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Fast and efficient variational method based on G0

distribution for SAR image despeckling

Gherbi Nabil1 Bouaraba Azzedine1 Benssalah Mustapha2

Abstract
Speckle noise is one of the major challenges that affects Synthetic Aperture Radar (SAR)
images in view of its multiplicative nature. To deal with this issue, a new fast and effec-
tive despeckling algorithm is proposed, wich is based on a variational model incluing
data fidelity and regularization terms. The 0 distribution is considered to define the data
fidelity term, whereas the regularization term is formed by a combination of the weighted
second-order total variation, the Overlapping Group Sparsity (OGS), and a box constraint.
Moreover, a new fast and efficient diffusion function is proposed to solve the problem
of over-smoothing, and speed up the despeckling process. The obtained results show that
the proposed solution can achieve a maximum value of Equivalent Number of Looks
(ENL 189) for real SAR images, and the best CPU time consumption compared with the
state-of-the-art speckle removal methods.

Keywords Synthetic Aperture Radar (SAR) Diffuion function
Overlapping Group Sparsity (OGS) Total Variation (TV)

1 Introduction

Imaging by Synthetic Aperture Radar (SAR) is of great interest thanks to its independence
of weather conditions and capability of day and night functioning [24]. SAR offers raw data
in complex form that commonly processed using focalization algorithms to obtain high-
resolution images. However, speckle noise remains a major challenge that limiting SAR
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image exploitation in various computer vision tasks, such as image classification, object
recognition, edges detection and feature extraction [3, 12, 18, 19]. Speckle is multiplica-
tive noise resulting from the coherent nature of radar waves, which complicates parameters
estimation, such as reflectivity, interferometric and polarimetric properties of the ground
imaged targets [29]. Many approaches have been reported to reduce the speckle noise
effects. In the early 80s Lee [20], Frost et al. [11] and Kuan et al. [17] proposed various
despeckling methods which depend on the size of the used mask. Another approach called
Non Local Mean (NLM) has been published by Buades et al. [4] based on patch similarity.
This approach is more efficient than the previous ones in term of preserving edges and fea-
tures. For that, many authors introduced the concept of NLM in their algorithms [25, 27, 34].
In the same context, the Probabilistic Patch-Based filter (PPB) [7] and the Patch-Ordering-
Based method (POTDF) [35] have been developed. However, the main drawback of NLM
based algorithms is the strong smoothing and remaining noise at the homogeneous and flat
region edges. Furthermore, these methods have a high computational cost. To deal with
this last problem, look-up tables are used in the Fast Adaptive Nonlocal SAR despeckling
algorithm (FANS) [6] to compute the distances between patches.

Variational approach has also been employed for despeckling purposes, which is based
on the minimization of a functional energy formulated in two separated terms, namely data
fidelity and regularization [34]. The data fidelity term describes the statistical parameters
of the observed image whereas the regularization term quantifies the smoothness of the
final solution. The statistical parameters related to the data fidelity are generally estimated
using different rules such as the maximum likelihood estimator (MLE) and the maximum
a posteriori (MAP) [36]. Few years ago, another method was proposed to formulate the
data fidelity of SAR image intensity using the Gamma distribution [2]. In this context,
various speckle distributions have been claimed to model the radar cross section (RCS) of
the SAR imaged scene [15]. It has been shown in [5, 25] that the 0 distribution is one
of the best distributions that could fit the SAR data in different texture varieties, either for
homogeneous or heterogeneous. Indeed, the inverse Gamma distribution is used to model
the RCS, and the speckle noise is assumed to follow the Gamma distribution, which leads
to 0 distribution for the whole imaged scene.

In literature, the first order Total Variation (TV) was introduced by Rudin et al. [30] as a
regularization term, in order to guarantees the preservation of edge information. However,
it is characterized by an undesirable staircase effect. To overcome this drawback, hybrid
model is proposed in [22] by combining first and second order TV for the regularization.
The obtained results are satisfactory in terms of solving the staircase effect and false edge
problem, but only in the case of local structures and textures. For a global staircase artefacts
smoothing, another regularization term known as Overlapping Group Sparsity (OGS) was
adopted in [21].

