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Multimodal movie genre classification using recurrent
neural network
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Abstract
Genre is one of the features of a movie that defines its structure and type of audience.
The number of streaming companies interested in automatically deriving movies’ genres is
rapidly increasing. Genre categorization of trailers is a challenging problem because of the
conceptual nature of the genre, which is not presented physically within a frame and can
only be perceived by the whole trailer. Moreover, several genres may appear in the movie at
the same time. The multi-label learning algorithms have not been improved as significantly
as the single-label classification models, which causes the genre categorization problem to
be highly complicated. In this paper, we propose a novel multi-modal deep recurrent model
for movie genre classification. A new structure based on Gated Recurrent Unit (GRU) is
designed to derive spatial-temporal features of movie frames. The video features are then
concatenated with the audio features to predict the final genres of the movie. The proposed
design outperforms the state-of-art models based on accuracy and computational cost and
substantially improves the movie genre classifier system’s performance.

Keywords Movie genre detection · Multi-label classification · Gated recurrent unit
(GRU) · Long short-term memory (LSTM) · 1D Convolutional neural network (1D Conv)

1 Introduction

Due to the ease of preparation and distribution, increasing the production of images and
videos has made them one of the most important sources of information. Thus, image and
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video processing is getting more attention currently. Understanding the content of images is
widely studied in recent years, such as image classification [37], and manifold learning [9,
10, 20]. However, video achievements are less successful. Video understanding is a more
challenging problem because of the temporal dimension of video alongside its spatial ones.
Solutions designed for images still cannot be generalized to videos. For example, creating a
video as individual frames is simple but usually results in less accurate systems.

One of the subsets of video understanding is video classification, in which we try to clas-
sify the video based on a concept. Action recognition [42] and genre detection [5] are two
examples of this kind. Video classification has numerous applications in the computer vision
field, such as video retrieval and recommendation systems. The success of convolutional
neural networks (CNNs) in computer vision has also spread to this field and has made many
improvements. While there are many research activities in this field, video classification is
still a challenging task that requires more attention.

Trailer genre classification (or detection) is an example of a video classification prob-
lem. Genre classification aims to categorize movies based on their genres, such as drama
and comedy, using the content provided by the movie trailer. Movie genres are still tagged
manually by users, and the Internet Movie Database (IMDB) decides the final genre of a
movie based on the suggestions of the users and critics. Moreover, big movie stream service
providers such as Netflix and Hulu employ the trailer genre for movie recommendation and
document categorization, among other applications. Therefore, the ability to predict genre
automatically is getting more attention. Compared to other computer vision fields, such as
action recognition or object tracking, two main challenges of this problem arise from the
holistic and overlapping genres’ nature. The first challenge is that the media does not physi-
cally express its genres. The movie genre is a concept that must be perceived from the entire
video content, not just from a frame or a few shots. The second significant challenge is the
multilabel [23] nature of genre classification. A movie usually has more than one genre at
the same time.

The movie has a time-sequential dependency between its frames, best represented by
neural networks that consider both spatial and temporal features. A great number of deep
learning models have been developed to handle complex sequence problems for applications
such as classification, prediction [45], and data generation [29]. Recurrent Neural Networks
(RNN) are a powerful family of neural networks which try to address the same problem
by considering past and current data information [19]. In this paper, we investigated and
designed a deep 1D convolutional network and two of the most popular RNN structures, i.e.,
LSTM and GRU, for movie genre classification. These models try to capture meaningful
features of sequential and spatial data streams. The effectiveness of considering different
movies’ modalities [3, 34] for genre detection is also investigated in this work.

The contributions of this paper are twofold: first, we investigate and propose a novel
GRU model for multi-modal movie genre classification based on movie acoustic and visual
features, which is not examined in previous works. The GRU model is added to the SVM
network to lessen the influence of unbalance data problem. Second, the proposed model
is compared to other famous spatio-temporal networks and also state-of-the-art models.
Higher accuracy with less computational cost is achieved compared to other models. The
method is implemented in Python, and the code is freely available online.1

The rest of the paper is organized as follows. In Section 3, the details of the proposed
method are demonstrated. Section 2 summarizes state-of-the-art models for movie genre

1https://github.com/Tinbeh97/MovieGenre
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classification. The dataset and experiments are included in Section 4. Finally, Section 5
concludes the paper and discusses the future direction.

