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Abstract
This study presents a new speech emotion recognition (SER) technique using temporal
feature stacking and pooling (TFSP). First, Mel-frequency cepstral coefficients, Mel-
spectrogram, and emotional silence factor (ESF) are extracted from segmented audio
samples. The normalized features are fed into this neural network for training. For final
feature representation, the learned features passed through the proposed TFSP framework.
Subsequently, a linear support vector machine classifier is employed for emotion classi-
fication. It is evident from the confusion matrices that the suggested method can extract
emotional content from speech signals efficiently with more unique emotional aspects from
commonly confused emotions. According to this study, a shallow neural network can per-
form as good as the existing deep learning architectures like CNN, RNN, and attention
networks. It may be mentioned here that the proposed method also utilises data augmenta-
tion by artificially increasing the number of speakers by disrupting the vocal tract length.
Furthermore, these highly complex networks employ millions of trainable parameters,
resulting in a longer convergence time.

The experiments are carried out on four different language speech emotional datasets,
the Berlin emotional speech dataset (EmoDB) in German language, Ryerson Audio-Visual
Database of Emotional Speech and Song (RAVDESS) in North American English, Sur-
rey Audio-Visual Expressed Emotion Database (SAVEE) in British English and a newly
constructed MNITJ-Simulated Emotional Hindi speech Database (MNITJ-SEHSD) in the
Hindi language. Experimental results on the proposed framework achieved an overall
accuracy of 95.09%, 90.20%, 95.50% and 94.67%, on EmoDB, RAVDESS, SAVEE and
MNITJ-SEHSD, respectively, at much lesser computational complexity. These findings
are compared to the baseline of the three existing architectures on the same databases.
Classification accuracy, precision, recall and F1-score are used to validate the developed
method.
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1 Introduction

It is well known that detecting a person’s emotional condition is a challenging task. In
an identical situation, each person communicates their feelings uniquely. Automatically
detecting these emotional states of human speech is difficult for machine learning systems.
Though there are other modalities for detecting the emotional state of humans, recently,
speech-based emotion recognition is gaining even more popularity, specifically in deep
learning models [2, 17]. Due to the widespread use and development of human-computer
interface systems, speech emotion identification has recently gained popularity as a research
topic in signal processing, artificial intelligence, and other fields [13]. Our voice is the most
natural, fastest, and most widely used mode of communication when it comes to modes of
communication. Emotional recognition in speech improves the effectiveness of detection for
applications such as speech to text, as well as strengthens the personification of machines
[17]. Two primary directions for investigating speech emotions are dimensional and cat-
egorical. Categorical emotion recognition is more typically utilized under the assumption
that a few basic emotions can be recognized universally, such as happiness, anger, sadness,
surprise, fear, and disgust. In the dimensional category, the emotions are classified based on
how positive, hostile, strong, weak, calm, or excited the emotions are [2, 40].

For researchers, the most important aspect is how to extract the powerful, discriminat-
ing and emotionally rich acoustic contents of the speech signals. The initial development
of speech emotion recognition(SER) systems was based on hand-crafted features from the
audio signal, for example, Mel Frequency cepstrum coefficients (MFCC), Linear predictive
coefficients (LPC), Teager energy-related features (TEO), Fourier parameters (FP) etc. [4,
15, 43]. Though the results were reasonably good, the efficiency is always inferior to that
of humans. These features are low-level audio representations and may not be discriminant
enough to classify speech-based emotions. Various deep-learning algorithms have been used
to tackle this problem by extracting high-level audio features. Recurrent neural networks
(RNNs) have proven greater performance in recognizing voice emotion as they can learn the
sequential data very well, such as speech. In RNNs, the problem of considering long-term
dependencies has been mitigated by using long-short-term memory (LSTM), and temporal
convolutional networks (TCNs), which was due to their limited capturing of temporal data
[33, 39, 49]. TCNs can not copy the long-term dependencies between long-range audio pat-
terns, and this issue further leads to a bottleneck of classification accuracies in these models.
Other solutions are provided by using bi-directional analysis, which can further better track
the past information of the sequences and eventually make the structure more robust in
[32]. Convolutional Neural Networks (CNN) are the Deep Neural Networks (DNN) exten-
sion that addresses challenges such as determining the best features to use as inputs to these
neural networks for effective learning. Aside from their tremendous success in visual tasks
[25], some recent studies have successfully used CNNs for feature learning in speech sig-
nal processing. Feature learning in speech emotion recognition has been effectively applied
using a variety of CNN architectures [8, 18]. Also, CNN and LSTM have been employed
in many studies throughout the last decade. They are, nevertheless, constrained by the lack
of sequence parallelization and high computation times. Meanwhile, the attention mecha-
nism is used in learning significant feature representations for SER. Self-attention is used
to capture the contextual dependencies specifically for NLP tasks, but more recently they
have achieved state of art in SER [4, 11, 47].