Recently, SAR image despeckling algorithm is proposed in [14], by adopting the diver-
gence model for the data fidelity term under the assumption that the speckle noise follows
the Gamma distribution. In addition, a truncated non-smooth method abbreviated TRTV-
pIdiv has been developed using the non-convex -norm [14]. After solving the optimization
problem with an Alternating Direction Multiplier Method (ADMM), the despeckling algo-
rithm was successfully applied to real SAR images, but the blurry effect and over-smoothing
problems still remain. Indeed for solving these two problems, the total variation term should
be weighted by an efficient diffusion function. In this context, many functions can be used
such as the well known Parona Malik (PM) function [28] and the Sigmoid-based diffusion
function proposed by Tebini et al. [32].
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In the present paper, a new fast method based on a variational model is developed by
adopting the 0 distribution to fit as best as possible the SAR data. The proposed regular-
ization term includes a weighted second order TV, an OGS and a box constraint. Moreover,
a novel fast and efficient diffusion function is proposed for weighting the second order TV
term. The performance of the developed despeckling model is evaluated and compared to
different existing methods, using both synthetic and real SAR images.

The present paper is organized as follows. In Section 2, the mathematical background
that will be used throughout the paper is provided. In Section 3, a brief description of related
models is presented. The developed variational based despeckling model is then given in
Section 4, whereas the obtained experimental results are pointed in Section 5.

2 Mathematical background

2.1 Alternating DirectionMethod of Multipliers (ADMM)

The ADMM algorithm is considered as an efficient and powerful method [21], which is
widely used to solve separable constrained optimization problems of the following form:

min
1 2

1 2

s.t 1 2

1 1 1 2 (1)

where . and . 1 2 represent a closed convex functions,
stand for linear transforms, and is the input vector.
The augmented Lagrangian function of (1) is:

L 1 2 1 2 1 2

2
1 2

2
2 (2)

where is the Lagrange multiplier and is a positive penalty parameter. The ADMM
is based on finding a saddle point of L by alternately minimizing L with respect to 1,

2 and . A powerful algorithm for solving (1) in the framework of ADMM is given in
Algorithm 1.
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2.2 First and second order TV

Considering an image . The discretized image domain can be expressed as:
1 1 .

where denotes the set of positive integers. The isotropic first order TV regularizer can be
represented in the discrete form as:

2

2 2
(3)

and the second order TV can be represented as:

2

2

2 2 2 2
(4)

where and are the forward difference operators with periodic boundary conditions
while and correspond to the backward difference operators with periodic boundary
conditions.

2.3 Constraint box

A characteristic function is defined for a set , with [0 255] or [0 1].

0 if

otherwise. (5)

The function is used to restore the pixels of an image in the interval .

2.4 Overlapping group sparsity

For an image , a square-point group is defined as:

1 1 1 1 1 1 2

1 1 1 1 1 1 1 1 1 2
...

...
. . .

...

2 1 2 1 1 2 2

(6)

where and 1
1

2 , 2 2 , and [ ] denotes the largest integer

less than or equal to . The vector resulting from stacking columns of the matrix is
denoted by . The OGS regularizer of in the two dimensional space is defined
by:

1
2 (7)

3 Related works

The multiplicative model for speckle noise is denoted by:

(8)
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where is the unknown noise-free two-dimensional image ( ), is the noisy observed
image, and is the multiplicative noise, assuming that and are uncorrelated. The speckle
intensity follows a Gamma distribution with a Probability Density Function (PDF) [34] :

1 exp 0 (9)

where is the equivalent number of looks (ENL) and . is the Gamma function. The
amplitude PDF is derived with taking the square root of the intensity PDF.

3.1 The G0 distribution

The 0 distribution is based on the assumption that the amplitude backscatter follow the
reciprocal of the square root of the Gamma distribution, while the speckle noise allows a
square root of Gamma law [10]. The PDF of the reciprocal of the square root of Gamma
distribution is given by:

2 1 exp 0 (10)

The PDF of the intensity backscatter can be derived from (8), (9) and (10) as follows:

1

0 (11)

and are parameters related to the roughness of the imaged scene and the scale of the
distribution, respectively. These unknown parameters are estimated according to the Mellin
transform [1].

