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Abstract
In this paper, a novel fractional-order no-equilibrium chaotic system with hidden attractor is
presented. The dynamical characteristics of the fractional-order system are analyzed by the
phase diagram, Lyapunov exponents, bifurcation diagram, complexity, and attractor basin.
Based on the above analysis, an image encryption scheme performs discrete cosine trans-
form on the R, G, and B channels of the original color image to get the corresponding sparse
coefficient matrices. Then, the measurement matrix generated by the Hadamard matrix and
the chaotic pseudo-random sequence is used to compress and perceive the sparse coeffi-
cient matrices. In addition, the row and column scrambling and GF (257) domain diffusion
algorithm are performed on the compressed pixel matrix to obtain the final cipher image.
Experimental results and performance analysis display that the scheme has high compress-
ibility and security. Even if the compression rate is 0.25, the calculated PSNR values are
around 30. In addition, the χ2-value of the encrypted Lena image is 248.2824, and the algo-
rithm has passed the UACI and NPCR tests and can resist differential attacks. Therefore,
the proposed algorithm is effectively.

Keywords Fractional-order no-equilibrium chaotic system · Hidden attractor · Color
image encryption

1 Introduction

In 2011, Leonov and Kuznetsov put forward the concept of hidden attractor [22, 25]. Gener-
ally, chaotic systems with no equilibrium point, stable equilibrium point and infinite number
of unstable equilibrium points are classified as chaotic systems with hidden attractors.
This kind of chaotic system has some hidden chaotic characteristics, which has potential
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application value in the field of nonlinear terms and engineering applications [18, 20, 23, 24,
37–41, 44, 45, 49]. In 2013, Jafari et al. [18]. listed a series of elementary 3-D chaotic sys-
tems without equilibrium points. Research on chaotic systems without equilibrium points
has also become a focus. Wang and Chen gave a chaotic system without equilibrium points,
on this basis, a chaotic system with any number of equilibrium points was constructed
[49]. In 2015, a chaotic system containing nonlinear exponential terms is studied, with no
equilibrium point but has rich dynamical characteristics [38]. In 2016, a 4-D hyperchaotic
system with hidden attractors and its dynamical characteristics, control, and synchroniza-
tion are analyzed by Vaidyanathan [45]. Pham et al. [40] discovered a 3-D chaotic system
without equilibrium points, analyzed the basic dynamical characteristics of the system,
and implemented the circuit of the system. All of the above are studies of some inte-
ger order no-equilibrium chaotic systems. However, the properties of the fractional-order
chaotic system without equilibrium have not been researched, the dynamical characteristics
of the fractional-order no-equilibrium system is analyzed. At present, the methods for solv-
ing fractional differential equations mainly include the frequency domain approximation
method [19], predictor-corrector method [10], and Adomian decomposition method (ADM).
Compared with the other two methods, ADM decomposition method has high calculation
accuracy, fast convergence speed, and less computer resource consumption [53]. Therefore,
the ADM decomposition algorithm is chosen to solve the fractional chaotic system in this
paper. In addition, a very important application field of chaotic system is image encryption,
so we not only analyze the chaotic system with no equilibrium point of fractional order, but
also study its application.

Nowadays, digital images have become one of the major interactive objects on the Inter-
net, especially in the medical, military and national defense fields, which means that we
have hidden security risks when transmitting images [15]. Generally the amount of image
data is large and the storage cost is high. Therefore, the image should be compressed and
encrypted during the image transmission process. Due to pseudo-random characteristics of
chaotic system and the high sensitivity to initial values, image encryption algorithms based
on chaotic systems have become a hot spot in information security research [3, 21, 47, 52,
54]. So far, various chaotic image encryption algorithms have been proposed [1, 4, 5, 8, 9,
12–14, 16, 17, 26–28, 30, 35, 51, 55–58]. In 2020, A color image encryption system was
proposed by Hu et al. [14], this algorithm uses chaotic pseudo-random sequences and matrix
convolution operations to scramble and diffuse the pixel matrix, respectively. In 2019,
Hasanzadeh et al. [12] introduced a color image encryption scheme based on the replace-
ment box and Chen hyper-chaotic system, which has a massive secret key space and secret
key sensitivity. Based on the coupled hyperchaotic system and Galois field arithmetic oper-
ations, Liu et al. proposed a medical image encryption scheme. [28]. Yang et al. [56] intro-
duced a diffusion algorithm using the complex chaotic system and the gravity law model.
These algorithms are sufficiently secure, but further research found that there is a consider-
able storage cost during image transmission. Zhu and Chen used a low-dimensional chaotic
system and block compressive sensing to encrypt color image [58]. Mou et al. [35] studied
image compression and encryption algorithm that combined 3D hyper-chaotic system and
compressive sensing.

Based on the above research background, the dynamic characteristics of fractional order
no-equilibrium chaotic system are analyzed, and it is applied in the field of image encryp-
tion, and an encryption algorithm with high efficiency and low storage space is designed.
This system could complete image encryption and compression simultaneously and has
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high compressibility and security. Firstly, a fractional-order no-equilibrium chaotic system
is given, which is solved by the ADM decomposition algorithm. Using phase diagram,
Lyapunov exponents and bifurcation diagram to analyze the dynamical characteristics of
the fractional-order no-equilibrium chaotic system, and obtaining the optimal parameter
range for applying the system to the image encryption system. Moreover, the generated
chaotic pseudo-random sequences are used in the entire cryptographic system. Secondly,
the Hadamard matrix and chaotic pseudo-random sequences are used to construct the mea-
surement matrix of the R, G, and B channels of the color image. Finally, the compressed R,
G, and B channels are scrambled separately, and the scrambled channels are diffused based
on the GF (257) domain and chaotic pseudo-random sequences to obtain the final cipher
image.

