
https://doi.org/10.1007/s11042-022-13327-8

Facial expression recognition based on hybrid
geometry-appearance and dynamic-still feature fusion

Ruyu Yan1 ·Mingqiang Yang1 ·Qinghe Zheng1 ·DeqiangWang1 ·Cheng Peng1

Received: 12 December 2020 / Revised: 3 April 2022 / Accepted: 31 May 2022

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Emotion recognition through facial expression is regarded as one of the most effective meth-
ods to directly reflect a person’s inner emotional state for affective computing. However, a
key issue of facial expression recognition (FER) is how to design and fuse features from
videos rapidly and thus extract representative features to improve the recognition accuracy
efficaciously. In this paper, we propose a novel expression recognition framework to mit-
igate this issue. Specifically, we first present a new descriptor, the improved Local Binary
Pattern from Three Orthogonal Planes (I-LBP-TOP), which can extract both the static
and dynamic features in changing expressions, and set Gabor’s magnitude feature (GMF)
as texture information. Meanwhile, the facial landmarks of the peak frame are proposed
to represent geometric feature (GF) and the spatiotemporal geometric feature (ST-GF) is
obtained by extending it to time dimension. Then we integrate multiple features of image
sequences to overcome the limitation of using one single feature descriptor. A support vec-
tor machine (SVM) with multiple kernels is applied to train three base classifiers. Finally,
to realize reliable expression classification, a decision-level feature fusion method based on
a relative majority voting (MV) strategy is also employed. Intensive experiments are con-
ducted on the CK+ and Oulu-CASIA databases, where the experimental results demonstrate
that our proposed method achieves an improved performance compared with the existing
state-of-the-art hand-crafted approaches.

Keywords Facial expression recognition · LBP-TOP · Gabor feature · Geometric feature ·
Feature fusion

1 Introduction

Facial expression, an indispensable component of human emotion expression systems, is
usually regarded as a non-verbal language reflecting the state of human emotions. In [37],
A. Mehrabian’s research has showed that facial expression contains the most emotional
information, and 55% of what the speaker wants to say comes from facial expression. As
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FER has made considerable progress in recent years, it provides a wide range of appli-
cations in scientific fields, such as human robot interaction (HRI) [8], safe driving [25],
medical diagnosis [24], and so on. Although FER has been studied for decades and notable
advances have been obtained in both software and hardware systems [18], the recognition
of facial expression with high accuracy remains to be realized due to the impact of inter-
personal variations, facial occlusion, and changes in facial pose. As illustrated in Fig. 1,
psychologists Ekman and Friesen [10] have originally proposed that human beings have six
prototypical emotions, namely anger (AN), disgust (DI), fear (FE), happiness (HA), sad-
ness (SA), and surprise (SU), each of which reflects a unique psychological activity with a
particular expression.

Feature extraction obtains high-level semantic expression by calculating the texture,
shape, spatial structure and other information of the original image, which plays an impor-
tant role in FER [3]. According to the type of input data, there are two mainstream
approaches in the research of FER currently: image-based and video-based approaches. The
image-based approaches analyze and extract expression features through peak frames, while
video-based approaches detect the temporal and motion information from image sequences
with facial expressions. With regard to image-based approaches, they are normally divided
into two categories: geometric feature-based and appearance feature-based approaches. For
the former, the locations ofmany facial key points are extracted and subsequently combined into
a feature vector to represent facial geometric information (e.g., angle, distance, and position)
[14]. Besides, the appearance feature-based approaches model the appearance variations by
applying descriptors on holistic or local regions to convolute and extract features [45].

Many previous studies are based on either a still frame or an image sequence, neverthe-
less, little work has been done to combine these two methods together. Actually, features
extracted by these two methods are complementary. The peak frame of facial expression
has strong discrimination while the temporal information is indispensable in special video
classification tasks. Since a single feature is not comprehensive and rich enough to capture
all dominant global information, it is necessary to fuse multiple complementary features to
design a robust feature descriptor [29, 54]. In recent years, there is a trend to apply neu-
ral network model [42] in FER, which yields state-of-the-art results [32]. However, many
follow-up problems come into being, such as the lowavailability of big data, poor generalization
ability of models, excessive consumption of processing time and memory, and so on.

