motion extension network reconstruct the next frame using the previous frame
and taking the output from both frame and flow autoencoders.

3.1.1 Frame compression/decompression

A recurrent ConvGRU based encoder model has been used, as depicted in Fig. 2, to encode the
frame with varying degrees of compression quality. A ConvGRU based decoder model is used
to decompress the encoded videos from step 1 according to the degree of compression. It is
inspired by the autoencoder architecture given in Fig. 2. The autoencoder network contains 5
convolutional layers with Generalized Divisive Normalization (GDN) layers as the nonline-
arity to reduce the image size. This is then passed to Binarizer to convert the final output to
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highly compressible binary values. For decompression, this binary-coded frame information is
again passed through 5 deconvolutional layers to recreate the frame.

One of the convolutional layers in both encoder and decoder networks has been replaced
with ConvGRU layer. Image is passed through the autoencoder network to get binary coded
information and recreated image. Residual image is calculated by the difference between the
original image and the recreated image. Residual image is again passed through the
autoencoder network to encode into compressed binary format. This process is repeated based
on the level of required compression quality.

Fig. 1 High-level overview of video compression architecture

Fig. 2 Frame autoencoder network
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The details of the parameters used in Frame Encoder Decoder Network are described in
Table 1.

3.1.2 Flow vector estimation/compression/decompression

In the computer vision tasks, optical flow is widely used to exploit temporal relationship. Though a
lot of learning based optical flow estimation methods have been recently proposed, we have
calculated optical flow using the traditional Farneback flow estimation method. It is well tested
method and reduced the training requirement of flow estimation network. In future, learning based
flow estimation can also be integrated to result pure neural network based encoder.

The flow vectors between every two frames are estimated. The estimated flow vectors from
are compressed using a standard CNN based encoder network with Generalized Divisive
Normalization (GDN) layers as the nonlinearity (Fig. 3). A CNN based decoder network with
Inverse GDN as the nonlinearity is used to decompress the flow vectors. The Fig. 4 represents
the decoder side overview of the network.

The details of the network parameters used in Flow Autoencoder are explained in Table 2.

Table 1 Network parameters of frame autoencoder
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3.1.3 Motion based frame reconstruction

A three-pronged CNN based network is used to estimate the current video frame from the
reconstructed frame from step 4, the reconstructed flow vector from step 5, and the previous
output video frame. Figure 5 illustrates the architecture of the network. It uses CNN blocks to
transform inputs and concat blocks to merge the two prongs.

3.2 Video encoding and decoding algorithms

Algorithm: Video Encoder

Input
1. Target Frame 

2. Previous Frame 

Output
1. Frame bitstream to be transmitted

2. Flow bitstream to be transmitted

Steps
1. Calculate flow vector using frames and .

2. Encode frame into binary bitstream using frame encoder network.

3. Encode flow vector into binary bitstream using flow encoder network.

4. Transmit binary stream and .

3.2.1 Video decoding

For Video reconstruction, binary coded output of frame encoder and flow encoder are needed.
The number of emission steps will control the size of frame encoder data and so the bit-rate of
signal.

Intermediate frame is calculated by passing binary code frame data through frame decoder.
Flow information is also decoded via flow decoder network. Finally, the Motion Extension
Network takes previous image, merges this with decoded flow information to create interme-
diate representation of current image.. It merges this intermediate representation on already
decoded Intermediate frame to result in high quality current frame as displayed in Fig. 4. The
same has been represented by eq. (1).

Idecoded ¼ f decoder Iencoded ; Fencoded ; Idecodedprev
� � ð1Þ

Fig. 3 Flow AutoEncoder

42789Multimedia Tools and Applications (2022) 81:42783–42804



Table 2 Network parameters of flow autoencoder

Fig. 4 Decoder side network overview
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Fig. 5 Motion extension network
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where Iencoded and Fencoded are binaried encoding of current frame and flow vectors, Idecodedprev is

previously decoded frame and fdecoder is representation of decoder neural network.

Algorithm: Video Decoder

Input
1. Frame bitstream 

2. Flow bitstream to 

3. Previously decoded target frame from state.

Output
1. Decoded target frame 

Steps:

1. Decode using frame decoder network into .

2. Decode flow bitstream using flow decoder network into .

3. Take previously decoded frame from state.

4. Provide , and to motion extension network to yield final decode 

image .

5. Store image into internal state for decoding of next frame.

3.3 Training strategy

Loss function The goal of the network is to reduce the structural distortion between the input
video and the output. We also used mean squared error (MSE) loss function to reduce the color
distortion in decompressed images.