3.2 Related variational model

Starting with the fact that the speckle model is multiplicative, its formula has the form of (8),
for which the image of backscatter terrain, the noise-free image (true searched image)
and is the speckle noise. By assuming that and are independent, a convex model has
been studied in [31], starting from the lack of non convexity of the model of Aubert and
Aujol (AA) [2]. The energy functional given in [31], has been obtained after a logarithmic
transformation of the form . As a result, the energy functional has the form:

arg min (12)

with and , is a positive regularization parameter,

and is the discretized image domain.
Many existing variational models have been proposed by constructing the fidelity term
with assuming a constant terrain RCS and different regularization terms. Based on these
assumptions, the despeckling results are still unsatisfactory.

4 Proposed variational model

In this section, the developed despeckling model is presented, including the data fidelity
term and the regularization one, which is itself a combination of a weighted second order
total variation, OGS regularizer, and constraint box terms.
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4.1 Data fidelity term

By combining (8) and (9), the resulting PDF is:

2 2 1
2

2
0 (13)

The PDF of has a priori the form of (10), and by a MAP rule, is maximized. By
using (13) and (10) in the framework of MAP rule, the obtained equation is as follows:

2 2 1
2

2
(14)

where denotes “proportional to”. In (14), all quantities are positive, and hence minimizing
the negative log-function is equivalent to maximizing the log-function:

log 2 2 1 log
2

2
(15)

Thus, the data fidelity can be expressed by:

2 2 1 log
2

2
(16)

4.2 Proposed regularization term

The proposed regularization term is as follows:

1 2 (17)

s.t.

2
2

2
1

2

0
otherwise

is the diffusion function used for weighting the second order TV term. 1 and 2 are
regularization parameters.

4.3 Proposed weighting diffusion function

The diffusion function has been widely used to describe different physical phenomena, e.g
molecular and atoms diffusion in different mediums [26]. The diffusion function should
fulfil some mathematical conditions. It must be positive, nonlinear and monotonically
decreasing.

0 0 decreasing and lim 0

For the case of image denoising, the values of tend to 0 near edges, where the
image gradient has very high values. Thus, restraint the filtering process which is suitable

5904 Multimedia Tools and Applications (2023) 82:5899–5922



since it conserves the boundaries and consequently the images structures. The high values
of correspond to low image gradient, which allow the smoothing of homogeneous regions.

The idea behind proposing weighting diffusion function comes from the probability the-
ory, for which the PDFs have usually a continuous variation in the interval [0-1], with a
similar variation nature compared to a diffusion function. The Lomax distribution com-
monly used in reliability and life testing problems is adopted [16]. For a random variable
with scale and shape , the Cumulative Density Function (CDF) of Lomax distribution is
given by:

1 1 (18)

The probability density corresponding to is:

1 (19)

Considering the variable transformation , and after replacing in (18), the new
obtained CDF is:

1 1 (20)

The survival function of a random variable has the form:

1 (21)

By replacing the new CDF in (21), the new survival function is:

1 1 (22)

The obtained function is positive, nonlinear, and monotonically decreasing. Thus, it
satisfies all requirements of a diffusion function. The flux function is defined as:

(23)

The performance of can be enhanced by varying the parameters and , depending
on the statistical parameters of the denoised image. For a fixed , is faster with large
values of , starting with the value 1 at low gradient levels, as shown in Fig. 1a. This is
the case of homogeneous regions, where the diffusion is permitted. With the increase of
the gradient values, decreases, and hence inhibiting the diffusion and preserving the
image edges. For a fixed value, smoothness is controllable by the variation of the
parameter . High values require more smoothness to , whereas lower ones make

more sharp (see Fig. 1c). As in the case of , and have an impact on
in similar way as depicted in Fig. 1b and d. The values of the parameter and should
be selected in a way to ensure a good compromise between the diffusion speed and the
preservation of the image edges.