The rest of this paper is organized as follows. The dynamical characteristics of the
fractional-order no-equilibrium chaotic system are analyzed in Section 2, The color image
encryption scheme is introduced in detail in Section 3, the simulation results and the per-
formance analysis of the proposed scheme are illustrated in Section 4. Finally, conclude in
Section 5.

2 Fractional-order no-equilibrium chaotic system

2.1 Fractional-order no-equilibrium chaotic systemmodel

The no-equilibrium chaotic system can be defined as

⎧
⎪⎨

⎪⎩

ẋ = y

ẏ = −x − yz

ż = xy + αx2 + βy2 − γ

. (1)

here α, β, γ are parameters and α, β, γ>0, the state variables are represented by x, y, z.
According to the definition of Caputo fractional calculus and the system (1), the

mathematical expression of the fractional-order no-equilibrium system is

⎧
⎪⎨

⎪⎩

∗D
q
t0
x = y

∗D
q
t0
y = −x − yz

∗D
q
t0
z = xy + αx2 + βy2 − γ

. (2)

here q means the order of the fractional system equation, and 0<q ≤ 1.

2.2 Solution of the fractional-order no-equilibrium chaotic system

Solving the fractional-order system equation by ADM algorithm, the linear, non-linear and
constant terms of the system (2) are

⎡

⎣
Lx1
Lx2
Lx3

⎤

⎦ =
⎡

⎣
x2
−x1
0

⎤

⎦ ,

⎡

⎣
Nx1
Nx2
Nx3

⎤

⎦ =
⎡

⎣
0
−x2x3
x1x2 + α(x1)

2 + β(x2)
2

⎤

⎦ ,

⎡

⎣
g1
g2
g3

⎤

⎦ =
⎡

⎣
0
0
−γ

⎤

⎦ (3)
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The non-linear term needs further decomposition. As the ADM decomposition algorithm
has fast convergence [32], only the first five terms of the non-linear term can be decomposed
to ensure the calculation accuracy. The non-linear term is decomposed into

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A0
2 = −x0

2x
0
3
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1
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(4)
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The solution of system (2) is defined as

x̃j (t) = c0j + c1j
(t−t0)

q

Γ (q+1) + c2j
(t−t0)

2q

Γ (2q+1) + c3j
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3q
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4q
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5q

Γ (5q+1) (6)

where h = t − t0 is time step, j = 1, 2, 3. And
⎧
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Selecting the system parameters α = 0.5, β = 0.1, γ = 1.3 and q = 0.67, iteration
time step h = 0.01, the initial values are [x0, y0, z0] = [0, 0.1, 0]. The phase diagrams of
fractional-order no-equilibrium system in different planes are plotted in Fig. 1, the corre-
sponding Lyapunov exponents of the system are LE1 = 0.2306, LE2 = 0, LE3 = −13.676,
and Lyapunov dimension DL = 2.0167. Since there is only one Lyapunov exponent greater
than 0, it means that the system is chaotic [6, 34], and the calculated maximum Lyapunov
exponent of the system is positive, indicating that the system is in a chaotic state.

It is obtained from reference [40] that the Lyapunov exponent of an integer-order no-
equilibrium chaotic system is LE1 = 0.0453, LE2 = 0, LE3 = −3.2903. The analysis
shows that when the order q is a fraction, the maximum Lyapunov exponent of the sys-
tem obtained is far much larger than the integer order system, the chaotic performance
of the fractional-order no-equilibrium system has been greatly improved compared with
the integer-order system, so the fractional-order no-equilibrium chaotic system has more
complex dynamic characteristics, the system is more suitable for image encryption.

2.3 Equilibrium point analysis

The equilibrium point of the system can be found by making the equation of fractional-order
no-equilibrium chaotic system equal to 0, so

y = 0 (13)

− x − yz = 0 (14)

xy + αx2 + βy2 − γ = 0 (15)

2.4 Dynamical characteristics of the fractional-order no-equilibrium chaotic system

The parameters are set to α = 0.5, β = 0.1, γ = 1.3, h = 0.01, the initial values x0 =
[0, 0.1, 0], when the order q ∈ [0.45, 1], the LEs and bifurcation diagram of the sys-
tem are presented in Fig. 2. The bifurcation trajectory enters chaotic state after an obvious

Fig. 1 Chaotic attractor phase diagram (a) x − y plane (b) x − z plane (c) y − z plane

4347Multimedia Tools and Applications (2023) 82:4343–4369



Fig. 2 LEs and bifurcation diagram with order q ∈ [0.45, 1]

period-doubling bifurcation. Besides, the smallest order that can produce chaos is q =
0.565×3=1.695. A positive Lyapunov exponent indicates that the phase volume of the sys-
tem continues to expand and fold, causing the originally similar trajectories in the attractors
to become increasingly uncorrelated, and the initial value of the system is highly sensitive.
It can be seen from Fig. 2 that when q = 1, the system is in the form of integer-order, and it
can be clearly seen that when q <1, the Lyapunov exponent of the fractional-order chaotic
system is significantly higher than that of the integer-order chaotic system, and the initial
value of the system is more sensitive.