2 Related work

The attention and importance of automatic movie genre classification are increasing, and
several works have addressed this problem. Rasheed et al. [25] proposes a genre detection
method by applying the mean shift classifier and low-level features such as average shot
length and color variance. A neural network classifier with both visual and audio features
to solve a single label genre detection problem is considered in [17]. Huang and Wang also
used both visual and audio features alongside with SVM classifier in their method [15].

Taking advantage of image descriptors and extracting high-level visual features is sug-
gested by Zhou et al. [44]. The image descriptors include Gist [22], CENTRIST [41], and
w-CENTRIST. On the other hand, a simple K-nearest neighbor classifier is exploited to
predict the genre. The ConvNet is used as an image descriptor in [30]. In this work, the
extracted features are employed to form semantic histograms of the scene. These histograms
with MFCC features are fed to an SVM classifier for prediction. Similarly, an SVM classi-
fier with a set of different networks as descriptors is used in [39]. This idea is extended by
adding a deep neural architecture to learn features through time [38]. Thus, their network
learns spatial-temporal features simultaneously. Ben et al. [4] applied the SoundNet [1] and
ResNet-125 [11] as audio and visual descriptors. The temporal aspect of visual features is
further evaluated using the LSTM network.

Alvarez et al. [2] claim that better results can be achieved when considering only videos’
low-level features, such as shot length and black and white rates. However, this model
only considers movies with one genre label, which limits genre classification applications
considerably. On the other hand, the importance of various modalities, which are movie’s
image, audio, synapses, poster, and subtitle, is examined in [21]. The best result is achieved
considering the synopses and frames’ features derived from the LSTM and CNN network.
The final genres are determined using probability production of the multimodal features. Yu
et al. [43] proposes an Attention-based Spatio-temporal Sequential Framework which con-
sists of two main parts. First, movie frames’ high-level features are extracted employing a
deep CNN network. Then, a bi-LSTM attention model decides the final genres.

A probabilistic approach based on the significance of each background scene for each
video category is introduced in [36]. Their proposed method consists of two steps: I) train-
ing an SVM classifier for scene classification II) video classification by considering the
relevance of the key-frames scenes. The usefulness of shot length analysis is investigated
by Choros [6]. Choros determined that different genres have distinguishable shot lengths.

Due to the intricateness of current film production, usually, each movie has several gen-
res, which makes the problem a multi-label classification. Moreover, the unequal number
of samples of each genre can lead to unfairness in genre detection. In this paper, we defined
a multi-modal movie genre classification to address the above concerns. First, we classify
genres only based on high-level visual features. The gated recurrent unit (GRU) captures the
conceptual meaning of genres through frames. Subsequently, the final visual features are
fused with acoustic properties to distinguish between different genres more robustly. Our
proposed method considerably improves the performance of classes with less sample size
and exceeds other state-of-the-art models’ performance for the movie’s genre classification.
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3 Proposedmethod

In this section, we explain the details of four proposed methods, 1D Conv V, GRU V,
1D Conv+SVM M, and GRU+SVM M, for classifying movies’ genres. The block diagram
of these four methods is shown in Fig. 1. First, both visual and acoustic features derived
from the trailers are introduced. Then, GRU and 1D Conv methods for extracting high-level
visual characteristics are presented. Additionally, these two methods are employed to pre-
dict a movie’s genres. Finally, visual and audio features are fused, and a multi-label SVM
model is applied to classify the movie’s ultimate genre.

3.1 Feature extraction

For both audio and visual features, the first five seconds of a trailer are trimmed because
these sections of the video do not customarily contain useful information.

3.1.1 Visual features

Scenes are detected based on the color histogram of the successive images, in which two
frames have a minimum color similarity. From the middle frame of the two consecutive
shots, key-frames are obtained [25]. Eventually, 240 key-frames are derived from each
movie. For some trailers, the percentage of key-frames is increased to meet the criterion of
240 key-frames.

Using raw frames of the video without deriving its high-level features does not perform
well in the network [26, 32]. For extracting visual features of the video, VGG16 [27] and
Resnet 152 [11] backbones are used. However, the performance of the VGG16 model is not
as significant as the Resnet 152. Thus, the results of the VGG16 backbone are not reported.
The last layer of Resnet 152 (softmax layer) is popped out, and the keyframes are fed into
the Resnet 152 model. The final dimension of each frame’s features, V , is 2048. In other
words, V ∈ R

2048.