This paper presents an effective system using both static and dynamic features to enhance
the recognition accuracy of FER in video. We utilize two kinds of static information when
facial expression occurs: Gabor magnitude pictures with multiple scales and multiple direc-
tions are used to achieve extraction of texture features and 49 key points of facial expression
are applied for geometric features. In addressing dynamic features, we improve the LBP-
TOP method proposed by Zhao et al. [58], which demonstrated the contribution of XY
plane is less than that of XT and YT planes in FER. To enhance the contribution rate of XY
plane, we substitute the LBP histogram extracted from the image sequence in the XY plane
for that from the peak frame. Compared with the original LBP-TOP method, the improved

Fig. 1 Example of six prototypical expressions from the CK+ database
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LBP-TOP method has computational simplicity and higher effectiveness for characterizing
spatiotemporal texture features. The improved LBP-TOP is represented as I-LBP-TOP in
this paper. Subsequently, the SVM in the shogun toolbox is used to obtain corresponding
results of three classifiers [60], andMV strategy can determine the final classification result.

The main contributions of this paper are as follows:

• Firstly, we put forward an improved LBP-TOP descriptor (I-LBP-TOP), which remedy
the shortcomings of original LBP-TOP descriptor in FER.

• Secondly, a new geometric feature (GF) is proposed and extended to time dimension
(ST-GF).

• Thirdly, a framework that integrates the spatiotemporal motion features (I-LBP-TOP
and ST-GF) with static features (GMF) is proposed, which takes into account geometry-
appearance and dynamic-still information simultaneously.

• Finally, the experimental results prove that the recognition performance of the system is
greatly improved due to the introduction of multi-feature fusion method at the decision-
level.

The remainder of this paper is arranged as follows. Previous related work is briefly
reviewed in Section 2. In Section 3, we introduce the main contribution of this paper.
Section 4 discusses and analyzes the experimental results and Section 5 concludes the paper.

2 Related work

2.1 Static image based approaches

Over the past few decades, most of researches have been devoted to expression analysis
based on still frames. For example, a general approach is Local Binary Pattern (LBP), which
was first introduced by Ojala et al. [43] and implemented by Shan et al. [47] in the field
of FER. As a simple descriptor with rotation and illumination invariance, LBP is widely
used in expression recognition. This descriptor has many variants, including Completed
LBP (CLBP) [16], support LBP (sLBP) [40] and scale selective LBP (SSLBP) [15]. Gabor
wavelets have also been proven to be a powerful tool with an optimal localization in both the
spatial as well as the frequency domain [26]. Gabor magnitude features are commonly used
for modeling face changes, while there are also several Gabor phase based approaches like
HGPP [55] and LGXP [51], which show competitive performance for facial feature extrac-
tion. What is more, the Histogram of Orientated Gradients (HOG) features are constructed
by calculating and counting intensity gradient distribution of the local image region to rep-
resent shape and appearance information of facial image [9]. For geometric features, Liliana
et al. utilized landmarks in a facial component to analyze facial expression [30]. Further-
more, in [6] and [27], the displacement and the coordinates difference of facial landmarks
between a neutral face and an emotional face were calculated to characterize facial rigid
changes, respectively. However, there are not enough neutral expressions in some databases
or in the real system, which makes it impossible to calculate geometric features by far.