Figure 2 displays the proposed diffusion and flux functions, compared with the two well
known models PM [28] and Tebini et al. [32]. For the same parameters 1 and 2, the
results show in one side that the first curve which reaches its minimum values corresponds
to our proposed model. In the other side, the flux function of our proposed model reaches its
maximum firstly, and decreases to converge rapidly compared with the two other models.
The findings reveal that our proposed function is faster, when used for image denoising, with
efficiently edge preserving, and allows good diffusion capability within the homogenous
regions.
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Fig. 1 Effect of and on the diffusion and flux functions

Fig. 2 (a) Diffusion functions of different models, (b) Flux functions of different models
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In order to prove the convergence speed of the diffusion function, the parameter is
analyzed over successive iteration steps, as reported elsewhere [32]. The obtained results, as
presented in Fig. 3, clearly indicate that despite the Tebini et al. model reaches its minimum
earlier, our model converges to zero more faster. Thus, the proposed function conducts to a
deeper filtering, with maintaining edges by rapidly inhibiting the diffusion. Consequently,
our proposed function does not only preserve edges, but may even enhance them. Moreover,
it permits the diffusion inside the homogeneous areas which ensures a good performance
of denoising. Nevertheless, the two other models can provide a blurring edges since they
require more time during the diffusion. For further details on mathematical convergence
proofs, the reader is referred to [32, 33].

In Fig. 4, it can be seen that edges obtained by our proposed diffusion function are more
clear and continuous, while results obtained by PM and Tebini et al. functions suffer from
weak and discontinuous edges.

4.4 SAR despeckling algorithm

By combining the data fidelity term in (16) and the regularization term in (17), the energy
functional of the proposed model is as follows:

arg min 2 2 1 log
2

2

1
2

2

2
2

1
2

(24)

Due to the data fidelity term, our model lacks the global convexity. To solve this problem,
the value of is replaced by another variable such that . After substitution in

Fig. 3 Convergence speed of different models
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Fig. 4 Edges detection results on Cameraman. (b) PM function, (c) Tebini et al. function, (d) Proposed
function

(24), the energy functional of the proposed model is:

arg min 2 2 1 2 2

1
2

2

2
2

1
2

(25)

(25) can be rewritten using the following notations

arg min 2 2 1 2 2

1
2
2 2

1
2

(26)
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s.t. 2 .
The augmented Lagrangian in (26) is defined by the (27) as follows:

L 1 2 3 4 2 2 1 2 2

1
2
2 2

1
2

1 2
2
2

2
2

2
2

2

2

3 2
2
2

4 2
2
2 (27)

where 1 4 are the Lagrange multipliers, and a positive parameter for penalizing
the 2 norm quadratic terms. The solution of our optimization problem is performed by
separately solving the simpler following sub-problems:

1 arg minL 1 2 3 4

1 arg minL 1
1 2 3 4

1 arg minL 1 1
1 2 3 4

1 arg minL 1 1 1
1 2 3 4

1 arg minL 1 1 1 1
1 2 3 4

1
1 1

1 1

1
2 2

1 2 1

1
3 3

1 1

1
4 4

1 1

(28)

1. sub-problem: fixing , , and , the (27) can be transformed into:

1 arg minL 1 2 3 4

1 arg min
2

2

2 1

2
2

2

2 2
2

2

2

2

3 2

2

2 4 (29)
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With respect to , the corresponding normal equation is:

2 2 2
1

2

2
2

3 4 (30)

Here, the fast Fourier transform is chosen to diagonalize under periodic boundary con-

ditions the two terms and 2 2 , which are first and second order difference
operators. Thus, can be written as:

1
1 4 2 2 3

2 2 2
[ ] 2

(31)
2. sub-problem: fixing 1, to calculate 1. Equation (27) can be

transformed into :
1 arg min 2 2 1 2 2

2
1

2

2 1
1

arg min 2 2 1 2 2

2
1 1

2

2

(32)

Since the objective function of is strictly convex, this equation has a unique solution
obtained by using Newton’s method through solving the following non-linear equation:

2 2

2
1 1 1

2
0 (33)

The numerical solution of the problem is obtained after a few number of iterations.
3. sub-problem: fixing 1, 1, 1, 1 to calculate 1. The solution of

subproblem is given by shrinkage operator, as follows:

1 max 2 1 2 1
1

0 .
2 1 2

2 1 2

(34)

4. subproblem: fixing 1, 1 1, to calculate 1: is the overlapping
group sparse problem:

1 arg min
2

1 3
2

2

2 (35)

The equation can be solved by the iterative Majorization-Minimization algorithm
(MM). This approach has been adopted in [8] to solve the optimization problem for
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denoising images under Cauchy noise. Also, the MM algorithm is used to solve a
numerical problem of deblurring Poisson noisy image using the OGS regularizer [23].