Fig. 1 The block diagram of the proposed methods
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3.1.2 Acoustic features

The movie’s background music and its moving images have different modalities. Sound’s
features are extracted from the trailers to bring visual and auditory modalities into the
common space. Consequently, visual and acoustic features can be fused.

Usually, different genres of movies have specific music timbres. Timber is the quality
of tone that helps the listener distinguish between sound productions that have different
pitch and loudness [40]. For example, action movies’ timber is usually bright, and its tex-
ture consists of rising melodies [33]. To represent a sound’s timber, Mel-frequency cepstral
coefficient (MFCC) and linear predictive coding (LPC) features are derived from the audio
of the trailer [28].

MFCC with 13 Mel-frequency coefficients is computed for each movie and displayed in
Fig. 2. MFCC coefficients are shown with Ci,j , where i and j represent the mel coefficient
of each frame and time, respectively. Instead of considering the whole spectrum, the mean
of MFCC and its delta in five equal time sections is considered. The delta of MFCC reflects
the variation in time and is defined as (1). The audio of the movie consists of speech and
music, which changes dynamically with time; therefore, the delta is an appropriate repre-
sentation for our database, as shown in Fig. 2. Moreover, the average of MFCC and its delta
is computed to reduce the complexity of the system, leading to less simulation time.

MFCCdeltai,j
=

∑N
n=1 n × (Ci,j+n − Ci,j−n)

2 × ∑N
n=1 n2

(1)

Another acoustic feature that we use is 9th-order LPC. LPC is widely applied in speech
recognition because of its prediction performance [14]. From each trailer, we collect 10
LPC and 130 MFCC features. They are concatenated to create a vector of 140 nodes for
each trailer; to rephrase it, A ∈ R

140.
By combining sound A and visual features V the final network input length is 2188.

Fig. 2 MFCC and MFCC-delta are based on a random trailer. The time is between 5 seconds to 2:20 minutes
of the movie
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3.2 Visual-based classification

Two models are designed to predict the genres of a trailer based on its visual features. At the
final layer of both models, the sigmoid activation function is applied because of the multi-
label nature of the genre classification problem. The sigmoid function represents each class
as a binary classification.

3.2.1 GRUmodel

RNNs can capture the time dependencies of the time-series data which make them highly
compatible for deriving spatio-temporal features of consecutive movie’s frames. To derive
visual embedding of a movie, we developed and optimized two of the most known RNN
networks, GRU and Long Short Term Memory (LSTM) [7, 13]. Compared with LSTM,
GRU has two fewer gates and thus less number of parameters. For movie genre classification
our novel GRU based model results in less computational cost and more accuracy. The full
comparison of the designed GRU and LSTM models is illustrated in Appendix A

The GRU network overcomes the vanishing gradient problem of a simple RNN network
when employing the back-propagation algorithm. GRU consists of two gates, reset and
update gates, which address the vanishing problem. A reset gate is responsible to decide
what past or current information to keep, (2). An update gate determines the usefulness of
the past information, (3). W , U , b are the weight matrices and bias vector of ith layer. xt is
the input vector at time unit t .

ri
t = σ(Wi

r x
i
t + Ui

r h
i
t−1 + bi

r ) (2)

zi
t = σ(Wi

zx
i
t + Ui

zh
i
t−1 + bi

z) (3)

The output vector hi
t and candidate activation vector ĥi

t are defined by:

hi
t = (1 − zi

t ) � hi
t−1 + zi

t � ĥi
t (4)

ĥi
t = tanh(Wi

hx
i
t + Ui

h(r
i
t � hi

t−1) + bi
h) (5)

Where � denotes the Hadamard product.
The description of the proposed GRU model is shown in Table 1. First, the visual fea-

tures of 240 trailer key-frames are extracted, as described in Section 3.1.1. The features are
fed into a GRU layer with an output vector sequence corresponding to each time frame. The
comparison of feeding all frames to GRU layer and a parallel structure (separating frames

Table 1 Proposed GRU model layer description. The None value corresponds to the batch size and #param
is the number of parameters