2.2 Dynamic image sequence based approaches

As a matter of fact, natural facial expression activity is a dynamic process, and its changing
process can be disassembled into three stages: the onset, the apex and the offset. There-
fore, video-based approaches in FER have become an active topic in recent studies. Both
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volume local binary pattern (VLBP) and LBP-TOP are extensions of LBP descriptor in
time dimension, combining motion and appearance textures [57]. LBP-TOP, as a simplified
descriptor of VLBP, has shown its promising performance for FER system [23]. However,
the histograms extracted from XY plane are not as significant as those from XT and YT
plane. Authors of [2] have proposed the LGBP-TOP descriptor, in which LBP-TOP was
used on each Gabor magnitude sequence to further enhance the feature extraction. One
drawback of this method is that the computational cost can be very high when a facial
expression sequence is represented as 40 Gabor magnitude sequences. By using the opti-
cal flow approach, Guojiang et al. analyzed the dynamic information of facial expressions
and extracted the characteristic flow which could reflect the facial expression changes
effectively [17].

2.3 Multi-feature fusion based approaches

Latest studies suggest that the fusion of multi-feature can yield better results than only
performing a single feature in emotion recognition system. The method reported in [1],
proved that simple combinations of both static and dynamic approaches can break through
their respective limitations. Moreover, Zhao et al. proposed a novel framework for facial
expression analysis concatenating dynamic and static information in video sequences [59].
However, it is difficult to generalize universal features across different persons only from the
extracted spatiotemporal texture information. Fan et al. combined PHOG-TOP and dense
optical flow according to the weighting strategy to extract both the spatial and dynamic
motion information of facial expressions [11]. In [12], Feng et al. focused on two-stream-
CNN with LBP-TOP to capture spatial and temporal streams.

In addition, multiple features can be fused at feature-level or decision-level. For instance,
Hu et al. [22] employed Center-Symmetric Local Signal Magnitude Pattern (CS-LSMP)
descriptor on multiple features for obtaining fused features. Rathee et al. fused Gabor, HOG
and DWT features, using Multiview Distance Metric Learning (MDML), which employed
complementary features of images to extract details while eliminating redundant informa-
tion [44]. In [7], HOG-TOP, acoustic and geometric features were combined, and multiple
kernel SVM was used for classification at the feature-level. On the contrary, in [46], both
audio and visual information were fused at the decision-level with a decision rule to identify
emotions. And in [13], towards the extracted SIFT and LBP descriptors, Gao et al. used the
improved DS-evidence theory for decision-level information fusion to improve the robust-
ness of face recognition in complex conditions. In general, system performs excellently
when combining multiple complementary features.

3 Proposedmodel

This section presents the detailed methodology of our proposed framework, including three
types of feature descriptors (I-LBP-TOP, GMF, ST-GF) and a classification method for
multi-feature fusion at the decision-level. As illustrated in Fig. 2, the process of the proposed
FER system includes following steps: (1) for the preprocessed image sequence, extracting
LBP histograms on XT and YT planes and combining with LBP histograms on XY plane
of peak image to generate I-LBP-TOP descriptor; (2) employing Gabor operator to extract
GMFs from preprocessed peak image; (3) utilizing facial key points for the sampled image
sequence to obtain ST-GF; (4) for the above three features, three SVM base classifiers are
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Fig. 2 Overview of our proposed framework for FER

trained, and the final classification result of an unknown sample is determined by MV strat-
egy of the base classifiers. The detailed algorithms of the framework are in the following
sections.

3.1 Texture and Spatial-Temporal Motion LBP Descriptor

The LBP is a descriptor for extracting local texture features, which calculates the pixels in
an image successively. For each pixel in the image to be processed, the neighboring pixels
are thresholded to generate a binary code that is usually converted to a decimal number to
represent the LBP value of the central pixel. It reflects the texture information of local neigh-
borhood (see Fig. 3 for an illustration). In this way, each pixel in the picture is redistributed
according to the values of its neighboring pixels to obtain the LBP feature.

Fig. 3 The Original LBP descriptor
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Denoting by gp the pth neighboring pixel of the central pixel gc, by P the total number
of all involved neighbors and by R the radius of the neighborhood, the calculation method
of the original LBP descriptor is given in (1).