5. subproblem : given by:

1 arg min
2

1 4
2

2

(36)

The subproblem can be solved by a simple projection on the set .

Finally, the Lagrange multipliers is updated by the following equations:

1
1 1

1 1

1
2 2

1 2 1

1
3 3

1 1

1
4 4

1 1

Finally, the proposed despeckling model is summarized in Algorithm 2.

5 Experimental results

To evaluate the efficiency and the performance of the developed despeckling model, various
images are used: 8-bit grey standard images, two simulated SAR images, and four scenes
of real SAR images. The cameraman and peppers images of size 256 256 and 512 512,
respectively, have been used. As synthetic SAR images, the Napoli and Nimes aerial images
of size 512 512 and 400 400, respectively, have been selected.
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The real SAR images used in our experiments, are downloaded from the open image
data base of Sandia National Laboratories, and they can be found at http://www.sandia.gov/
radar/sar-data.html. The proposed algorithm is overall compared with the following recent
methods, taking into account their default parameters :

SAR-BM3D [27]
FANS [6]
POTDF [35]
PPB-nonit [7]
PPB-it [7]
TRTVpIdiv [14]

All experiments are performed using a personal computer with Intel(R) Core (TM) i5
processor, 4G of RAM, under the windows 7 operating system.

5.1 Parameters setting

To get more accurate results and highest possible metrics, it is important to select the appro-
priate simulation parameters. An empirical choice by tuning manually the parameters , 1
and 2 is necessary to control the balance between the data fidelity and the regularization
term. According to the obtained results with changing the group size of the OGS term,
it is found that a high value of this latter leads to over smoothed results and more com-
putational complexity. The obtained optimal value after varying the group size in several
experiments is 3. In addition, the values of the parameters and in the diffusion
function are selected to be 8 and 2, respectively, for all experiments. Finally, to control the
ADMM algorithm, the convergence condition stated in [13] has been used.

5.2 Performance evaluationmetrics

In the general noise case, good noise suppression, and well image’s structure preservation
can be evaluated quantitatively by using the metrics Signal to Noise Ratio (SNR) and Mean
Square Error (MSE). However, it is inefficient in the case of speckle noise in real SAR
images due to the lack of noise-free data. For this reason, the standard grey level images,
and the synthetic SAR images cited above, are used as noise-free data. Speckle noise is
added synthetically with equivalent number of looks (ENL=3), fulfilling the practical appli-
cation [9]. The obtained noisy images exhibited the characteristics of multiplicative noise
following Rayleigh distribution. For that, three metrics are used to evaluate the despeckling
performance [29]:

The Peak Signal to Noise Ratio (PSNR) is given by:

PSNR 10 log10

2
max

1

1 1

2
(37)

The Structural Similarity Index (SSIM) is given by:

SSIM
2 1 2 2

2 2
1

2 2
2

(38)
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The Square Root of Mean Square Error (RMSE) is given by:

RMSE
1

1 1

2 (39)

where represents the noise-free image of size , is the recovered image after
despeckling, and 2 is the maximum grey level value of the original image. and
are the mean values of the original image and the recovered image, respectively, and their
standard deviation are and . 2 denotes the correlation value between and . The
constants 1 and 2 are added, with small values,to avoid computation instability.

The despeckling quality of such algorithm can be also achieved through ENL evaluation,
in case of SAR intensity data as follows:

ENL
2

(40)

where and denote, respectively, the mean and the standard deviation of the selected
homogeneous area. In case of SAR amplitude data, the ENL can be expressed as follows:

ENL
4

1
2

2
(41)

High values of ENL indicate a strong ability of the algorithm to suppress the speckle noise
in the homogeneous regions, without introducing distortions.