Layer Output shape #param

InputLayer (None, 240, 2048) 0

GRU (None, 240, 120) 781200

Max pooling (None, 80, 120) 0

GRU (None, 64) 35712

Dense (None, L) 585

Total params: 817,497

Trainable params: 817,497

5768 Multimedia Tools and Applications (2023) 82:5763–5784



into 12 consecutive inputs of nine frames) is demonstrated in Appendix B. The max-pooling
is applied after the GRU layer to collect important information of the layer and to avoid
overfitting. The pooling size and stride number for the max pooling layer is 3 and 0, respec-
tively. The GRU layer is employed to predict final features of the last frame. The final layer
of the network has L dimensions to represent the movie’s genre.

3.2.2 1D convolution model

Considering variations in time is crucial for detecting the movie’s genre. The 1D convolu-
tional neural network regards the whole frame together and computes the contrast between
different frames. However, in convolutional networks, the differences are measured based
on the kernel size. The proposed 1D Conv system is shown in Fig. 3.

The input of the system is visual features of all 240 trailers’ keyframes. The batch nor-
malization is employed to reduce the covariance shift and decrease the simulation time [16].
Moreover, the max-pooling and dropout layers help to avoid overfitting and lower the com-
plexity of the system. The probability of each genre is obtained using the final FC layer with
a sigmoid activation function.

For calculating the error in backpropagation, binary cross-entropy, which is highly
compatible with multi-label classification, is utilized [18].

3.3 SVM

Since the derived visual and audio features have different ranges, the acoustic/visual data
scale is linearly transformed by the (6) between zero and one to bring both modalities
into the same range. In this equation, AN is the normalized audio/visual features. The
normalization helps the network to be unbiased to the modality variance of data.

AN = A − min(A)

max(A) − min(A)
(6)

Fig. 3 1D convolutional architecture for visual-based movie’s genre classification. The input of the system
is the whole 240 keyframes’ features, Input ∈ R

240x2048
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SVM [8] is a well-known method to classify audio signals using MFCC and LPC fea-
tures. SVM can reduce the effect of class imbalance problem. Combining neural network
and SVM helps to improve the accuracy of minority classes, which is more illustrated in the
results section. Therefore, the final genre is decided by applying the fusion of two proper-
ties to the SVM network. Our classes are multi-label, thus, we treat each genre as a different
problem and fed them into One-vs-One SVM. The radial basis function (RBF) is employed
as a kernel because the RBF hyperplane decision boundary leads to better results in our
experiments than the linear kernel.

Recently, CNN is getting very popular for classifying the spectrogram of audio repre-
sented as 2D input [12]. However, for our problem, the SVM results are better than CNN,
based on accuracy, by almost two percent.

The results of our proposed method are mentioned in the following. These four methods
are 1D Conv V, GRU V, 1D-Conv+SVM M, and GRU+SVM M. The GRU V and 1D-
Conv V methods, which are introduced in Sections 3.2.1 and 3.2.2, respectively, classify
movie genres only based on the 2048 visual features of each frame. The V in these two
models stands for visual based classification. For the two other methods, the final layer of
GRU and 1D-Conv models before applying the thresholds are concatenated with acoustic
features leading to a total of L + 140 features. The resulting image and sound’s proper-
ties are passed through SVM, defined in Section 3.3, in order to create GRU+SVM M and
1D-Conv+SVM M models; where M represents the multimodal classification.

4 Experiment

In this section, first, we describe the applied dataset; we also discuss the hyperparameters
and decision boundary applied to optimize the results. Later, the equations employed to
analyze our system are explained. Finally, the performance of the proposed method is com-
pared with state-of-the-art methods in terms of the AUC score and the Hamming loss. In all
tables, the best performance in each metric is marked as bold.

4.1 Dataset

We used the multi-label trailer database, LMTD [30], which consists of 3500 movies. As
far as we know, LMTD is the largest dataset available up to this day with a great variation
of trailers. The database is split into 2874 training, 773 testing, and 374 validation sets.
Each trailer is classified into nine genres. The classes considered here are action, adventure,
comedy, crime, drama, horror, romance, sci-fi, and thriller. The distribution of genres is
shown in Fig. 4. We also extract the four most popular genres for further analysis, since
many applications only require these classes. The four main labels are action, drama, horror,
and romance.