LBPP,R =
P−1∑

p=0

s1(gp, gc)2
p, (1)

where the function s1 can be formulated as follows:

s1(x, y) =
{
1 if x − y ≥ 0

0 otherwise
. (2)

The LBP maps involve the local information, while their statistical histograms are uti-
lized as feature vectors to take global information into consideration. For an image of size
M × N , the histogram after LBP encoding can be defined as:

H(i) =
M∑

m=1

N∑

n=1

s2(LBPP,R(m, n), i), ∀i ∈ [1, I ], (3)

where the function s2 is defined as:

s2(x, y) =
{
1 ifx − y = 0

0 otherwise
, (4)

where i is the number of patterns after LBP mapping and I is the maximal LBP pattern
value. Note taht 59-dimensional histogram of uniform pattern is adopted in this paper.

The co-occurrences on XT and YT planes of LBP-TOP are applied concerning both
the spatial and temporal domain information. It is known that a single frame is a two-
dimensional plane and a video sequence is a three-dimensional volume. Accordingly, a
video sequence can be considered as a stack of XY planes in the temporal dimension T, and
similarly for XT and YT planes but in the axis Y and X, respectively. Figure 4 shows a 33-
frame images sequence and its corresponding example images from three planes. Figure 4a

Fig. 4 The example images in XY, XT and YT planes. (a) Image in the XY plane (128×256) in t = 8. (b)
Image in the XT plane (128×33) in y = 128. (c) Image in the YT plane (33×256) in x = 64
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shows the frontal face image of frame 8 in the XY plane, while Fig. 4b and c describe
the top and side views of the volume, both of which give the visual impression of motion
changing in temporal space. The LBP histograms obtained from image sequence on XY,
XT and YT planes are represented by HXYseq , HXTseq and HYTseq , respectively. Then a sin-
gle histogram is derived by the concatenation of these statistical histograms corresponding
to separate planes. Figure 5 demonstrates the procedure of the LBP-TOP feature extraction
for a block. The final histogram can be formulated as follows:

H = (H 1, H 2, H 3),

Hj (i) =
∑

x,y,t

s2(LBPP,R(x, y, t), i), ∀i ∈ [1, I ], (5)

where LBPP,R(x, y, t) represents the LBP code of the central pixel in the j th plane, where
j = 1, 2, 3 denotes the XY, XT, YT planes respectively. In the block-based approach, the
histogram of each block volume needs to be cascaded to obtain the final feature vector.

However, in FER, these three planes of LBP-TOP contribute differently for feature
expression, and not all components are of equal importance. Compared with XT and YT
planes, the features extracted from the XY plane contribute less. The HXYseq is achieved
from neutral face to emotional face of dynamic sequence, while the neutral face does not
contain the corresponding expression information, which may weaken the feature expres-
sion ability of HXYseq . In contrast, HXTseq and HYTseq explain more about the movement of
facial muscles.

Similar to [59], HXYseq is abandoned, and the joint HXTseq and HYTseq construct spatial-
temporal motion LBP features. However, unlike in [59], we utilize the LBP histogram of
the peak frame instead of Gabor multiorientation fusion histogram to enhance spatial tex-
ture information. On the one hand, this is because compared with Gabor multiorientation
fusion histogram, the LBP histogram has lower calculation expense and can make up for
the deficiency of the original LBP-TOP descriptor in XY plane. On the other hand, with the
uniform pattern coding, the dimension of LBP histogram is the same as that of the LBP-
TOP histogram in single plane, both of which are 59 dimensions. In this paper, we combine
the LBP texture feature of the peak frame (HXY ) with the spatiotemporal motion feature of
image sequence, which is called I-LBP-TOP descriptor. The detail of I-LBP-TOP algorithm
is presented in Algorithm 1.