The above mentioned different architectures and their combinations are used to enhance
the classification accuracies of emotion identification. The use of diverse learning models
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to improve these accuracies often comes at the expense of making the overall architecture
more complex. Nonetheless, the number of trainable parameters has increased due to the
structures like attention mechanisms used in the models. If the dataset is small, then cer-
tainly it is not adequate. Hence even in the presence of significant computational resources,
performance is only tolerable because of the extensive input features and complexities of
modern deep learning models. This work proposes a modified neural network design for
better temporal feature learning to address this issue.

2 Related work

An effective SER system is comprised of two essential components: relevant feature
extraction and emotion categorization. This part covers a quick overview of emotion cate-
gorization using speech based on complex current architectures to emphasize the suggested
design simplicity, which is more relevant to our work.

Spectrum characteristics are one of the paralinguistic features commonly employed in
speech emotion recognition. These feature representations are classified using several clas-
sifiers in past such as SVM, GMM and HMM [36, 41]. Machine learning techniques boost
the progress of emotion identification using speech signals compared to the hand-crafted
audio features classification. In the case of CNNs, the features are better learned because
they can capture detailed time-frequency correlations than a dense network. Han et al.
used a DNN inputted with hand-crafted features from speech segments to create utterance
level SER features, which are fed into an Extreme Learning Machine (ELM) for classifica-
tion [19]. The statistical values of the entire sequence are classified using ELM, and they
have observed a net improvement of 5% compared to the SVM classifier. In our previous
work, a compact five-layer CNN network achieved 84.61% on EmoDB with log-Mel-
spectrogram processed as an image [10]. This only five-layer network produces promising
results on observed datasets. The performance of a standard SVM is compared to MLP
classifiers using five different speech representations in [24]. On RAVDESS, they achieved
a weighted accuracy of 78.8% using data augmentation with SMOTE (Synthetic Minority
Over-sampling Technique). Anvarjon et al. suggested an SER model with minimal com-
puting complexity and high recognition accuracy based on only CNN layers, which was
then classified using SVM [3]. Trigeorgis et al. proposed merging convolutional neural net-
works (CNNs) with LSTM networks to automatically learn the best representation of the
speech signal straight from the raw temporal representation to solve the problem of context-
awareness [42]. Chen et al. proposed another CNN-LSTM architecture to improve state
of the art, having 3-D Mel-spectrogram as input to the model [11]. Mel-scaled spectro-
grams and their two differentials, deltas and double deltas, are used in their experiments.
Calculating the deltas and double-deltas for individualized attributes is considered to main-
tain useful emotional information while reducing the influence of emotionally irrelevant
components, resulting in less misclassification. Zhang et al. used a pre-trained AlexNet
model to construct an SER model to extract deep features from audio spectrograms using
transfer learning. A fully connected neural network is integrated with an attention mecha-
nism to forecast the embedded emotion [48]. Nediyanchath et al. used a multitask learning
transformer-based network with gender identity for emotion identification. They have also
incorporated positional embeddings of emotionally relevant cues for final classification.
Their architecture can achieve the state of the art results on a challenging emotional
dataset like IEMOCAP [35]. Peng et al. employed 3-dimensional convolution to incorporate
a time-frequency scale with BiLSTM and attention weighing. This structure reinforces the
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time step importance by using attention weights. The series continues with more advanced
structures such as autoencoders [16], capsule networks [46], generative adversarial networks
[9], and various convolutional neural network modifications. In this paper, a shallow neural
network is explored to identify emotions in human speech by processing acoustic features.
The summary of the primary contributions of the proposed work is as follows:

(i) The audio samples are segmented to increase the number of samples available with
respective source labels for training the model.

(ii) For the network input, only two spectral features, MFCC and Mel-spectrogram, are
utilized, and one temporal feature, the emotional silence factor, is proposed, which
proved effective in the final classification.

(iii) To conduct utterance level analysis from segments, a multi-layer feature learning is
proposed using the TFSP.