Fixed q = 0.67, α ∈[0.3, 0.7], and other parameter values remain unchanged, the LEs
and bifurcation diagram are plotted in Fig. 3. From the bifurcation diagram, we can see that
the no-equilibrium system has obvious periodic bifurcation and is correspondingly consis-
tent with the Lyapunov exponents. Keeping other parameter values, α = 0.5, the LEs and
bifurcation diagram of β ∈[0, 0.2] are shown in Fig. 4. Moreover, setting β = 0.1, γ ∈[1.1,
1.5], and other parameter values remain unchanged, the corresponding LEs and bifurcation
diagram are presented in Fig. 5. When the order q is a fraction, the maximum LE of the
system is much larger than the integer order. Obviously, the dynamical characteristics of the

Fig. 3 LEs and bifurcation diagram with parameter α ∈[0.3, 0.7]
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Fig. 4 LEs and bifurcation diagram with parameter β ∈[0, 0.2]

fractional-order no-equilibrium chaotic system are rich. In addition, we refer to a chaotic
system with equilibrium points, whose LES and bifurcation diagram are shown in Fig. 6,
and compare its LEs and bifurcation diagram with parameters changing with system 2. It
can be seen that when parameters change, the LEs value of system 2 is larger than that of
reference [42], so the randomness of the system is better.

2.5 Complexity analysis

When chaotic sequences are applied to chaotic secure communication or image encryption,
it needs to have high randomness and strong complexity. The LEs and bifurcation diagram
can qualitatively analyze the dynamical characteristics of the system, but cannot quantita-
tively reflect the randomness and complexity of the chaotic sequences. Therefore, spectral
entropy (SE) and C0 complexity algorithms are adopted to analyze the complexity and ran-
domness of fractional-order no-equilibrium system. Taking the system parameters β = 0.1,
γ = 1.3, h = 0.01, and the initial condition is [0, 0.1, 0]. According to the spectral entropy

Fig. 5 LEs and bifurcation diagram with parameter γ ∈[1.1, 1.5]
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Fig. 6 LEs and bifurcation diagram of reference [42]

(SE) and C0 complexity algorithm, the complexity of the fractional-order no-equilibrium
chaotic system when the order q and the parameter α change simultaneously are calculated
as shown in Fig. 7a and b. Different colors indicate different complexity, the lighter the
color, the smaller the complexity values in the interval, the worse the randomness of the
sequences. The greater the complexity of the chaotic sequence and the greater its random-
ness, the more difficult it is for the sequence to be recovered. It can be seen from Fig. 7 that
when q = 1, the system is in the form of integer-order, the color in this range is the light-
est and the complexity is the lowest. When 0.45< q <0.8, the darker the color, the greater
the complexity. Compared with the integer-order system, fractional-order no-equilibrium
chaotic system is more suitable for image encryption systems.

Setting α = 0.5, q = 0.67, other parameter values remain unchanged, and the SE com-
plexity and C0 complexity of the system when the parameters β and γ change at the same
time are illustrated in Fig. 8a and b. It can be seen from the figure that when 0.63<α<0.7,
0.45<q<0.53, 0.09<β<0.2, 1.2<γ<1.35, the color is the darkest, the complexity and
randomness of the system are the best. Therefore, when the system is applied to image
encryption, the chaotic sequences in this area should be selected.

Fig. 7 The complexity of α ∈[0.3, 0.7], q ∈[0.45, 1]: (a) SE complexity (b) C0 complexity
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Fig. 8 The complexity of β ∈[0, 0.2], γ ∈[1.1, 1.5]: (a) SE complexity (b) C0 complexity

2.6 Attractor basin

The dynamic map reflects the state information of the chaotic attractor, which can provide an
effective parameter selection basis for the application of the chaotic system in engineering.
Setting iteration time step h = 0.01 initial values x0 = [0, 0.1, 0]. The attractor basin of the
q-α plane when β = 0.1, γ = 1.3 is shown in Fig. 9a, and the attractor basin of the β-γ
plane when α = 0.65, q = 0.47 is plotted in Fig. 9b. It can be clearly seen from Fig. 9a that
there are yellow and red parts, which represent the limit cycle and chaotic state, respectively.
In Fig. 9b, there are yellow, orange and blue, which are limit cycles, chaotic states and
divergence state, respectively. When applying the chaotic system to secure communication,
the red and orange area should be selected. In addition, the attractor state may jump at the
boundary point, so the boundary point of each area should be carefully selected.

2.7 DSP implementation of fractional-order no-equilibrium chaotic system

DSP digital signal processor has the advantages of good stability, high precision, strong pro-
grammability, and easy implementation. Therefore, the DSP platform implements digital

Fig. 9 Attractor basin (a) α ∈[0.3, 0.7], q ∈[0.45, 1] (b) β ∈[0, 0.2], γ ∈[1, 1.5]
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hardware implementation of the fractional-order no-equilibrium chaotic system. The hard-
ware realization platform is illustrated in Fig. 10. Here the DSP chip is TMS320F28335,
and the time series generated by DSP is converted by 16-bit dual-channel D/A converter
DAC8552 [11, 29, 31]. Letting α = 0.5, β = 0.1, γ = 1.3, q = 0.67, and h = 0.01, the
initial values x0 = [0, 0.1, 0], Fig. 11a–c show the phase diagram of the fractional-order no-
equilibrium chaotic map captured by the oscilloscope, which are the same as the computer
simulation results.