Fig. 5 LBP-TOP histogram of a block volume. (a) Block volume. (b) LBP histogram from three planes
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3.2 Gabor magnitude descriptor

Gabor transform can analyze the gray changes of images in multi-resolution and multi-
orientation effectively and thus is capable of solving the problem of different expressions
with different scales. Meanwhile, it has good properties for information extraction in local
spatial and frequency domain. Based on the above advantages, Gabor feature has been suc-
cessfully applied in the field of FER. For point z = (x, y), the 2-D Gabor filter commonly
used is defined as follows:

G(u,v)(z) = ||ku,v||2
σ 2

exp

(
−||ku,v||2||z||2

2σ 2

)
×

[
exp(iku,vz) − exp(−σ 2

2
)

]
(6)

where ku,v = kve
iφu , kv = kmax/λ

v , and φu = πu/8, kmax is the maximum frequency, λ is
the spacing factor between filters in the frequency domain, u, v corresponds to the direction
and scale of Gabor filter, respectively, and || · || is the norm descriptor.

The Gabor representation of an image is the convolution of image I (z)with Gabor filters,
where five scales and eight orientations are used:

Fu,v(z) = I ∗ Gu,v(z), (7)

where u ∈ {0, 1, · · · , 7}, v ∈ {0, 1, · · · , 4} and ∗ stands for the convolution operator. It
should be noted that the coefficients of the Gabor wavelet are complex, hence the response
Fu,v of a Gabor filter is complex. Unlike the Gabor phase information of the transform
which is time-varying, the magnitude of Gabor response is relatively smooth and stable. As
a consequence, we exploit the magnitude of the response Fu,v to yield the Gabor feature. In
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Fig. 6 The example of Gabor wavelet transformation. (a) Real part of Gabor kernel. (b) 40 Gabor magnitude
pictures

this paper, we generate 40 Gabor magnitude maps for each individual face image by Gabor
wavelet transformation. An example of the Gabor wavelet transformation with five scales
and eight orientations is given in Fig. 6.

3.3 Geometric descriptor

Facial expression not only encompasses the objective appearance and shape information,
but also involves the unexpected identity characteristics of different subjects. The advan-
tage of facial key points features is that they are not influenced by person identity such as
face shape, gender, age, race and illuminance in the input video. Accordingly, we employ
the facial key points as a geometric feature in this paper. The major task is to locate the
key points from the face, including the corners of the eyebrows, eyes, mouth and nose in an
image. It is encouraging that there have been many mature algorithms for facial key point
detection [19] and face alignment [41], which are widely used in expression recognition,
face tracking and face recognition. We utilize Supervised Descent Method (SDM) algorithm
to locate the 49 key points of a face [52]. The coordinates of the facial image with emotion
are shown in Fig. 7. As depicted in Fig. 7, no matter the same person, different women or
men, the coordinates of the same expression are very similar according to columns. Fur-
thermore, the coordinates of different expressions do have a great difference according to
rows, especially the mouth, eyes and eyebrows, which proves that the key points of the
face can remove the common underlying structure for the face images and extract the shape
attributes of expressions effectively. Therefore, we have adequate grounds to take the coor-
dinates of these 49 facial key points as geometric feature. Supposing that (xi, yi) represents
the coordinates of the i-th facial landmark, a set of facial landmarks can be expressed as (8):

Ve = [x1, y1, x2, y2, · · · , xn, yn], n = 49, (8)

where Ve is the geometric vector of emotion e. Then, the coordinates of X and Y axis are
standardized with the mean value of 0 and the variance of 1 respectively which transforms
them to dimensionless pure values. As a consequence, a total of 98-length coordinates are
constructed to represent the geometric feature. The extracted 98-length vector is learned
through the multi-kernel SVM and achieves high recognition accuracy.
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(a) The coordinates with the six basic expressions of a person.

(b) The coordinates with the six basic expressions of different women.

(c) The coordinates with the six basic expressions of different men.