(iv) The end-to-end architecture performs reasonably well with the most state-of-art find-
ings and helps in decreasing both the cost of computation and the time complexity.

The relevant research and some current findings in the field are discussed in Section 2.
The remaining portion of the paper is organised as follows: The proposed methodology with
the database summary is discussed in Section 3. The performance evaluation, results, and
discussion are addressed in Section 4, followed by a conclusion in Section 5.

3 Methodology

3.1 Database

This study employed four emotional speech databases; namely, Malaviya National Institute
of Technology Jaipur Simulated Emotional Hindi Speech Database (MNITJ-SEHSD), the
Berlin Emotional Speech Database (EmoDB) [6], Surrey Audio-Visual Expressed Emotion
Database (SAVEE) [22], and Ryerson Audio-Visual Database of Emotional Speech and
Song (RAVDESS) [29].

3.1.1 MNITJ-SEHSD database

A new database is recorded for this work, MNITJ-SEHSD in the Hindi language at Malaviya
National Institute of Technology Jaipur. The speech corpus is designed by imitating five
different emotions with neutral (non-emotional) text, allowing the speakers to perform and
mimic the feelings without bias. The emotions present in the database are neutral, angry,
happy, fear and sad. The audio samples were collected from ten speakers, five males and five
females. The speakers are between the ages of 19 and 27. An omnidirectional microphone
is used to record these emotive audio recordings, and its position can be changed or adjusted
as needed. The Omni microphone is always a good choice when sound must be detected and
captured from multiple angles or regions. Background noise and reverberation did not affect
the recording as done in a quiet environment. The microphone input volume is set accord-
ingly, and data recordings are made at a sampling rate of 44.1 kHz. Each speaker uttered ten
emotionally neutral sentences in each of the five emotions. As a result, each speaker made
50 utterances, resulting in 50 X 10 = 500 utterances in the dataset. The recording period of
an emotional utterance varies with speakers and ranges from 2.5 to 4 seconds. The number
of words in each sentence is six except three sentences, two with five words and one with
seven words. The distance between the microphone and the speaker is about 50 centimetres.
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All the recordings are done speaker-wise, emotion by emotion. Three experts evaluated the
authenticity of the corpus. Ten predetermined Hindi sentences are chosen for recording, as
follows:

1. (Mohan reads his book.)

2. (You played the match last night.)

3. (Kids will go to your house today.)

4. (The cloth is lying on the table.)
5. (Ram wrote letter to Sita.)

6. (There will be wedding tomorrow in our house.)

7. (We are playing cricket today.)

8. (I am doing my work.)

9. (We are having our breakfast.)

10. (It’s going to rain tonight.)

3.1.2 EmoDB database

EmoDB includes speech samples from five professional actors and actresses, pronounced
in ten distinct sentences and representing seven emotions as anger, boredom, disgust, fear,
happiness, sadness and neutral [6]. The length of 535 audio recordings in German varies
from 2 to 8 seconds. There were various situations under which the recording was done,
like TV programs, interactive game shows, and talk shows. As per the gender informa-
tion, the dataset is balanced, but it is an imbalanced dataset in the emotional category. Data
augmentation is performed to artificially populate the data samples to address this problem.

3.1.3 RAVDESS database

It has a total of 24 actors, with equal male and female numbers [29]. There are eight emotions
in the dataset: neutral, calm, happy, sad, angry, disgust, surprised and fearful uttered in North
American English. It has 60 trials for each of the 24 actors, thus 1440 audio files. The dataset
includes audio and video versions; however, because the goal is to distinguish emotions
from speech alone, only audio data is used in experiments to compare our findings with
the past models. RAVDESS is a relatively young dataset (created in 2018), with only two
sentences per emotion and few words utilized in these two statements. All emotions have
two levels of intensity: normal and intense. As the sentences are not extremely varied, this
dataset’s classification accuracy is low compared to others in our network and past research.
All 1440 wave files were acquired at a sampling rate of 48 kHz and encoded in 16 bits. A
number sequence identifies the emotional label and speakers in these audio filenames.

3.1.4 SAVEE database

This emotional speech corpus is also an acted emotional speech dataset and has only four
male actors who uttered seven emotions, i.e., anger, disgust, fear, happiness, neutral, sadness
and surprise [17]. It has 480 audio files in the British English language. The sentences are
taken from the TIMIT corpus. Although the dataset contains visual content, only audio files
are used in the experiments. The sample rate is 44.1 kHz, and the encoding system is 16
bits, similar to RAVDESS. Ten experts evaluated the emotional corpus to ensure its quality.
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Multiple datasets in various languages and recording situations test the proposed model.
Table 1 summarises the key features of the four datasets. All of which provide emotional
recordings of anger, happy, neutral, and sad emotions in common.