3 Application of fractional-order no-equilibrium chaotic system
in image encryption

3.1 Encryption algorithm

A color image encryption algorithm based on the fractional-order no-equilibrium chaotic
system is introduced in this section. The algorithm divides the color image into R, G, B
three channels, which are performed: DCT sparse transformation, scrambling algorithm,
and diffusion algorithm based on GF (257) domain. The encryption scheme for an image of
size N*N (N = 256) is shown in Fig. 12, and the specific steps are as follows:

Step 1: Input the original color image I with a size of N × N and decompose it into R
(red), G (green), B (blue) three-channel images.

Step 2: The sparse coefficient matrices R1, G1 and B1 are got by using the discrete cosine
transform (DCT) to sparse the R, G, B three-channel pixel matrices.

Step 3: The fractional-order no-equilibrium chaotic system is iteratedL (L = m+s) times
to obtain three chaotic sequences, the sequence x is quantized by (16), which is
discarded first s items to get a pseudo-random sequence X of length m. Moreover,
the elements of X are sorted in descending order to obtain the index sequence S.

x(i) = mod(f loor((x(i) + abs(x(i))) ∗ 1016), 256) + 1 (16)

Fig. 10 DSP implementation platform
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Fig. 11 Phase diagram realized by DSP platform (a) x − y plane (b) x − z plane (c) y − z plane

Step 4: According to sequence S and the Hadamard matrix of N × N , determine the
measurement matrix φ of m × N . The Hadamard matrix is generated by

[
1 1
1 −1

]

(17)

Fig. 12 Encryption flow chart
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Step 5: According to (18), the three-channel sparse coefficient matrices of R1, G1 and B1
are compressed and sampled to obtain the compressed image pixel matrices R2,
G2 and B2 of m × m. ⎧

⎨

⎩

R2 = Φ(ΦR1)
′

G2 = Φ(ΦG1)
′

B2 = Φ(ΦB1)
′

(18)

Step 6: The element values of matrices R2, G2 and B2 are quantized to an integer in the
range of 0-255 by (19).

⎧
⎨

⎩

R3 = round(255 ∗ (C11 − Min(R2))/(Max(R2) − Min(R2)))

G3 = round(255 ∗ (C11 − Min(G2))/(Max(G2) − Min(G2)))

B3 = round(255 ∗ (C11 − Min(B2))/(Max(B2) − Min(B2)))

(19)

Step 7: Scrambling of the pixel matrix. Flip the odd-numbered column elements of the
matrices R3, G3, B3 and then generate a non-repetitive random integer sequence
M with a length of m and values between 1 and m, which scrambles the rows of
the three-channel pixel matrices.

Step 8: Set the parameters and initial values of the chaotic system (2), and then the system
iterates t+2×m×m times, where t is generated by the three-channel pixel matrices
R, G, B. According to (20) and (21), pseudo-random sequencesX, Y are generated
from chaotic sequences y and z. The pseudo-random sequences S1 and S2 of
forward diffusion and reverse diffusion are obtained by X and Y , respectively.

{
X = mod(f loor(abs(y) ∗ 1016), 256)
Y = mod(f loor(abs(z) ∗ 1016), 256)

(20)

S1 = X(1 : m × m)

S2 = Y (1 : m × m)
(21)

Step 9: The multiplication table of GF (257) domain can be generated by the computer.
Then, with the help of (22) and (23), the scrambled R, G, B three-channel pixel
matrices are diffused.

{
Ci,H = Ci−1,H × Si,H × Ii,H , Ci,L = Ci−1,L × Si,L × Ii,L

C = (Ci,H × 16 + Ci,L)
(22)

{
Ci,H = Ci+1,H × Si,H × Ii,H , Ci,L = Ci+1,L × Si,L × Ii,L

C = (Ci,H × 16 + Ci,L)
(23)

in which, (22) and (23) are the forward diffusion process and the reverse diffusion
process, respectively. I represents one-dimensional vector of the pixel matrix. C

and S are cryptographic vectors, initial values C0 comes from the secret key (i =
1, 2, 3, ..., m × m), H is the upper 4 bits of the data, and L represents the lower 4
bits of the data.

Step 10: Integrate the three-channels of R, G, and B the encrypted image C is obtained.

3.2 Decryption algorithm

As shown in Fig. 13, the decryption process of the color image can be realized by the reverse
operation encryption process. It is worth mentioning that the OMP algorithm realizes the
reconstruction of the image. The specific decryption steps are as follows:

Step 1: Dividing the encrypted image C into three-channels of R, G, and B. The pseudo-
random sequence S1, S2 generated by step 8 of the encryption algorithm performs
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Fig. 13 The architecture of decryption algorithm

inverse diffusion processing in the GF (257) domain on pixel matrices of each
channel. The diffusion processes are

{
Ii,H = Ci,H ÷ Ci+1,H ÷ Si,H , Ii,L = Ci,L ÷ Ci+1,L ÷ Si,L

Ii = (Ii,H × 16 + Ii,L)
(24)

{
Ii,H = Ci,H ÷ Ci−1,H ÷ Si,H , Ii,L = Ci,L ÷ Ci−1,L ÷ Si,L

Ii = (Ii,H × 16 + Ii,L)
(25)

Step 2: The M sequence generated by step 7 of the encryption algorithm inversely scram-
bles the rows of the three-channel pixel matrices, and then flips the odd-numbered
column elements of the pixel matrices.