Fig. 7 The coordinates of facial expression images

As we all know, facial expression can be considered as a dynamic process, in which
the same facial key point will produce relative displacement between frames. Therefore,
the change of neutral face to expressive face in time dimension can be described by the
trajectory of facial key points. To obtain the trajectory data and relative position information
of the facial key points simultaneously, we consider extending the above GF descriptor to
time dimension. Specifically, the original image sequence is normalized to a fixed length:
L. Then the GFs of the L frames are concatenated into a one-dimensional vector, which is
represented by V . Consequently, the ST-GF descriptor can be calculated as follows:

V =
[
V 1
e , V 2

e , · · · , V L
e

]
(9)

3.4 Classification

Classification is the process of training features to get the optimal mapping model between
features and tags, and realizing the correct prediction of unknown samples. SVM is consid-
ered as one of the most effective and robust classifier for FER due to its following properties:
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(1) a good balance between model complexity and generalization error and (2) a capabil-
ity to deal with high dimensional data. We denote by {(xi, yi), i = 1, ..., L}, xi ∈ Rn, and
yi ∈ {−1, 1} a set of training data with labels. A new test data x is classified by

f (x) = sign

(
L∑

i=1

αiyiK(x, xi) + b

)
, (10)

where αi are Lagrange multipliers of a dual optimization problem, describing the separated
hyper-plane, b is a bias, and K(·, ·) is a kernel function. For linear separable data, SVM
finds a hyperplane to maximizes the margin with respect to support vectors. For nonlinear
data, the processing method of SVM is to map the data into a higher dimensional space by
selecting appropriate kernel function. Among various kernel functions, the most frequently
used are polynomial and radial basis function (RBF) kernels. However, different feature
vectors have different dimensions and are of different importance for recognition. It is dif-
ficult to ensure that the parameters and kernel functions are suitable for all feature vectors
when performing SVM. On this condition, multiple kernel learning (MKL) is also a good
choice, which employs a convex combination of multiple kernels to substitute for the single
kernel:

K(x, x′) =
M∑

m=1

dmKm(x, x′),

s.t . dm ≥ 0,
M∑

m=1

dm = 1, (11)

where M is the total number of kernel functions and Km represents basic kernel function.
Since SVM is a typical binary classifier, for multi-class problem, the one-vs-one and

one-vs-rest approaches are simple but effective technique. In our study, we adopt one-vs-
one method to deal with the six-class problem. In this strategy, SVM is trained between any
two types of samples and 15 binary SVM classifiers need to be designed.

3.5 Multi-feature fusion at decision-level

According to the different stages of feature fusion, it is mainly divided into feature-level
fusion and decision-level fusion. Feature-level fusion is performed before classification,
which concatenates multiple features directly or according to weight ratio to form high-
dimensional feature vectors. On the contrary, decision-level fusion is carried out after
classification, and the final category of sample is determined by MV strategy of ensemble
learning. We utilize feature-level fusion method to deal with features with small differences,
such as I-LBP-TOP descriptor, while for multiple types of features, decision-level fusion
method is adopted.

As proved by Bonab et al. [4], the MV strategy of ensemble learning combines multiple
classifiers to obtain at least equal to the average performance of all individual components.
Based on the above theory, We train three SVM base classifiers for three different types of
features (I-LBP-TOP, GMF, ST-GF), and the predicted results are combined through MV.
In the testing phase, for each sample x, the method of calculating the MV is as follows:

H(x) = cκ , κ = argmax
j

{
T∑

t=1

ht
j (x)

}
, (12)
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Fig. 8 Flow chart of our proposed FER system

where T is the number of base classifiers, ht
j (x) ∈ {0, 1} denotes the class tag, if ht

predicts sample x as class c, the value is 1, otherwise it is 0. When an unknown sample is
classified, the category with the largest number of votes is the final classification result.

4 Experimental results

To evaluate the performance of our proposed model, we perform experiments on the CK+
and Oulu-CASIA facial expression databases. The details of the experiments and results are
shown below. They are based on Windows OS with CPU Intel Core (TM) i5-1035G1 and
16GB of RAM. The feature extraction phase is based on the MATLAB platform of version
R2019a. In addition, the design of classifier uses Shogun toolbox, which is based on Python
platform of version 3.6. In order to test the predictive performance of our model, we take the
leave-one-out cross validation. In this method, all the expression of each face can be used
as a test set, which is very commonly used in expression recognition. Besides, the 10-fold
cross validation is also used on CK+ database to compare with the existing methods. As
shown in Fig. 8, our proposed FER system comprises the following stages: pre-processing,
feature extraction, classification and feature fusion.