3.2 Audio augmentation

Vocal tract length perturbation and other audio augmentation techniques are frequently
employed for speech-related speaker-independent applications such as speech recognition,
and music genre categorization [1, 34]. One of the apparent hurdles in deep learning model
training is less labelled data availability. However, a small neural network is not as data-
hungry as the deep learning models but needs a fair amount of data samples to train the
model. As more data samples are used to train the model, the recognition accuracy improves
[21, 39], so to improve the classifier’s generalization capability, audio samples are popu-
lated, which also deals with the problem of data sparsity in all three datasets. In experiments
during training, vocal tract length perturbation is used as a means for increasing the num-
ber of speakers [23]. For every audio file, additional three replications are generated using
nlpaug library [30]. The samples structure the algorithm’s knowledge learned in the training
set and test set to evaluate the model’s performance. The final findings regarding classi-
fication accuracy indicate that the technique employed to augment the training samples
artificially also does an excellent job of preserving the classes.

3.3 Pre-processing and generation of network input

The block diagram of the end to end process is given in Fig. 1. Pre-processing input audio
samples is critical in establishing a model’s performance for any signal processing activ-
ity. For model training, each utterance is divided into one-second chunks and ignored the
ones that are too short. The segments are fed to the model as an individual utterances. The
purpose is to gather more training data in the training set. Each of these audio segments is
overlapped 60% with the previous one and labelled with its corresponding source label. In
this way, the effective length is one second with 0.6 seconds overlapping. The spectral fea-
tures are extracted for these chunks. Two spectral features are used: Mel frequency cepstral
coefficients (MFCC) and the other is Mel- spectrogram. The third feature is the emotional
silence factor (ESF), which measures the number of pauses or silences in a given utterance.
The feature extraction process is detailed in the section below.

Table 1 Dataset summary used for the Experiments

Dataset Number of speakers Total utterances Emotions

MNITJ-SEHSD 10 500 Happy, Angry, Neutral,Sad, Fear

(5M, 5F)

EmoDB [6] 10 535 Angry, Boredom, Disgust, Fear,
Happy, Sadness,Neutral

(5M, 5F)

SAVEE [22] 4 480 Angry, Disgust, Fear, Happy,
Neutral, Sad, Surprised

(4M)

RAVDESS [29] 24 1440 Neutral, Calm, Happy, Sad, Angry,
Disgust, Surprised

(12M, 12F)
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Fig. 1 An overview of the proposed speech emotion recognition system using shallow neural network (SNN)
and TFSP

3.3.1 Mel frequency cepstral coefficient

In speech processing applications as sound classification and speech emotion identifica-
tion, MFCCs are the most commonly used features [21, 50]. As humans do not perceive
sound frequency linearly, Mel scaled characteristics compensate for this when dealing with
speech signals. These characteristics mimic a human’s natural sound frequency reception
pattern. MFCC carries the information based on the physical properties of the speech sig-
nal. The following are the fundamental steps in extracting MFCC features: i) extracting
windowed speech frames from raw audio signal ii) generating its spectrum using Discrete
Fourier Transform iii) calculating its power spectrum iv) the linear frequency of the power
spectrum is converted to the Mel frequency scale v) these frequencies are divided into uni-
form bands, and again converted band frequencies to their linear counterparts. vi) each of
the bands is multiplied by the triangle window function vii) summing the energy of each of
these triangular filters viii) calculating the logarithm of band energies and its discrete cosine
transform leads to MFCC. A total of 40 MFCC coefficients were used in the experiments.

3.3.2 Mel spectrogram

It is another significant sound feature for identifying distinct audios. A two-dimensional
representation of voice utterances is called a spectrogram. A spectrogram is also a superior
choice that has been included in the majority of CNN deep models in the past and is still
used to effectively classify human emotions [11, 21, 26].