Step 3: Use the OMP algorithm and the measurement matrix generated in step 4 of the
encryption algorithm to reconstruct the three-channel planar sparse pixel matrices
with a size of N × N .

Step 4: The three-channel pixel matrices of the decrypted image are got by inverse discrete
cosine transform (IDCT), which are combined to get the decrypted image.
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4 Encryption simulation results and performances analysis

4.1 Experimental results

To verify the reliability and security of the algorithm, we encrypt the four different 512×512
color images and four different 256×256 color images. The chaotic system parameters are
α = 0.65, β = 0.1, γ = 1.3, q = 0.47, h = 0.01, initial values [x0, y0, z0] = [0, 0.1, 0],
CR = 0.75, the encryption and decryption algorithms have the same key. The compression
ratio CR is calculated by

CR = Cheigt × Cwidth

Iheigt × Iwidth
(26)

here I is plain image, C is encrypted image. The original 512×512 color images “4.1.03”,
“4.1.04”, “House” and “Airplane” are shown in Fig. 14a, the encrypted images are illus-
trated in Fig. 13b, the corresponding decrypted images are in Fig. 14c. Figure 15a plotted
the original 256×256 color images “Lena”, “Pepper”, “Barbara” and “Fruits”, the encrypted
images are in Fig. 15b, and the corresponding decrypted images are shown in Fig. 15c. From
Figs. 14b and 15b, the compressed and encrypted images are obviously smaller than the cor-
responding original image, and the cipher images completely change the characteristics of
the plaintext images. The encryption scheme can reduce the network transmission pressure
and carry out safe transmission. In addition, the decrypted images shown in Figs. 14c and
15c are basically the same as their corresponding original images. The algorithm has good

Fig. 14 Simulation results of 512×512 color images“4.1.0”, “4.1.04”, “House” and “Airplane” (a) original
color images (b) encrypted images (c) decrypted images
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Fig. 15 Simulation results of 256×256 color images“Lenna”, “Pepper”, “Barbara” and “Fruits” (a) original
color images (b) encrypted images (c) decrypted images

encryption and decryption effects. Selecting the color image Lena with a size of 256×256,
and divide it into three channels of R, G, B, the encryption and decryption process flow
chart as shown in Fig. 16.

4.2 The compression ratio analysis

In this subsection, the mean structural similarity (MSSIM) and peak signal to noise ratio (PSNR)
are adopted to evaluate image compression performance with different compression rates.

Fig. 16 Lena image is divided into R, G, B three-channel encryption and decryption process
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4.2.1 Mean structural similarity (MSSIM)

The mean structural similarity (MSSIM) is an index to evaluate the similarity of two images,
which is defined as

L(x, y) = 2uxuy + (K1 × L)2

u2x + u2y + (K1 × L)2
(27)

C(x, y) = 2σxσy + (K2 × L)2

σ 2
x + σ 2

y + (K2 × L)2
(28)

S(x, y) = σxy + (K2 × L)2/2

σxσy + (K2 × L)22
(29)

SSIM(x, y) = L(x, y) × C(x, y) × S(x, y) (30)

MSSIM(x, y) = 1

M

M∑

k=1

SSIM(xk, yk) (31)

where x is the original color image and y is the decrypted image. ux , uy , σx , σy are the
mean, variance values of x and y, respectively. and σxy represents the covariance of x and
y. The parameters are as follows: K1 = 0.01, K2 = 0.03, L = 255 and M = 64.

Table 1 lists the MSSIM values of each channel of 256×256 color images at different
compression ratios. From Table 1, the MSSIM values of different images are similar at
the same compression ratios, so the proposed algorithm is stable. When the compression
ratio changes, the values of MSSIM will change accordingly, so images can be effectively
compressed and encrypted according to different actual needs.

Table 1 MSSIM values of
different images at different CRs Images Channel 0.25 0.5 0.75

Lena R 0.6235 0.8014 0.7169

G 0.5741 0.7642 0.6689

B 0.6540 0.7996 0.6989

Pepper R 0.6490 0.7109 0.7233

G 0.5898 0.7320 0.6582

B 0.6542 0.7226 0.7500

Barbara R 0.5224 0.8159 0.6300

G 0.5517 0.7593 0.6483

B 0.5402 0.8248 0.6496

Fruits R 0.6732 0.8193 0.7495

G 0.6096 0.7785 0.6915

B 0.5012 0.6745 0.6477
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4.2.2 Peak signal to noise ratio (PSNR)

Peak signal to noise ratio is an important indicator to judge the ability of image reconstruc-
tion, which calculation is as follows:

PSNR = 10 × log10

⎛

⎜
⎜
⎜
⎝

2552

(1/H × W)
H∑

i=1

W∑

j=1
(L(i, j) − l(i, j))2

⎞

⎟
⎟
⎟
⎠

(32)

here L(i, j) is the decrypted image and l(i, j) is the original image. H and W represent the
length and width of the image. Table 2 shows the PSNR values of each channel of 256×256
color images at different compression ratios. It can be seen that even if there is very little
information sampled at CR = 0.25, the values of PSNR are close to 30, so the image
reconstruction effect is better and is beneficial to transmission.