L ¼ Lssim þ α Lmse ð2Þ

where MSE error is evaluated as:

Lmse y; y
0

� �
¼ 1

N
∑n

0 y−y
0
i

� �2 ð3Þ

and SSIM error is evaluated based upon three comparison measurements, luminance (l),
contrast (c) and structure (s):

Lssim y; y
0

� �
¼ l y; y

0
� �

:c y; y
0

� �
:s y; y

0
� �h i

ð4Þ

Emissions The models can be configured to emit at any number of emissions, each
emission refining the output, while also decreasing the compression efficiency. For the
ConvGRU model and the MotionNet model, two training strategies are utilized. Only the
last emission has been trained in one strategy and choose a random emission in each
epoch and train that in another strategy. For the Flow-MotionNet model, only the
randomized strategy is used.
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4 Experiments

4.1 Experimental setup

Dataset A dataset comprising of 20s long 571 small videos out of total 826 videos from
Youtube UGC has been used to train the network, remaining clips has been for testing and
validation. Videos of varying quality have been chosen i.e. 480p, 360p and 720p. The frame
size has been chosen as 64 × 64, so video clips of all quality firstly rescaled to the chosen
format, and then training is performed. Videos frames are taken randomly during training but
while testing the clips are chosen from the starting. The model has been trained with random-
ized emission step training strategy with emission steps varying between 1 to 10. Addition of
each emission step improves the output but have an effect on the compression efficiency.

Implementation details For the implementation purpose, a single T4, K80 or P100 GPU has
been used to train the network on the Google Colaboratory platform. The frames have been kept
to the size of 64 × 64. Adam Optimizer is used to train the neural network with 10e-4 be the
learning rate. ℷ1 is taken as one and ℷ2 be 10. First frame encoder is trained for 100 epochs. Then
complete network is trained end-to end for 70 epochs. During the training of frame encoder with
100 epochs; the learning rate has been divided by ten at 50th, 70th and 90th epoch. For the
whole model training, only 70 epochs have been used after stacking the pretrained framer
encoder first and learning rate has been altered at 35th and 55th epoch by dividing with ten.

Evaluation SSIM i.e. Structural Similarity Index and PSNR i.e. Peak Signal to Noise Ratio
has been used to measure the visual quality of the reconstructed frames. The temporal
distortion encountered among the frames has been evaluated by Flow EPE i.e. End Point
Error. Moreover, the reconstruction time of individual frames has been measured by the TPF
i.e. Time Per Frame parameter.

4.2 Experimental results and analysis

4.2.1 Experimental results

The proposed model resulted in good quality compression with a 0.963 SSIM score on the test
dataset. The individual values of different performance paramters at each emission step is
given is Table 3. Comparison of quality of compression achieved with different emission steps
is depicted in Fig. 6.

We have shown the video quality of compressed frames for four video sequences in Fig. 7
where first row represents uncompressed sequence, second represents compressed sequence.

4.2.2 Comparison with state-of-art methods

The performance of the proposed architecture has been compared with the state-of-art conven-
tional compression techniques like H264 and H265 and also with the deep learning based models
proposed by authors of DVC [20] and Adversarial video compression [14]. Table 4 presents the
comparative results of the proposed model with some state-of-art and prominent models and the
corresponding graphical comparison of MS-SSIM and PSNR has been given in Figs. 8(a) and
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8(b). UVC dataset was utilized to measure SSIM and PSNR metrics. MS-SSIM correlates better
with human perception of distortion. The proposed model outperformed in terms of MS-SSIM
metrics. TheMS-SSIM and PSNR values of the various architectures have been already presented
above. The proposed model achieved good SSIM performance but with a drop in PSNR value.

4.3 Ablation study

The proposed Flow-MotionNet Architecture comprises of three network blocks – a ConvGRU
based frame compression/decompression network, a motion-extension network and a flow

Fig. 6 Compressed frame quality at emission steps of 2,7,10

Table 3 Performance values of
proposed model Emission Step/Metric SSIM PSNR Flow EPE Time per Frame

1 0.709 20 0.822 0.0243
2 0.819 22.5 0.577 0.0248
3 0.874 24.1 0.368 0.0254
4 0.91 25.5 0.276 0.0258
5 0.932 26.7 0.226 0.0263
6 0.948 27.8 0.253 0.0268
7 0.957 28.4 0.189 0.0274
8 0.961 28.9 0.17 0.0279
9 0.963 29.1 0.148 0.0285
10 0.963 29.2 0.17 0.029
Avg 0.9036 26.2 0.3199 0.02662
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vector estimation block. ConvGRU based compression/decompression network utilizes GRU
based blocks for improving compressed image quality via multiple iterations. Motion exten-
sion network utilizes a previously decoded frame to help encode/decode the next frame. Flow
vector estimation block calculates the optical flow of the frames and helps motion extension
network to maintain this optical flow.