3.3.3 Emotional silence factor

The speaker’s emotion can influence the duration of pauses in human-to-human interaction;
this feature measure silences or pauses in a given speech. For example, when a person is
angry or joyful, they are less likely to pause, yet they may take longer pauses when sad or
bored. The ESF is calculated as follows: (i) The hamming window is multiplied by each
frame, then the energy is calculated. (ii) A frame’s energy is given by:

Ef =
N∑

n=1

s2
f (n) (1)

where f is the frame number and N is the total number of samples in the f th frame. (iii)
the average energy of the corresponding segment will be:

Eavg = 1

M

M∑

f =1

E2
f (2)
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where M is the total number of frames in that segment. (iv) An energy threshold is taken
as 0.06 ∗ Eavg . Eventually, the frames having energy less than this threshold are considered
silent frames. (v) Finally, ESF is defined as the ratio of silent frames to the total number of
frames.

Figure 2 represents the waveforms of all seven emotional categories in the EmoDB
database. In the second column, notice MFCC coefficients for angry and sad emotions;
only low frequencies are seen in sad emotions, while other high-frequency amplitude values
are not visible. However, more high-frequency components are apparent in the plot for the
angry emotion. Mel-spectrogram is a helpful visualization feature that uses the Mel scale to
visualize sound. Spectrogram allows us to focus on the most critical aspects of the audio. In
the last column of Fig. 2, Mel-spectrograms of all emotions are shown for the same audio
length as for MFCC.

3.4 Details of the architecture

It is a feedforward artificial neural network that converts input features into a set of valuable
outputs. There are three layers: an input layer that receives the input signal, an output layer
that makes the final judgments, and a hidden layer between the input and output layers. If
the inputs are specified as x, the weights as w and the bias as b, then the network’s output is
defined as:

z = ReLU(wx + b) (3)

where z is the final output or the input of another layer. An activation function is also
required for introducing nonlinearity to the network, as in real-world applications. ReLU
activation is utilized for the same. It is defined as:

ReLU(a) = max(0, a) (4)

Fig. 2 The audio waveforms of seven emotions from EmoDB database (a) The audio signal (b) MFCC (c)
Mel-spectrogram
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where a = wx+b. Sparseness and a lower probability of vanishing gradient are two impor-
tant advantages of ReLUs, as the gradient is less likely to collapse. Vanishing gradient
occurs for more layers and when a > 0. Due to the continual gradient of ReLUs, learning
is accelerated. The output of the fully connected layer is computed as:

yk = f

(
∑

l

Wklxl + bk

)
(5)

where f is the activation function (ReLU in this case), yk denotes the kth output neuron, xl

is the lth input neuron, Wkl is the weight parameter transforming input to output and bk is
the corresponding bias term.

The input for the neural network is a feature vector of dimensions I ∈ RSXd , where S

represents the number of audio segments, and d is the dimension of the audio features. The
network makes use of 40-dimensional MFCC vectors and 128 bands of Mel-spectrogram.
ESF is a vector with only one dimension. In the hidden layer, 500 neurons are used for net-
work processing. In speech emotion recognition tasks, raw audio, when processed directly
by complicated neural network architectures like CNN-LSTM-Attention, produces higher
results [39]. In contrast, simpler architectures such as feedforward neural networks require
a better representation of audio data as input for better classification. The network clas-
sifier trains continuously as, after every step, the partial derivative of the loss function is
calculated for the current model parameters to evaluate the updated model parameters.

According to the hidden layer’s calculation, the output layer classifies the input features
and assigns the expected emotion label. The model is developed using the Pytorch frame-
work with librosa to extract audio features. Because of its higher convergence rate, the Adam
optimizer is used. The L2 regularization factor of 0.01 is chosen with an adaptive learn-
ing rate for all experiments. This regularization term is added to the loss function, which
reduces the model parameters to prevent overfitting. The adaptive learning rate maintains
the initial rate of 0.001 until the loss continues to decrease.

Finally, the model with the best outcome is adopted. The batch size is 128 for all four
datasets, and the Adam optimizer’s numerical stability factor is set to 1e-08. Additionally,
a feature set from the openSMILE toolkit, the Geneva Minimalistic Acoustic Parameter Set
(GeMAPS), is used with the proposed model. The results are not as good as those obtained
using the acoustics feature set, as shown in Table 7.

3.5 TFSP for effective feature representation

On completion of the model training, the output feature of the hidden layer is stored as
X = (x1, x2, x3, ......, xN) ∈ RFXS with F as the feature dimension and S as the number
of overlapping segments in the utterance. As the number of segments may vary in an audio
sample, these segment features are not helpful for speech emotion identification tasks. The
segment features need to be converted into utterance features so that the final dimension
is the same for all the utterances. Pooling strategies are used in the past for the same, like
mean and max pooling. The pooling of these segmented features must be chosen such that
the maximum temporal information is intact for final classification.