4.3 Key space

The sum of the keys in the image encryption process is the key space, which is a necessary
condition for measuring the encryption scheme. In order to resist brute force attack, the key
space should be greater than 2100. In the proposed method, if the calculation accuracy is
10−15, the key space is (1015)9 = 10135 ≈ 2448. Moreover, considering the key t related to
the plaintext, the key of the algorithm is>2448, which is large enough to resist brute force
attacks. Under the same encryption algorithm and calculation precision, the key space of the
integer-order no-equilibrium chaotic system is 2398 [40], which is smaller than that of the
fractional-order chaotic system. In contrast, fractional-order no-equilibrium chaotic systems
is more suitable for image encryption system.

4.4 Key sensitivity

Key sensitivity analyzes the difference between two cipher images got when the same plain
image is encrypted with a slight change in the key. If the two cipher images are significantly
different, the key sensitivity of cryptographic system is extreme. If the difference between

Table 2 PSNR values of
different images at different CRs Images Channel 0.25 0.5 0.75

Lena R 30.9433 33.9007 32.8822

G 30.3003 32.6915 31.6604

B 31.7238 34.3102 33.0332

Pepper R 31.2489 34.5650 33.1666

G 29.8887 32.5430 31.4032

B 30.5915 34.1997 33.3982

Barbara R 29.7470 31.0011 30.3063

G 29.9549 31.4833 30.6977

B 29.7540 31.2852 30.6075

Fruits R 32.6814 35.7249 34.4416

G 31.5458 34.1925 32.8927

B 29.8284 31.5178 30.4616
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the two cipher images is small, the key sensitivity of the cryptographic system is weak. An
excellent cryptographic system should be sufficiently sensitive to all secret keys. In this test,
the“Peppe” image is used as the test image, and the original image and the encrypted image
C with the correct key are displayed in Fig. 17a and b, The secret key is changed to α+10−15,
β+10−15, γ+10−15, h+10−15, q+10−15,m+10−15, x0+10−15, y0+10−15, z0+10−15, the new
encrypted images are C1, C2, C3, C4, C5, C6, C7, C8, C9, which are shown in Fig. 17c–k,
The differences between the original cipher image and the new cipher images are repre-
sented in Fig. 17l–t. The test results show that when the key is slightly changed, the two
cipher images got by encrypting the same plain image are significantly different. So the key
of the proposed algorithm is sufficiently sensitive.

Fig. 17 Key sensitivity analysis results (a) Original “Pepper” image (b) Cipher image C (c) Cipher image C1
(d) Cipher image C2 (e) Cipher image C3 (f) Cipher image C4 (g) Cipher image C5 (h) Cipher image C6 (i)
Cipher image C7 (j) Cipher image C8 (k) Cipher image C9 (l) |C-C1| (m) |C-C2| (n) |C-C3| (o) |C-41| (p)
|C-C5| (q) |C-C6| (r) |C-C7| (s) |C-C8| (t) |C-C9|
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4.5 Statistical analysis

4.5.1 Histogram analysis

The histogram is a statistical table reflecting the pixel distribution of an image. The cipher
image should disrupt the statistical characteristics of the plain image to prevent an attacker
from obtaining effective statistical information. Figure 18 draws the histogram of the plain
image and the cipher image of “Lena”. In this test, the pixel value distribution of the his-
togram of the encrypted image is uniform. Compared with the histogram of the original
image, the encrypted image completely changes the statistical characteristics of the original
image. On the other hand, χ2-values statistics are usually used to show the uniformity of
the image histogram, Table 3 lists the χ2-values of different images. From the χ2-values in
Table 3, we can see that the cipher images are uniformly distributed.

4.5.2 Correlation analysis

The adjacent pixel correlation coefficient is a performance index for evaluating the cryp-
tographic system, and it reflects the correlation between adjacent pixels. The closer the
correlation coefficient is to 0, the better the cryptographic system. The correlation of adja-
cent pixels can be reduced by an effective encryption algorithm. The correlation coefficient
is calculated by ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρuv = cov(u,v)√
D(u)

√
D(v)

cov(u, v) = 1
N

N∑

i=1
(xi − E(u))(yi − E(v))

D(u) = 1
N

N∑

i=1
(ui − E(u))2

E(u) = 1
N

N∑

i=1
ui

(33)

where u, v, are the gray values of two adjacent pixels
Randomly select 2000 pixel pairs and measure the correlation coefficients in the hori-

zontal, vertical, and diagonal directions. Figure 19 depicts the correlation of adjacent pixels
of different images in various directions, and Table 4 lists the correlation coefficients of
adjacent pixels of different images. For original images, the correlation coefficients of adja-
cent pixels are close to 1, which has a powerful correlation. After encryption, the correlation
coefficients of adjacent pixels in all directions are close to 0, it indicates that adjacent pixels
have almost no correlation. In addition, it can be seen from Fig. 19 that the encryption algo-
rithm breaks the correlation between adjacent pixels in all directions. Table 5 compares the
correlation coefficients between the proposed scheme and other schemes. From the results,
the encrypted image in this paper has less correlation than other schemes in all directions.