4.2 Implementation details

In both GRU and 1D Conv models proposed in Section 3.2, the batch-size of 32 is consid-
ered. Moreover, the simulation stops when the validation error increases in five consecutive
epochs. The maximum epoch of 100 is applied for both models. The final number of epochs
for each model is shown in Fig. 5. The GRU merge and LSTM merge are explained in
Appendices B and A , respectively.

The proposed method is implemented in TensorFlow. Adam optimizer [18] with initial
learning rate of 1e−4 is set to train the model. For the network parameters, 1 to 4 layers (not
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Fig. 4 Training data labels’ distribution

considering max pooling and dropout) with layer size 240, 120, 64, 32, and 16 is considered
for each model.

The proper hyper-parameters of SVM are computed using the grid-search; where the
range of C is between 10−2 and 105 with 14 points in the logarithmic axis. Moreover,
the gamma range is determined from 14 logarithmically spaced points between 10−5 and
1. In order to determine the deciding decision-boundary, the ROC-curve of the training
results is considered [24]. The curve indicates a true positive rate (TPR) and a false negative
rate (FNR) for different thresholds. The optimal boundary, t̂ , is estimated for each genre
exclusively as (7).

t̂ = argmax
ti

(T PRi − FNRi) (7)

Fig. 5 Validation error of each epoch
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4.3 Evaluationmetrics

For evaluating the results, we analyzed the hamming loss, area under the curve (AUC) score,
F1 score, and confusion matrix. We applied these metrics because they are highly employed
in multi-label classifications and they can represent a fair estimation for multi-label data.
These quantitative metrics are used in the previous works and thus it allows us to compare
our results with the state-of-the-art methods. The hamming loss gives us the overall accuracy
of the network and is defined as below:

HL =
∑N

q=1
∑L

j=1 ypredqj

⊕
ytrueqj

NL
(8)

Where HL is the hamming loss, ytrueqj
and ypredqj

represent the qth test data’s label and
output’s prediction of the j th genre, respectively.

The well-known AUC score is determined for each genre, which allows us to compare
the accuracy of each class separately. Moreover, to globally evaluate the performance of
different methods, the weighted, micro, and macro averages of the AUCmetric is estimated.
The macro and weighted averages compute the AUC rate of each class independently and
take their unweighted and weighted means, respectively. While micro-average calculates
the AUC mean without considering labels. The F1-score determines the harmonic mean of
the precision and recall metrics. We reported the weighted average of the genres’ F1 score
for each model.

By multi-label confusion matrix, we want to see the effectiveness of different genres on
each other. In other words, to see which class helps to reduce the uncertainty or increase
the confidence of another class prediction. Therefore, the confusion matrix is defined in (9).
In this formula, ∼ ytrueiq

⊕
ytruejq

stands for outputs where both genres i and j have the
same label. As a result, the defined confusion matrix demonstrates the number of times the
genre i is incorrectly predicted when a movie does or does not include both classes i and j .
This proposed equation distinguishes the effect of different genres on each other.

Sij =
∑N

q=1 (∼ ytrueiq

⊕
ytruejq

)(ytrueiq

⊕
yprediq

)
∑N

q=1 (∼ ytrueiq

⊕
ytrueiq

)
(9)

4.4 Comparison

In this section, we evaluate our visual-based models, GRU V and 1D Conv V, and mul-
timodal models, GRU+SVM M, and 1D Conv+SVM M, considering the Hamming loss,
AUC score, F1 score, and confusion matrix. The state-of-the-art methods to which we com-
pare our results are [2, 30, 31, 38], because they consider the same database for evaluation.
Moreover, the computational cost and accuracy of different classifiers for the multimodal
classification are examined. Finally, the experiments are divided into two parts, nine and
four genres-based classification.

4.4.1 Nine-genre results

First, we compare the methods based on the Hamming loss and F1 score. As shown in
Table 2, adding sound to the network has improved both visual-based proposed systems, i.e.
1D Conv V and GRU V losses improved by 10 and 12 percent, respectively. Furthermore,
the proposed model, the GRU+SVM M network, has the lowest Hamming loss and F score.
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Table 2 Comparison of the different methods based on Hamming loss

Model Hamming loss F-score

1D Conv V 0.242 0.61

1D Conv+SVM M 0.142 0.63

GRU V 0.253 0.65

GRU+SVM M (Proposed method) 0.133 0.66

Low Level Feature Model (LLFM) (uni-label) [2] 0.3168 -

The LLFM’s loss is calculated based on its released network

We believe a GRU V network is better able to derive semantic features of genres compared
to the 1D Conv V model.