4.1 Facial expression databases and preprocessing

The extended Cohn-Kanade (CK+) database is an effective and general database to ver-
ify expression recognition system [35]. The expression sequence of this database starts
from neutral expression and gradually changes to the peak of expression. It contains 593
video sequences from 123 individuals between the age of 18 and 30, while only 327 facial
expression sequences are labeled with seven universal emotions (anger, contempt, disgust,
fear, happiness, sadness, and surprise). Most of the papers have abandoned the contempt
expression because of its small amount of data (only 18 expression sequences). In order to
facilitate the comparative experiments, we select 309 facial expression sequences with six
basic expressions, excluding contempt.

The Oulu-CASIA database is another widely used video based database, which contains
six basic expressions from 80 subjects of 23 to 58 years old (a mix of male/female and
glasses/without glasses) [56]. Facial expressions are captured by a VIS camera under three
different light conditions: normal, weak and dark. Similar to the CK+ database, all expres-
sion sequences are also changing from neutral to peak of emotion. We evaluate our model
with 480 sequences (80 subjects by six expressions) in the normal illumination condition.
The face sequence samples of CK+ and Oulu-CASIA databases are illustrated in Fig. 9.
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(a) Samples of happy expression sequence in CK+ database.

(b) Samples of happy expression sequence in Oulu-CASIA database.

Fig. 9 Samples of expression sequence

It should be noted that in the process of collecting expression data, the acquired facial
image can be tilted inevitably due to the change of facial muscles or head deflection. Hence,
it is necessary to align any in-plane rotation so that the eyes are on the same horizontal
line to optimize the recognition performance. After getting enough aligned samples, we
note that even if the images come from benchmark facial expression databases, there is too
much background information independent of expression. Accordingly, face detection and
normalization are applied to remove the irrelevant information and improve the quality of
subsequent feature extraction and recognition for FER [20, 21]. Support that the distance
between the pupils of two eyes is d, the height and width of the cropped image are 2.25× d

and 1.2 × d based on the middle position of the pupils of two eyes, as shown in Fig. 10.
These factor values are determined empirically [34]. Finally, in CK+ database, for the LBP
feature, the cropped face is normalized to 256 × 128, while for the Gabor feature, it is
normalized to 112 × 96 to reduce dimensions. Since the original image pixels of the Oulu-
CASIA database are low, only 320 × 240, the cropped face is normalized to 112 × 64 and
64 × 48 respectively for the above two features.

4.2 The effect of block numbers and overlapping ratio on I-LBP-TOP descriptor

First of all, we perform experiments on CK+ database to determine the appropriate number
of blocks and whether to use overlapping blocks for I-LBP-TOP descriptor. We can learn
from the previous researches that too few blocks could make the extracted features insuffi-
cient to get terrible accuracy, while a large number of blocks may also lead to the problem
of too high feature dimensions, increasing time complexity and decreasing accuracy. What

Fig. 10 The original image and the image normalized to 256 × 128 after cropping on CK+ database
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Fig. 11 Recognition rate of I-LBP-TOP descriptor according to the block size and whether performing
overlapping ratio of 80% on CK+ database, where the black circle means the best result

is more, the overlapping ratio of 80% of original image has been shown to obtain the best
result. Figure 11 shows how the accuracy of expression recognition varies with the num-
ber of blocks. Assume that the overlapping ratio of 80% of original image is represented by
‘1’, and non-overlapping block is represented by ‘0’. Then ‘00’ indicates that both the HXY

and H(XT +YT )seq features are not overlapped; ‘01’ means: the HXY feature performs with-
out overlapping, while H(XT +YT )seq feature performs 80% overlap; ‘11’ represents both the
HXY and H(XT +YT )seq features with an overlapping ratio of 80%; and ‘10’ indicates that
the blocking method with an overlapping ratio of 80% is adopted by HXY , whereas the
H(XT +YT )seq feature does not.