Fig. 7 Compressed frame quality compared for video sequence
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To train the proposed network, two two training strategies has been used. The first strategy
is fixed emission step based strategy where the emission step has been fixed to the value of 10.
In the second strategy, the emission step was chosen randomly between 1 to 10.

To study the incremental effect of each network block, a baseline network consisting of
pure CNN network has been taken. Next, GRU blocks have been to the network to study their
effect. This network has been referred to as ConvGRU network in the comparison below. Then
Motion Extension Network block was added to study its effect resulting into configuration
referred to as MotionNet. Finally, Flow vectors estimations have been added to MotionNet to
result in the proposed configuration. These configurations were then evaluated with random-
ized emission step training strategy to see the effect of training strategy on each part of the
network.

4.3.1 Comparison tables

The qualitative and quantitative performance of the proposed model has been measured by the
four parameters namely i.e. SSIM (Structural Similarity Index Measure), EPE (End Point
Error), PSNR (Peak Signal-to-Noise Ratio), and TPF (Time per Frame). As the network is
trained with varying ten emission steps, the below tables presents the performance of the
network with the addition of each additional emission step. Qualitative or perception quality
performance parameters i.e. SSIM and PSNR values are given Tables 5 and 6 respectively.
Flow EPE and TPF values are presented in corresponding Tables 7 and 8. Table 9 depicts the
average performance of the network over ten emission steps.

4.3.2 Comparison charts

The below figures present the graphical representation of the the performance parameters
namely SSIM, PSNR, EPE and TPF for the 10 emission steps. For the adaptive bit rate video
compression, randomization emission step training strategy surpasses the fixed emission step

Table 4 MS-SSIM and PSNR
values of various architectures Architecture MS-SSIM PSNR

H.265 0.96 36
Flow-MotionNet (Proposed) 0.963 29.2
H.264 0.955 34
DVC [20] 0.955 35.5
Adversarial video compression [14] 0.9476 28.46

Fig. 8 a & b Graphical Comparison of MS-SSIM and PSNR values of various architectures
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Table 7 Flow EPE values per emission

Flow EPE 1 2 3 4 5 6 7 8 9 10

Baseline 1.154 1.154 1.154 1.154 1.154 1.154 1.154 1.154 1.154 1.154
ConvGRU 4.566 3.711 3.061 2.752 2.153 1.549 0.817 0.42 0.201 0.117
MotionNet 1.851 1.03 0.799 0.536 0.433 0.433 0.233 0.242 0.137 0.081
ConvGRU Randomized 1.251 0.613 0.555 0.409 0.311 0.319 0.273 0.221 0.201 0.173
MotionNet Randomized 0.826 0.477 0.383 0.35 0.273 0.248 0.173 0.199 0.175 0.189
Flow-MotionNet Randomized 0.822 0.577 0.368 0.276 0.226 0.253 0.189 0.17 0.148 0.17

Table 8 TPF values per emission

Time Per Frame 1 2 3 4 5 6 7 8 9 10

Baseline 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015
ConvGRU 0.0182 0.0186 0.0191 0.0195 0.0201 0.0205 0.0211 0.0216 0.0221 0.0226
MotionNet 0.0208 0.0214 0.0218 0.0224 0.023 0.0234 0.0239 0.0245 0.025 0.0255
ConvGRU Randomized 0.0182 0.0186 0.0191 0.0195 0.0201 0.0205 0.0211 0.0216 0.0221 0.0226
MotionNet Randomized 0.0208 0.0214 0.0218 0.0224 0.023 0.0234 0.0239 0.0245 0.025 0.0255
Flow-MotionNet

Randomized
0.0243 0.0248 0.0254 0.0258 0.0263 0.0268 0.0274 0.0279 0.0285 0.029

Table 9 Comparative average performance of different incremental modules of the proposed network

Avg. SSIM Avg. PSNR Avg. EPE Avg. TPF

Baseline 0.67 18.9 1.154 0.015
ConvGRU 0.5194 15.08 1.9347 0.02034
MotionNet 0.7834 21.21 0.5775 0.02317
ConvGRU Randomized 0.8555 23.78 0.4326 0.02034
MotionNet Randomized 0.8955 25.33 0.3293 0.02317
Flow-MotionNet Randomized 0.9036 26.22 0.3199 0.02662