Before pooling operation, the extracted segment features are divided into some fixed
number of blocks, as shown in Fig. 3. A similar strategy is used in [27] for partitioning of the
image into increasingly fine sub-regions. These blocks are non-overlapping and segmented
along the time axis. Segmentation up to level four is used for the proposed model as the
average length of the audio samples is 4 seconds for three datasets. For RAVDESS, segmen-
tation of up to five levels is used. For example, only one block is used for level one, so there
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Fig. 3 The frameowrk of Temporal Feature Stacking & Pooling (TFSP)

is no segmentation; for level two, the segment feature vector is divided into two equal non-
overlapping blocks and so on. Each block will have a dimension of FXs with s segments in
that block; average pooling is utilized to produce stationary length features for all the utter-
ances. The features, after pooling, encode all temporal information at different levels. The
higher the level more polished temporal information is restored. For example, compared to
level 1 (which has the average of all segments features along the time axis), level 4 embeds
more segmented block’s average values and hence more precise temporal cues.

Accordingly, the features at all levels are scaled; the explanation is as follows: At level
one, the pooled features are scaled by 4 (as there is a total of 4 levels), at level two by 3, at
level three by two and level four by 1. As level 4 consists of maximum temporal information,
it should be given the highest weightage. These scaled features are now concatenated at all
levels to get the SVM classifier’s input feature for a given utterance. The pooled features at
different levels are transposed as shown in Fig. 3 to make them compatible with SVM input.

The essence of the whole TFSP process is; the segmented audio feature vector X is
divided into several blocks at different levels (for example, 4). Each block’s features are
passed through the pooling mechanism, and after an optimum scaling, features from all
levels are concatenated to convert the segment feature vector into an utterance feature vector,
such that the dimension for each utterance is identical for further processing in this case,
10XF . Similar to TFSP, scaling techniques have been used in [27]. In the following section,
the verification of the validity of the proposed scheme is presented through experimental
results on all four emotional speech datasets.

3.6 Multiclass support vector machines

Support vector machines (SVM) are supervised machine learning approaches that outper-
form other classifiers in the majority of pattern recognition experiments [12]. The SVM
classifier has been utilised in the majority of emotion recognition studies [5, 7, 44]. There
are two techniques for solving a multi-label classification problem with SVM known as the
“one-versus-on” strategy and “one-versus-all”. Because it is more reliable in practice, the
one-versus-one strategy was adopted here for the experiments [20]. The input features to be
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classified are transformed into a high-dimensional space using any kernels available, such
as linear & nonlinear functions, radial basis functions, polynomial functions, and sigmoid
functions. An optimum hyperplane is chosen in the modified feature space for division into
the classes. As the SVM is a binary classifier, a mixture of binary SVM classifiers has to
be used in multiclass problems, and linear kernel SVM classifiers are employed in a one-
against-one approach. The database is partitioned into five mutually exclusive subsets for
training and validation, according to the 5-fold cross-validation scheme. The classifier is
trained and tested five times, with one set serving as the testing set and the other four as the
training set every time.

4 Performance evaluation, experimental result, and discussion

The classification accuracies and F1 scores for each emotion category are presented in this
section. The experiments are designed for speaker-dependent analysis, i.e., the training and
test utterances are not dependent on speakers. The performance of the proposed technique
is evaluated using two statistical parameters: weighted and unweighted accuracy. Weighted
accuracy is a measure of classification performance throughout the test set, and unweighted
accuracy is an average of recall for each emotional class, which is a more appropriate metric
for the experiments given the highly uneven nature of emotions distribution in the EmoDB
datasets. Training the model involves randomness due to the distribution of data samples
for training and testing. For the experiments, random seeds are utilized to strengthen the
robustness of the results. To better analyze the statistical parameters on each dataset, Recall,
Precision and F1-score are also evaluated to show the classification summary for every
class. Apart from the categorical classification of emotional classes, analysis of the arousal
dimension of emotions is also performed on all four datasets. This dimension signifies the
strength of the mood. For example, sad is a negative arousal emotion, whereas angry is a
positive arousal emotion. The proposed SER framework can distinguish between emotions
with high arousal, such as happiness, disgust, and anger, and emotions with low arousal,
such as neutral, calm, and sadness, with good accuracy. Figures 4 to 7 depicts the classifica-
tion results using confusion matrices of all emotions present in datasets. The true predicted
accuracies are shown in the main diagonal of the matrix.