4.6 Information entropy

We analyze the randomness of color images through information entropy. For an image
with 256 gray values, the closer the entropy value is to 8, the stronger the randomness of
the image information, the amount of understood image information is less. We calculated
the information entropy of different images and their corresponding encrypted images, and
listed calculation results in Table 6. Moreover, Table 6 shows the information entropy of
each channel. The information entropy values of the cipher images are closer to 8 than
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Fig. 18 Histogram of original image and encrypted image (a1) R channel of the original image (a2) G channel
of the original image (a3) B channel of the original image (b1) R channel of the encrypted image (b2) G
channel of the encrypted image (b3) B channel of the encrypted image

that of the plain images, so the information leakage of the encrypted image may be very
small, which means that the proposed algorithm can resist statistical attacks. The informa-
tion entropy values of the Lena image under different algorithms are listed in Table 7. It can
be seen that compared to other algorithms, the information entropy in this paper is closer to
the theoretical value.

4.7 Differential attacks

Generally, NPCR (pixel change rate) and UACI (uniform average change intensity) are used
to analyze whether the cryptosystem can resist differential attacks. For two cipher images

Table 3 the χ2-values of different images

Images χ2-values(Plaintext) χ2-values(Cipher) Critical Value

χ2
0.1(255) = χ2

0.5(255) = χ2
0.01(255) =

284.33591 293.24783 310.45739

Lena 67946.0052 248.2824 pass pass pass

Pepper 76396.8255 267.2685 pass pass pass

Barbara 63425.6589 210.7222 pass pass pass

Fruits 99403.7943 245.1713 pass pass pass

4.1.03 5813051.4499 259.7292 pass pass pass

4.1.04 407859.7858 259.1840 pass pass pass

House 1331300.7513 227.2298 pass pass pass

Airplane 2309831.3346 240.8299 pass pass pass
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Fig. 19 Correlation analysis (first line is original “Lena” image, second line is encrypted “Lena” image) (a1)
and (a2) Horizontal direction (b1) and (b2) Vertical (c1) and (c2) Diagonal

Table 4 Correlation coefficients of different images

Images Horizontal Vertical Diagonal

Lena Original image 0.9828 0.9625 0.9476

Encrypted image –0.0021 –0.0026 0.0012

pepper Original image 0.9717 0.9651 0.9392

Encrypted image –0.0015 0.0019 0.0008

Barbara Original image 0.9574 0.9222 0.8894

Encrypted image 0.0003 –0.0001 –0.0015

Fruits Original image 0.9690 0.9693 0.9466

Encrypted image 0.0017 –0.0001 0.0007

Table 5 Compare correlation coefficients with other algorithms

Component(Lena) Direction Lena Ours [48] [33] [7] [43]

Red Horizontal 0.9779 0.0054 –0.0131 0.0071 0.0001 –0.0080

Vertical 0.9559 0.0004 0.0142 0.0009 0.0091 0.000029

Diagonal 0.9324 0.0001 –0.0044 –0.0043 –0.0023 –0.0086

Green Horizontal 0.9707 0.0059 –0.0007 –0.0005 –0.0074 0.0039

Vertical 0.9448 –0.0031 –0.0167 –0.0034 –0.0059 –0.0034

Diagonal 0.9196 –0.00006 –0.0145 0.0026 0.0015 –0.0044

Blue Horizontal 0.9573 –0.0038 0.0036 –0.0029 –0.0015 0.0013

Vertical 0.9271 –0.0014 0.0083 0.0045 –0.0010 0.00053

Diagonal 0.9012 –0.0002 –0.0214 0.0008 –0.0083 0.0027
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Table 6 Information entropy values of different images

Images Plain Cipher

R G B R G B

Lena 7.7147 7.1655 7.5578 7.9950 7.9948 7.9947

Pepper 7.3006 7.5576 7.0996 7.9956 7.9959 7.9953

Barbara 7.6638 7.4477 7.5255 7.9954 7.9952 7.9951

Fruits 7.5071 7.3231 6.7437 7.9950 7.9946 7.9950

4.1.03 5.7010 5.3482 5.6841 7.9987 7.9986 7.9987

4.1.04 7.4335 7.4478 6.9544 7.9981 7.9990 7.9987

House 6.3958 6.5437 6.2161 7.9989 7.9990 7.9988

Airplane 67178 6.7990 6.2138 7.9988 7.9987 7.9989

C1 and C2, whose plain images differ by 1 bit of pixel value, the NPCR and UACI of them
are defined by

NPCR = 1
M×N

M∑

i=1

M∑

j=1
E(i, j) × 100%

UACI = 1
M×N

M∑

i=1

M∑

j=1

|C1(i,j)−C2(i,j)|
255 × 100%

(34)

where M and N are the size of cipher images, if C1(i, j) = C2(i, j), then D(i, j) = 0.
Otherwise, E(i, j) = 1. The theoretical expectations of NPCR and UACI are 99.6094% and
33.4635%, respectively. A new standards for NPCR and UACI are established by Wu et al.
[50]. If the calculated NPCR value is greater than the critical value under the significance
level α, the NPCR test passed. The NPCR at significant level α is calculated as

NPCR∗
α = H − Φ−1

(α)
√

H/(M × N)

H + 1
(35)

here H represents the maximum allowable value of image pixel value. For UACI, if the
calculated value of UACI is in the interval (UACI∗−

α ,UACI∗+
α ), This represents passing the

UACI test.