Based on Table 3, most of the genres’ scores have increased when the acoustic feature
is included in the network. It indicates that the movies’ audio can improve genre prediction
significantly. However, the Scifi score has reduced after adding audio, which we believe it
is due to the resemblance of action and sci-fi movies’ music. The number of action movies
is much higher than Scifi trailers based on Fig. 4, which can make the network tends to get
confused between Scifi and action movies.

The GRU+SVM M and 1D Conv+SVM M have relatively close AUC score; however,
the score of GRU+SVM Mmodel is higher for 5 out of 9 genres. Moreover, the AUC score
of the GRU+SVM M method in all classes, except for drama, is higher than the state-of-
the-art models. Notably, GRU+SVM M has improved the score of genres with fewer data
in comparison with other genres, such as thriller and horror videos.

Table 4 indicates that the GRU+SVM M outperforms states-of-art methods considering
the micro, macro, and weighted AUC scores; 24, 8, and 8 percent higher than the previous
methods, respectively. GRU+SVM M and 1D Conv+SVM M differ only by 1% but still
GRU+SVM M performs better than 1D Conv+SVM M model.

Figure 6 shows that the movie’s sound can reduce the genre confusion. For example,
horror and comedy confusion matrices have similarities, but their sounds are very differ-
ent. When the audio is included in the network, these two genres’ confusion has decreased
significantly; this improvement is around 50 percent.

Another exciting interpretation is that the error of labels with fewer data has altered more
considerably than other tags. Therefore, the music of the scene makes it possible to reduce
the bias of the network due to the class imbalance. For instance, the comedy error has
changed from 0.193 to 0.169, while the sci-fi error has been significantly decreased from
0.23 to 0.072. As shown in Fig. 6 and Table 3, the confusion matrices and the individual
genre’s AUC score correspond to each other.

Table 5 indicates two neural networks model time and space complexity based on CPU
@2.5 GHz Intel Core i7 processor. The GRU Vmodel has less number of parameters which
means in each epoch less gradient requires to be computed which results in less training
time per epoch. Moreover, GRU V converges to its optimal point 48 epochs sooner than
1D Conv V network. The storage required to store GRU V model and weights is 71%
less than 1D Conv V model. This finding indicates that GRU V model outperforms the
1D Conv V model considering both computational cost and all scoring metrics.
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Table 4 General genre AUC score. Micro, macro, and weighted represent the aggregation methods to derive
AUC scores for all genres

Model Micro Macro Weighted

1D Conv V 0.756 0.755 0.754

1D Conv+SVM M 0.870 0.825 0.843

GRU V 0.794 0.785 0.783

GRU+SVM M 0.88 0.824 0.847

LLFM (uni-label) [2] 0.506 0.594 0.762

CTT-MMC-TN [38] 0.646 0.742 0.724

LSTM [38] 0.520 0.640 0.590

Fig. 6 Confusion matrix of the data fault prediction

Table 5 Space and time complexity of the 1D Conv V and GRU V model

Model time/epochs(s) #epochs #trainable parameters storage

1D Conv V 59 79 2,714,097 11.5MB

GRU V 41 31 817,497 3.3MB
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Fig. 7 T-SNE visualization of audio and video features for training data with only one genre. The legend
labels from 0 to 8 are, respectively, as follows: Action ,Adventure ,Comedy ,Crime ,Drama ,Horror ,Romance
,Scifi , and Thriller

Table 6 Comparison of the accuracy and computational cost of the popular classification methods

Classifier Hamming loss ttrain(s) ttest(s)

SVM 0.133 21.766 0.878

KNN 0.136 0.07 1.771

Multinomial-NB 0.148 0.016 0.006

ttrain and ttest correspond to training and testing time for whole training and testing data, respectively