Table 5 SSIM values per emission

SSIM 1 2 3 4 5 6 7 8 9 10

Baseline 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
ConvGRU 0.087 0.142 0.194 0.268 0.384 0.57 0.767 0.895 0.937 0.95
MotionNet 0.437 0.569 0.648 0.771 0.811 0.829 0.921 0.915 0.957 0.976
ConvGRU Randomized 0.652 0.768 0.823 0.864 0.883 0.893 0.916 0.917 0.92 0.919
MotionNet Randomized 0.706 0.813 0.866 0.902 0.924 0.938 0.948 0.951 0.953 0.954
Flow-MotionNet Randomized 0.709 0.819 0.874 0.91 0.932 0.948 0.957 0.961 0.963 0.963

Table 6 PSNR values per emission

PSNR 1 2 3 4 5 6 7 8 9 10

Baseline 18.3 21.1 22.4 23.7 24.3 24.6 25.8 25.7 26 25.9
ConvGRU 20 22.2 23.5 24.8 25.8 26.6 27.2 27.6 27.8 27.8
MotionNet 20 22.5 24.1 25.5 26.7 27.8 28.4 28.9 29.1 29.2
ConvGRU Randomized 18.3 21.1 22.4 23.7 24.3 24.6 25.8 25.7 26 25.9
MotionNet Randomized 20 22.2 23.5 24.8 25.8 26.6 27.2 27.6 27.8 27.8
Flow-MotionNet Randomized 20 22.5 24.1 25.5 26.7 27.8 28.4 28.9 29.1 29.2
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Fig. 9 Variation of MS-SSIM of different incremental modules of proposed network

Fig. 10 Variation of PSNR of different incremental modules of proposed network
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Fig. 11 Variation of Flow End Point Error of different incremental modules of proposed network

Fig. 12 Time Per Frame of different incremental modules of proposed network
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strategy. The relative analysis of the graphs show the growth in SSIM and PSNR values with
each additional emission step. The proposed model is designed incrementally. Firstly, addition
of motion extension network improves the performance of simple frame autoencoder. In
further addition, flow autoencoder is added to Motion Net architectecture for motion estima-
tion and prediction, which also outperforms the prior simple MotionNet architecture in terms
of visual quality. The same thing can be inferred from the relative graphs of respective models.
Moreover, addition of modules also increases the computation of the network, leading to the
increased frame reconstruction time. Figures 9 to 12 presents the graphical and relative
performance comparison of the different models at different emission steps ranging from 1
to 10.

4.3.3 Average comparison chart

The below charts in figures 13 and 14 represent the histogram representation of the average
values of various performance parameters obatained for various compression models for better
relative performance analysis. The graphs represent the comparison data between various
experiments. The sample frames produced by the models are given in next sub-section. The
top-left frame is input frame 1, the bottom left frame is input frame 10, the top-right frame is
output frame 1, the bottom right frame is output frame 10.

Fig. 13 a & b Relative comparartive analysis of MS-SSIM and PSNR of different incremental modules of
proposed network

Fig. 14 a& b Relative comparative analysis of Flow-EPE and TPF of different incremental modules of proposed
network
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It can be inferred from the graphs that the proposed architecture achieves increased SSIM
value eventually leads to improvement in visual quality of video frames. But the addition of
optical flow and and motension extension network leads to rise in frame reconstruction time,
so the TPF value of proposed architecture is higher than others. Further explorations and
improvements may result in more efficient outcomes.

Fig. 15 Sample Frames at different emission steps
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4.3.4 Sample frames

The samples of reconstructed frames after compression and decompression of different models
at different emission steps are presented in this section. In the image matrix, the left column
contains two original images and the right column contains the corresponding decompressed
output image. Figure 15 presents the relative visual quality of some of the sample frames at
different emission steps.

4.3.5 Comparison inference

Incorporation of the previously decoded frame: It is found that the flow representation
capability of the model improves significantly by adding in the previous output frame while
inferring the current output frame from the decoded frame. The above tables corroborate this
claim, and there is also a clear visual improvement in the sample frames.

Incorporation of flow vectors: The incorporation of flow vectors during decoding of the
frames, along with the previous frame and the currently decoded frame, while giving a
significant boost over plain ConvGRU model, gives only marginal improvements over only
incorporating previous frames. However, as the decode time required per frame is not
significantly increased by incorporation of flow vectors, the improvement is welcome. The
visual difference between the results, however, is pronounced.

5 Conclusion

The proposed model presents a lightweight learning-based adaptive video compression ap-
proach that allows variation in the quality of reconstructed video with the amount of data sent,
without requiring separate low-resolution versions of the same video. The ConvGRU units in
encoder and decoder networks and flow vector induced frame reconstruction have significantly
improved the performance of the network. The whole network is designed and experimented
incrementally. In comparison to some state-of-the-art techniques, a considerable improvement
in visual quality and efficiency has been observed when trained the network with random
emission step training strategy but with slight increment in frame reconstruction time. This
architecture can be further enhanced and optimized by plugging with additional modules like
entropy coding and others.
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