UACI∗−
α = H+2

3H+3 − Φ−1( α
2 )

√
(H+2)(H 2+2H+3)
18(H+1)2M×N×H

UACI∗+
α = H+2

3H+3 + Φ−1( α
2 )

√
(H+2)(H 2+2H+3)
18(H+1)2M×N×H

(36)

In this test, randomly select a pixel value of the plain image and modified it. The aver-
age test results of UACI and NPCR are listed in Tables 8 and 9, respectively. As we can see,
NPCR test values are greater than the critical values, UACI test values are within the theoret-
ical allowable ranges. This shows that the algorithm has passed NPCR and UACI tests and
has the ability to resist differential attacks [13]. Table 10 lists the comparison results with

Table 7 Information entropy of
image under different algorithms Schemes Ours [14] [2] [35] [36] [13]

Lena 7.9984 7.9941 7.9985 7.9972 7.9943 7.9951
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Table 8 NPCR test values of different images

Images(256×256) NPCR(%) Critical value

NPCR∗
0.05 = 99.5693% NPCR∗

0.01 = 99.5527% NPCR∗
0.015 = 99.5341%

Lena 99.6063 pass pass pass

Pepper 99.6130 pass pass pass

Barbara 99.6093 pass pass pass

Fruits 99.6084 pass pass pass

4.1.03 99.6080 pass pass pass

4.1.04 99.5981 pass pass pass

House 99.6162 pass pass pass

Airplane 99.6150 pass pass pass

other schemes. From Table 10, our results are closer to the ideal value than other schemes.

4.8 Cropping and noise attack analysis

Generally, color image unavoidably presents with noise interference and data loss in actual
encryption and transmission processing. Therefore, the image encryption system is required
to have good robustness to resist noise attacks and data loss. In order to evaluate the robust
performance of the algorithm, the following tests are performed. The encrypted image is
added with salt and pepper noises of 0.001, 0.01, 0.1 and 0.2, and the experimental results
are displayed in Fig. 20. Even if there is noise interference, the main information of the
original image can be identified by the decryption algorithm, when the noise increases to
0.1 and 0.2, the decrypted images become faintness, but the basic contour of the plain image
can still be decrypted. Besides, the encrypted image data is lost 1/16, 1/8, 1/4 and 1/2, and
the decrypted images are plotted in Fig. 21. Obviously, the decrypted images can identify
most of the main information of the original images. In summary, the proposed algorithm is
robust against noise interference and data loss, and is suitable for practical applications.

Table 9 UACI test values of different images

Images(256×256) UACI(%) Critical value

UAC∗−
0.05 = 33.2824% UACI∗−

0.01 = 33.225% UACI∗−
0.001 = 33.1594%

UACI∗+
0.05 = 33.6447% UACI∗+

0.01 = 33.7016% UACI∗+
0.001 = 33.7677%

Lena 33.4657 pass pass pass

Pepper 33.4643 pass pass pass

Barbara 33.4721 pass pass pass

Fruits 33.4603 pass pass pass

4.1.03 33.4592 pass pass pass

4.1.04 33.4801 pass pass pass

House 33.4544 pass pass pass

Airplane 33.4823 pass pass pass
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Table 10 The NPCR and UACI values of the images under different algorithms

Images Index Ours [16] [14] [46] [33]

Lena NPCR(%) 99.6063 99.6089 99.6236 99.5977 99.6300

UACI(%) 33.4657 33.5071 33.3619 33.4062 33.6352

Pepper NPCR(%) 99.6130 99.6106 99.6164 99.6082 99.6493

UACI(%) 33.4643 33.4368 33.3688 33.4346 33.4693

Fig. 20 Noise Attack: 4.1.04 (256××256) has salt and pepper noise of (a) 0.001, (b) 0.01, (c) 0.1and (d) 0.2;
the decrypted image of (e) Figs. 15a, f Fig. 15b, g Fig. 15c and h Fig. 15d

Fig. 21 Cropping Attack: 4.1.04 (256×256) has data loss of (a) 1/16, (b) 1/8, (c) 1/4 and (d) 1/2; the
decrypted image of (e) Fig. 16a, f Fig. 16b, g Fig. 16c and h Fig. 16d
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5 Conclusion

A fractional-order non-equilibrium chaotic system with hidden attractors is proposed, and
its dynamical characteristics are analyzed. The complexity and attractor basin are used to
analyze and determine the optimal parameter range of the system in the secure communica-
tion system. Moreover, we design an image encryption scheme in which compression and
encryption are performed simultaneously. The scheme uses random row and column scram-
bling and GF (257) domain diffusion algorithm to encrypt images. The key is related to
the plaintext, which can improve the resistance to known or selected plaintext attacks. The
experimental results indicate that the encrypted image is obviously smaller than the original
image, and the information of the original image is successfully destroyed. The algorithm
has good compression performance. Even the CR = 0.25, the obtained PSNR values and
MSSIM values are large enough to still identify the main information of the original image.
In addition, the proposed algorithm can resist various attacks such as differential attacks,
shearing attacks, and noise attacks. Statistical analysis, secret key space and secret key sen-
sitivity analysis prove the security and effectiveness of the algorithm and the algorithm has
good practical application value.
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