Figure 4 shows classification results on the newly constructed Hindi dataset, MNITJ-
SEHSD, where ‘Neutral’, ‘Angry’, ‘Happy’ and ‘Fear’ can be recognized with accuracies
of 97%, 96%, 95% and 96% respectively. The emotional class ‘Sad’ is identified with an
accuracy of 90%. The average classification accuracy is 94.67%, and the unweighted classi-
fication accuracy is 94.8%. The average classification with high arousal classes as ‘Angry’,
‘Happy’ and ‘Fear’ is 95.5% and for ‘Neutral’ and ‘Sad’ is 93.4%. The identical classi-
fication of all classes is due to an equal amount of utterances in each category. However,
the model cannot recognize the ‘sad’ class with greater than 90% accuracy, while all other
emotions are identified with more than 95% on this dataset.

In Fig. 5 it is illustrated that on the EmoDB dataset, ‘Sadness’ is classified with the
highest accuracy of 100%, and the other six emotions are classified with accuracies higher
than 92%. The weighted accuracy for this dataset is 95.09% and the unweighted accuracy of
95.3%. The misclassifications between high and low arousal emotions are also very low; for
example, anger is only mismatched with fear and happiness, while happiness is mismatched
with anger. The high (Anger, Disgust, Fear and Happiness) and low (Boredom, Sadness and
Neutral) arousal recognition accuracies are 95.10% and 94.56% on this dataset.
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Fig. 4 Confusion Matrix of MNITJ-SEHSD Database

‘Neutral’, ‘Calm’, ‘Happy’ and ‘Angry’ emotions are distinguished with accuracy higher
than 92% on the RAVDESS dataset as shown in the confusion matrix in Fig. 6. ‘Sadness’ is
identified with the least accuracy of 86% similar to MNITJ-SEHSD and maximally misclas-
sified with class ‘Neutral’, ‘Disgust’ and ‘Surprised’ in order. Here the lowest accuracy in
this class is due to the least number of samples available (half compared to other emotional

Fig. 5 Confusion Matrix of EmoDB Database
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Fig. 6 Confusion Matrix of RAVDESS Database

classes). The proposed design observes the least performance on RAVDESS compared to
the other datasets in the experiments; this could be due to the different language and cul-
ture. The average classification for the whole dataset is 90.2%, and the average recall for
each class is 90.7%. The classification accuracies on high and low arousal dimensions are

Fig. 7 Confusion Matrix of SAVEE Database
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Table 2 The proposed method
performance using
MNIT-SEHSD Dataset

Emotion Precision Recall F1 Score

Neutral 0.94 0.97 0.95

Angry 0.95 0.96 0.95

Happy 0.95 0.95 0.95

Fear 0.90 0.96 0.93

Sad 1.00 0.90 0.95

Table 3 The proposed method
performance using EmoDB
Dataset

Emotion s Precision Recall F1 Score

Anger 0.97 0.96 0.97

Boredom 0.96 0.92 0.94

Disgust 1.00 0.97 0.99

Fear 0.96 0.96 0.96

Happiness 0.92 0.92 0.92

Sadness 0.98 1.00 0.99

Neutral 0.88 0.94 0.91

Table 4 The proposed method
performance using RAVDESS
Dataset

Emotion Precision Recall F1 Score

Neutral 0.94 0.93 0.93

Calm 0.94 0.92 0.93

Happy 0.90 0.92 0.91

Sad 0.87 0.86 0.86

Angry 0.85 0.96 0.90

Disgust 0.89 0.88 0.88

Surprised 0.92 0.88 0.90

Table 5 The proposed method
performance using SAVEE
Dataset

Emotion Precision Recall F1 Score

Anger 0.94 0.98 0.96

Disgust 0.94 0.96 0.95

Fear 0.95 0.91 0.93

Happiness 0.96 0.89 0.92

Neutral 0.98 0.99 0.99

Sadness 0.99 0.97 0.98

Surprise 0.92 0.95 0.93
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Table 6 Observed Accuracy
scores for all the datasets under
examination

Dataset MNITJ-SEHSD EmoDB RAVDESS SAVEE

Accuracy(%) 94.67 95.09 90.20 95.50

90.2% and 90.1%, respectively. However, the model shows better results with some complex
architectures, as shown in Table 7.