Table 7 Comparison of different methods based on the Hamming loss

Model Hamming loss F-score

1D Conv V 0.21 0.73

1D Conv+SVM M 0.15 0.75

GRU V 0.17 0.75

GRU+SVM M 0.13 0.76

LSTM (uni-label) [31] 0.15 -

CNN-MoTion-PAHP [30] 0.26 -
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Table 8 Comparison of the 4 proposed methods’ AUC scores for the individual genre

Model Action Drama Horror Romance

1D Conv V 0.830 0.883 0.645 0.520

1D Conv+SVM M 0.930 0.804 0.904 0.784

GRU V 0.866 0.798 0.766 0.694

GRU+SVM M 0.925 0.842 0.916 0.821

Table 9 General genre AUC score

Model Micro Macro Weighted

1D Conv V 0.834 0.745 0.809

1D Conv+SVM M 0.900 0.856 0.838

GRU V 0.889 0.819 0.808

GRU+SVM M 0.914 0.876 0.864

Fig. 8 Data fault prediction confusion matrix
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The T-SNE method [35] is employed to visualize high-dimensional audio and video fea-
tures in a two-dimensional space. Figure 7 illustrates that comedy and drama videos with
more data are better distinguished from other labels. Because the problem is multi-label, we
considered trailers with only one label for better virtualization.

In the final experiment, for the nine genres’ problem, we employed three of the most
famous machine learning supervised models in Table 6. These models are computation-
ally optimal compared to deep neural networks and help to reduce the effect of unbalance
data. The Multinomial Naive Bayes (Multinomial-NB) has least training and testing time
because it only requires to calculate simple arithmetic calculation in both stages. However,
this model considers features that are independent which results in more loss compared to
other models. The k-nearest neighbors algorithm (KNN) with k=50 only stores features and
its corresponding labels in the training phase, which cause very low training time. More-
over, KNN is a non-parametric model which requires low testing time but still higher than
SVM model. Although SVM’s training time is higher than the other two models, it has the
least hamming loss. Therefore, we considered SVM model for the proposed classification
method.

4.4.2 Four-genre results

Table 7 shows that similar to the result of nine-genre classification problem, adding sound
to the system deducts the Hamming loss. Also, GRU+SVM M method has the least error
and the most F1 score compared to other methods.

Moreover, according to Table 8, multi-modal detection significantly increased the AUC
score of genres with less data. Therefore, the bias of the system due to the database has
been reduced. However, the score of drama movies with the most extensive data size has
decreased after adding music’s features to the 1D Conv V network.

Eventually, based on Table 9, the overall performance of the GRU+SVM M method has
improved compared to the other methods. All micro, macro, and weighted’s scores of the
GRU+SVM M method are 1.4, 2, and 2.6 percent higher than the second-best results.

Figure 8 indicates that, like nine genre results, considering music for classification
reduces the confusion of data, especially those with fewer data sizes like romance and horror
movies. Moreover, the GRU+SVM M method has the lowest confusion loss for all genres
compared to the other methods.

4.5 Ablation experiment

We conducted both quantitative and qualitative experiments to indicate the importance
of our multi-modal movie genre classification which considers both movie’s sounds and
video. Table 10 illustrates the qualitative performance of the proposed models for ran-
domly selected trailers of the test set. Based on these examples, the false positive labels
happen more commonly in the case of not considering movies’ sound. In these cases,
GRU+SVM M model is the most accurate and has the least false positive and no true
negative genres compared to other models.

5 Conclusion

In this paper, we proposed four methods for genre classification employing deep neural net-
works. Of these four, the GRU+SVM M as a multi-modal method outperforms the other
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Table 10 Examples of predictions in the test set

Movie Genres

Ground Truth Action Crime Drama

1D Conv V Action Crime Drama Horror Scifi Thriller

1D Conv+SVM M Action Crime Drama Thriller

GRU V Action, Crime Drama Thriller

GRU+SVM M Action Crime Drama Thriller

Ground Truth Drama

1D Conv V Drama Comedy Romance

1D Conv+SVM M Drama Comedy Romance

GRU V Drama Comedy Romance

GRU+SVM M Drama

Ground Truth Comedy Drama Romance

1D Conv V Comedy Drama Romance

1D Conv+SVM M Comedy Drama Romance

GRU V Comedy Drama Romance

GRU+SVM M Comedy Drama Romance

Ground Truth Action Adventure Scifi

1D Conv V Action Adventure Scifi Horror Thriller

1D Conv+SVM M Action Adventure Scifi

GRU V Action Adventure Scifi Thriller

GRU+SVM M Action Adventure Scifi

Ground Truth Comedy Horror

1D Conv V Comedy Horror Romance Scifi Thriller

1D Conv+SVM M Comedy Horror Romance Scifi Thriller

GRU V Comedy Horror

GRU+SVM M Comedy Horror
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Table 10 (continued)