To measure the sharpness and structure preservation of the despeckled images, the
ENL is now calculated as the ratio between a noisy image, and the corresponding denoised
one.

ENL ENL (42)

The values are calculated in small zones, which contain various structures and objects.
As ENL approaches the ENL value of the noisy image, the algorithm better preserves
structures and gives sharper results.

5.3 Experimental results on synthetic images

Figures 5–8 report the results obtained with different despeckling methods using: two stan-
dard gray level images (Cameraman and Peppers) and two synthetic SAR images (Napoli
and Nimes). The added speckle noise to each image corresponds to ENL=3, as showed
in Figs. 5a–8a. As it appears in Fig. 5b,c, SAR-BM3D and FANS methods present good
results, with some false edges around the face and the camera. Some artefacts in the back-
ground for SAR-BM3D are also noticed. PPB-nonit method displays more clear edges, in
Fig. 5e, however the smooth parts in the background are partially removed. This result is
more enhanced by PPB-it method, as showed in Fig. 5f, with some visible false edges.
Despite its edge preservation, the staircase effect and small artefacts clearly appears with
TRTVpIdiv method in the background of Fig. 5g. Besides, POTDF method gives the worst
result, in Fig. 5d, with strong blurred image content. Obviously, it can be seen that our
algorithm overcomes these drawbacks, where the speckle is reduced and the edges are well
maintained. As it is said before, the regularization parameters are selected to keep the better
trade-off between noise reduction and fine detail preserving. It appears in Fig. 5h, that the
right hand of cameraman is well restored compared with other methods.

Figure 6 presents a despeckled Peppers image by different algorithms. As for the previ-
ous image, the staircase effect appears in the TRTVpIdiv result (Fig. 6g), and blurred image
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Fig. 5 Despeckling results on Cameraman: (a) noisy image (ENL=3) (b) SAR-BM3D (c) FANS (d) POTDF
(e) PPB-nonit (f) PPB-it (g) TRTVpIdiv (h) Proposed

obtained with POTDF algorithm (Fig. 6d). The PPB-nonit and the proposed method effi-
ciently reduce the speckle noise, comparing to the rest of the methods, without affecting the
image’s structure as showed in Fig. 6.

Fig. 6 Despeckling results on Peppers: (a) noisy image with (ENL=3) (b) SAR-BM3D (c) FANS (d) POTDF
(e) PPB-nonit (f) PPB-it (g) TRTVpIdiv (h) Proposed
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Two synthetic SAR images Napoli and Nimes are used as SAR noise-free data. Figures 7
and 8 present despeckling results for all used methods. It can be seen the similarity between
FANS, SAR-BM3D and PPB-it results in Fig. 7b,c,f, with small enhancement for PPB-it.
The speckle noise is well removed in the case of PPB-nonit (Fig. 7e), but at the cost of
strongly smoothing some textures and objects. According to results presented in Fig. 7g,
speckle noise still exists with staircase effect using TRTVpIdiv algorithm.

Meanwhile, an enhanced and smoothed result obtained with the proposed method in
Fig. 7h, with notable difference appearing in the bottom right corner of the other despeckled
images, except those obtained by PPB-it and PPB-nonit methods. The results presented in
Fig. 8 confirm the efficiency of the proposed method.

Tables 1, 2 and 3 summarize the obtained quantitative values of PSNR, SSIM and RMSE.
For all the used images, our proposed method has the highest PSNR and SSIM values,
followed by FANS, PPB-nonit and SAR-BM3D, whereas the POTDF showed the lowest
performance. This reflects the ability of our algorithm to remove the speckle noise with
good edges and textures preservation. For all experiments, the minimum value of RMSE
is obtained using our proposed algorithm. This proves the strong similarity between the
despeckled images and the original ones.

Finally, all results listed in Tables 1, 2 and 3 demonstrate the effectiveness of our
algorithm, in terms of PSNR, SSIM and RMSE.