Figure 7 indicates that only one emotion, i.e., ‘Happiness’, is recognized with accuracy
less than 90% in the SAVEE dataset, while the remaining six emotions with accuracies
higher than 91%. The emotional classes are also misclassified with similar classes as
Anger with Happiness, Happiness with Anger and Surprise. This further leads to the higher
dimensional accuracy of 93.3% for high arousal and 98.5% for low arousal emotional
classes.

The classification reports in terms of precision, recall and F1 score are also given from
Tables 2, 3, 4 and 5 for a better understanding of the performance of suggested work on
all used speech datasets. Table 6 shows the final conclusive accuracy chart of all the used
datasets.

4.1 Performance comparison with the state-of-art

The comparisons between the proposed model and previous works with more compli-
cated architectures are shown in this part. All techniques are speaker-dependent; thus, the
comparison is based on that assumption.

Table 7 Compariosn of classification accuracy with complex architectures (%) (MME=MFCC + Melspec-
trogram + Emotional silence factor)

Dataset Method Research Work WA Year

MNIJ-SEHSD proposed MME 94.67 2022

GeMAPs 92.67 2022

EmoDB CNN Dias Issa [21] 86.10 2020

CNN+LSTM Jianfeng Zhao [49] 76.40 2019

CNN+LSTM+Attention Hao Meng [32] 90.78 2019

Proposed MME 95.09 2022

GeMAPs 93.45 2022

RAVDESS CNN Dias Issa [21] 71.60 2020

CNN+LSTM Mustaqeem [38] 77.02 2020

CNN+LSTM+Attention A.Orhan [4] 96.18 2021

Proposed MME 90.20 2022

GeMAPs 88.30 2022

SAVEE CNN ABA Qayyum [37] 83.61 2019

CNN+LSTM R.Dangol [14] 78.18 2020

CNN+LSTM+Attention A.Orhan [4] 87.50 2021

Proposed MME 95.50 2022

GeMAPs 94.12 2022
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Table 7 illustrates the comparison for three datasets used in experiments. The compar-
isons were made using three baseline network architectures: CNNs, their combination with
LSTM, and recent advancements in these networks with attention modules. In a baseline
CNN-LSTM architecture, the number of trainable parameters is 16,736,324 for the EmoDB
dataset; in contrast, for the proposed method, it is only 88507 for training the primary neu-
ral network [49]. Further addition of any deep learning component to this baseline structure
will increase the number of training parameters of the model, and hence, in comparison, the
proposed model gives far fewer trainable parameters for classification.

The model’s performance on EmoDB is showing a definite 5% improvement compared
to the [32], which is the most complex deep architecture in Table 7. For the RAVDESS
dataset, the results are better using the method presented in [4]. However, data augmenta-
tion techniques have not been performed. For comparison of the architecture, this work is
included. Otherwise, the classification accuracy is much improved compared to the five-
layer CNN architecture given by [21]. Finally in SAVEE emotional dataset, an absolute
improvement of 8% over [4] with self-attention model.

5 Conclusion

This paper proposes a shallow neural network model with temporal feature stacking and
pooling (TFSP) applied over the learned features of the trained network and classifies them
using a support vector machine (SVM) for spoken emotion recognition. With the suggested
TFSP mechanism, a basic shallow neural network can outperform several complex deep
models such as CNN+LSTM and CNN+LSTM+ATTN. The network uses three different
audio features: MFCC, Melspectrogram and the ESF, as input for speech emotion recog-
nition. Compared to some of the above complex architectures with superior classification
results, the proposed network has fewer learning parameters, indicating that the model is
less complex and requires less training time. In a CNN+LSTM network, the number of
learning parameters is enormous compared to the proposed network. Experimental results
on three popular benchmark datasets, EmoDB, RAVDESS and SAVEE, demonstrate the
effectiveness of this framework. Additionally, a newly designed Hindi language dataset is
also utilized in the proposed method. Furthermore, the proposed method has been proven
effective in capturing high versus low arousal classes.

In the future, besides acoustic features, the authors indent to improve the classification
accuracy further using the linguistic and visual information [31, 45]. All the trials are for
speaker-dependent frameworks, where the emotional state classification is independent of
the speakers. Additional strategies for working with speaker-independent architectures, such
as using more extensive data augmentation techniques, can also be practised [28]. A cross-
language analysis is also in the future scope of this work, as four different languages are
used to evaluate the model’s performance.
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