Movie Genres

Ground Truth Drama

1D Conv V Drama Comedy

1D Conv+SVM M Drama

GRU V Drama Comedy Horror Thriller

GRU+SVM M Drama

Blue and red colors represent predicted false positive and true negative genres, respectively

ones. In this method, first, high-level features of the sequence of frames are passed through
the GRU model to address the variation importance of the visual properties in time. Sub-
sequently, the fusion of the GRU output and audio features is fed into the SVM, creating
GRU+SVM M. The SVM method outperforms other machine learning and neural network
methods.

We have shown that considering both the sound and image of a movie improves the per-
formance of movie genre classification. The Hamming loss has been improved between 10
to 12 percent after including trailers’ sound for classification. Notably, acoustic features
enhance the accuracy of genres with low performance due to their rarity in the database.
This result indicates that we have reduced the effect of our problem’s main limitation, which
is the unfairness of the number of genres in the dataset. As experiments show, the average,
macro, and micro AUC scores of the GRU+SVM Mmethod for the nine genres are, respec-
tively, 6, 8, and 24 percent higher than the best performance of the state-of-the-art methods
on the same dataset.

One of the challenges of movie genre classification is that different movie scenes have
different genres, and there is no comprehensive database that contains the genres of each
scene. In the future, we intend to extend the current method for the whole movie based
on semi-supervised learning techniques. Furthermore, we aim to include movie subtitles to
determine their effect on classification.

Appendix A: LSTMmerge

LSTM network is a well-known system for classifying data that changes through time and
can learn long-term dependencies inside a sequence [13]. The designed LSTM model is
presented in Fig. 9, where L represents the number of classes. Tables 11 and 12 indicate
that LSTM+SVM network has less score and more hamming loss than both GRU+SVM
and 1D Conv+SVM models.
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Fig. 9 LSTM model. LSTM.i i = 1, ..., 12 indicates ith parallel LSTM network. The outputs of these 12
networks are merged and fed into the final sigmoid layer

Table 11 LSTM network
hamming loss and AUC micro,
macro, and weighted scores

Model Hamming loss Micro Macro Weighted

LSTM 0.2530 0.754 0.741 0.724

LSTM+SVM 0.1593 0.876 0.824 0.814

Table 12 LSTM network AUC score for 9 genres data

genre precision Action Adventure Comedy Crime Drama Horror Romance SciFi Thriller

LSTM 0.771 0.815 0.776 0.698 0.669 0.759 0.678 0.670 0.739

LSTM+SVM 0.820 0.893 0.870 0.742 0.740 0.844 0.625 0.512 0.794
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Appendix B: GRUmerge

Figure 10 indicates the network structure of the GRU merge model. Separating frames
into 12 consecutive inputs of nine frames reduces the computational complexity Fig. 5 but
increases the Hamming loss and decreases all AUC and F1 scores, Tables 13 and 14. For
GRU merge, the training time required to train each epoch reduces to half compared to the
proposed GRU model.

Fig. 10 GRU merge model description. GRU.i i = 1, ..., 12 indicates ith parallel GRU network. The outputs
of these 12 networks are merged and fed into the final sigmoid layer

Table 13 GRU merge network hamming loss and AUC micro, macro, and weighted scores

Model Hamming loss Micro Macro Weighted F1 score

GRU 0.253 0.838 0.781 0.795 0.611

GRU+SVM 0.16 0.869 0.836 0.831 0.618
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Table 14 GRU merge network AUC score for 9 genres data

genre precision Action Adventure 90Comedy Crime Drama Horror Romance SciFi Thriller

GRU 0.831 0.855 0.877 0.762 0.78 0.847 0.677 0.699 0.704

GRU+SVM 0.866 0.892 0.885 0.795 0.775 0.873 0.798 0.815 0.824
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