5.4 Experimental results on real SAR images

To prove the ability and efficiency of our algorithm to deal with the speckle noise problem,
it is necessary to test it in the case of real SAR images. Four scenes (denoted SAR(1-4))
with and equivalent number of looks (ENL=3) are chosen from Sandia National Laborato-
ries official site. Four parts with different sizes are selected from each scene, and for each

Fig. 7 Despeckling results on Napoli: (a) noisy image with (ENL=3) (b) SAR-BM3D (c) FANS (d) POTDF
(e) PPB-nonit (f) PPB-it (g) TRTVpIdiv (h) Proposed
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Fig. 8 Despeckling results on Nimes: (a) noisy image with (ENL=3) (b) SAR-BM3D (c) FANS (d) POTDF
(e) PPB-nonit (f) PPB-it (g) TRTVpIdiv (h) Proposed

part, two areas (homogeneous and non-homogeneous) are defined. The areas contain some
objects marked with red and yellow windows successively. Visual perception in Figs. 9–12,
shows that all methods reject the speckle noise. However, the results exhibit that the side
effects differ from one method to another.

For the image in Fig. 9d, the resulting despeckled image by POTDF algorithm is strongly
blurred. In Fig. 9g, staircase effect still exist in the homogeneous regions in the case
of TRTVpIdiv method, whereas the proposed method and the remaining ones efficiently
remove the speckle noise.

Table 1 Performance in terms of PSNR(db) for Cameraman, Peppers, Napoli and Nimes images

Image

Method Cameraman Peppers Napoli Nimes

SAR-BM3D 26.07 29.54 25.72 29.55

FANS 27.75 30.16 25.62 29.54

POTDF 23.16 25.47 20.21 22.88

PPB-nonit 26.35 28.91 24.13 28.68

PPB-it 25.67 28.97 24.58 28.55

TRTVpIdiv 25.70 28.15 25.20 28.95

Proposed 28.85 30.55 27.52 30.41

Best results are emphasized in boldface
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Table 2 Performance in terms of SSIM for Cameraman, Peppers, Napoli and Nimes images

Image

Method Cameraman Peppers Napoli Nimes

SAR-BM3D 0.79 0.89 0.88 0.95

FANS 0.83 0.90 0.85 0.94

POTDF 0.73 0.85 0.58 0.70

PPB-nonit 0.75 0.88 0.78 0.93

PPB-it 0.75 0.89 0.83 0.95

TRTVpIdiv 0.79 0.89 0.85 0.95

Proposed 0.84 0.92 0.91 0.97

Best results are emphasized in boldface

Figure 10d shows a blurred result obtained by POTDF method and remaining speckle
in the case of TRTVpIdiv algorithm (Fig. 10g). The results in Fig. 10b,c obtained by the
FANS and SAR-BM3D methods appear sharp and satisfactory, but remaining speckle can be
observed in the top left corner. An enhanced result is obtained by PPB-it method (Fig. 10f).
According to Fig. 10h, the proposed method gives the best performance in terms of speckle
reduction, smoothness, without generating artefacts and staircase. Moreover, the results dis-
played in Fig. 11 differ from one method to another; smeared features for the PPB-nonit
method (Fig. 11e), strongly smoothed image for the PPB-it method (Fig. 11f), and blurry
results for the POTDF method (Fig. 11d). Enhanced results are obtained by SAR-BM3D
and FANS (Fig. 11b,c). For the last method, some over-smoothing of homogeneous parts
are also noticed, which can be explained by the use of look-up tables. The obtained despeck-
led image using our algorithm, in Fig. 11h, presents well smoothed homogeneous parts and
good edges preservation. Results presented in Fig. 12h confirm the robustness of our algo-
rithm in homogeneous areas containing man-made structures. The fine details and bright
scatterers are well preserved and the shadow of the air-plane is well enhanced, which may
improve the object recognition and feature extraction.

Table 3 Performance in terms of RMSE for Cameraman, Peppers, Napoli and Nimes images

Image

Method Cameraman Peppers Napoli Nimes

SAR-BM3D 12.67 8.50 13.20 8.49

FANS 10.54 7.91 13.35 8.50

POTDF 17.73 13.59 24.88 18.31

PPB-nonit 12.28 9.14 15.85 9.38

PPB-it 13.27 9.08 15.04 9.53

TRTVpIdiv 13.10 10.25 14.50 9.81

Proposed 10.37 7.05 11.50 7.95

Best results are emphasized in boldface
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Fig. 9 Comparative despeckling results on real SAR1: part of SAR1 (b) SAR-BM3D (c) FANS (d) POTDF
(e) PPB-nonit (f) PPB-it (g) TRTVpIdiv (h) Proposed

From Table 4, it can be seen that our algorithm displays the highest values of ENL for the
cases of SAR1 and SAR4. Moreover, the values of ENL are near the ENL of the original
image (ENL=3). For SAR2 and SAR3, PPB-nonit has the higher ENL. These results indi-
cate that our algorithm can reduce the speckle noise efficiently in the homogeneous regions,

Fig. 10 Comparative despeckling results on real SAR2: part of SAR2 (b) SAR-BM3D (c) FANS (d) POTDF
(e) PPB-nonit (f) PPB-it (g) TRTVpIdiv (h) Proposed
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Fig. 11 Comparative despeckling results on real SAR3: part of SAR3 (b) SAR-BM3D (c) FANS (d) POTDF
(e) PPB-nonit (f) PPB-it (g) TRTVpIdiv (h) Proposed

by preserving edges. However, the POTDF results are blurred. The FANS and SAR-BM3D
methods exhibit similar results, which are previously confirmed by visual perception. As can

Fig. 12 Comparative despeckling results on real SAR4: part of SAR4 (b) SAR-BM3D (c) FANS (d) POTDF
(e) PPB-nonit (f) PPB-it (g) TRTVpIdiv (h) Proposed
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Table 4 ENL and ENL of four despeckled real SAR images

SAR image SAR1 SAR2 SAR3 SAR4

Method ENL ENL ENL ENL ENL ENL ENL ENL

SAR-BM3D 60.38 3.96 167.22 4.29 9.09 4.19 149.87 4.00

FANS 59.93 4.28 190.93 4.84 25.65 3.50 140.37 4.90

POTDF 93.86 2.62 236.46 2.72 56.32 2.72 104.32 1.86

PPB non-it 82.28 3.62 471.08 2.34 106.47 2.88 176.33 3.42

PPB it 64.83 4.30 462.58 2.92 63.29 3.21 143.86 4.88

TRTVpIdiv 78.70 3.67 245.50 3.40 55.20 3.01 150.30 3.90

PROPOSED 109.79 3.53 290.03 3.25 64.74 3.15 188.89 3.22

Best results are emphasized in boldface

be seen, the proposed method adaptively reduces speckle noise according to local hetero-
geneity. Moreover, the staircase effects in the homogeneous regions are effectively avoided,
meanwhile the fine details, textures and repetitive structures are well preserved.

5.5 CPU time consumption

In Table 5, the CPU time of the proposed method is summarized with the aforementioned
methods. For all experiments listed in Table 1, our algorithm is the fastest, followed by
FANS and PPB-nonit. Thanks to the proposed fast diffusion function, which highly accel-
erates the despeckling process, our algorithm ensures a rapid convergence to the exact
solution.

6 Conclusion

In this paper, a new combined weighted second order TV with an OGS regularizer and a
box constraint is proposed for SAR image despeckling. A new fast and efficient diffusion
function is proposed to solve the problems of over-smoothing, staircase effect and speed

Table 5 CPU Time(s) of despeckling methods for each synthetic image

CPU time (s)

Method Cameraman Peppers Napoli Nimes

SAR-BM3D 20.83 85.10 85.36 50.81

FANS 2.18 7.77 8.92 6.14

POTDF 7.42 10.57 9.88 7.27

PPB-nonit 3.50 10.83 10.79 6.88

PPB-it 14.63 53.30 53.11 33.15

TRTVpIdiv 11.19 29.46 57.30 71.70

Proposed 0.82 4.56 4.41 2.67

Best results are emphasized in boldface
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up the despeckling process. Experimental comparison of the proposed method is performed
on both synthetic and real images. The results show that our method can adaptively reduce
speckle and provide superior performance in terms of SSIM, PSNR, RMSE, ENL, and CPU
time.

Besides the speckle reduction application, we expect to extend our work to handle
the wider class of SAR data problems, such as image reconstruction, change detection,
interferometry and polarimetry.
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