It can be found that the best result is obtained with 8 × 5 blocks, and a small or a large
value of blocks will degrade the recognition performance. Consequently, 8 × 5 blocks are
selected for all facial images. Besides, for spatial-temporal LBP histogram, we adopt the
overlapping ratio of 80% of original block, whereas for LBP histogram of the peak frame,
the non-overlapping blocks are used to obtain more position information.

4.3 Comparison of I-LBP-TOP with original LBP-TOP and other components

Secondly, we separate the LBP-TOP descriptor in three planes and investigate the perfor-
mance of LBP histogram of peak frame (i.e., HXY ), LBP histogram of three individual
planes (i.e., HXYseq , HXTseq , HYTseq ), pairwise combination of different plane components
(i.e., HXY+HXTseq , HXY+HYTseq , H(XY+XT )seq , H(XY+YT )seq , H(XT +YT )seq ), I-LBP-TOP
histogram and original LBP-TOP histogram on CK+ database. All the LBP descriptors are
coded with uniform patterns. Based on the 8 × 5 blocks division method, the obtained fea-
ture vector is 59× 8× 5 = 2360 dimensions, which is reduced to 308 dimensions by using
principal component analysis (PCA) [61].

We utilize ablation study to analyze the contribution of different components, as shown
in Table 1. The highest performance is obtained by combining the LBP histogram from
peak frame with the spatiotemporal LBP histogram, which is 3.56% higher than original
LBP-TOP descriptor. Compared with the LBP histogram of XY plane from image sequence
whose recognition rate is only 84.14%, the accuracy of LBP histogram from peak image
can reach 92.88%. We can conclude that the features extracted from XY plane of image
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Table 1 Ablation study of LBP histogram from either XY, XT, YT plane or their combination on CK+
database

HYTseq � � � � � �
HXTseq � � � � � �
HXYseq � � � �
HXY � � � �

Accuracy (%) 92.88 84.14 90.94 92.56 93.53 95.47 93.20 90.61 92.88 96.12 92.56

sequence are affected by a series of weak expressions (i.e., neutral expressions and changing
expressions) and cannot extract representative texture features. In addition, we can figure it
out that the LBP descriptor in XT and YT planes can effectively extract the spatiotemporal
information. The effect of YT plane is better than the other two planes, indicating that the
shape information in the vertical direction plays more important role than that in the hori-
zontal direction. The experimental results validate that our proposed I-LBP-TOP descriptor
has the ability to extract more effective spatiotemporal texture features.

In order to test the adaptability of LBP histogram components in different classifiers,
experiments are performed on K-Nearest Neighbor (KNN), Random Forest (RF), Artificial
Neural Networks (ANN) and SVM classifiers, as shown in Fig. 12. It can be seen from
the above figure that the change of recognition rate of each LBP histogram component has
basically the same tendency regardless of the classifiers involved. For instance, theHXY per-
forms much better than HXYseq and the recognition rate of I-LBP-TOP descriptor is always
higher than that of original LBP-TOP descriptor in all kinds of classifiers. Furthermore, we
also find that SVM is more suitable for our LBP histogram features compared with other
classifiers.

Fig. 12 The recognition rate of LBP histogram from either XY, XT, YT plane or their combination on KNN,
RF, ANN and SVM classifiers on CK+ database

2677Multimedia Tools and Applications (2023) 82:2663–2688



Table 2 Comparison results of GF and ST-GF descriptors

Descriptor Database AN DI FE HA SA SU Average (%)

GF CK+ 88.90 96.60 84.00 98.60 71.40 100.0 93.53

ST-GF CK+ 93.30 96.60 96.00 97.10 82.10 100.0 95.79

GF Oulu-CASIA 60.00 62.50 68.80 86.30 68.80 88.80 72.50

ST-GF Oulu-CASIA 66.30 61.30 67.50 91.30 70.00 92.50 74.79

In addition, we compare the computational speed of original LBP-TOP and I-LBP-TOP
descriptors on CK+ database. The computation time varies with the length of expression
sequence and the number of blocks. Under the same condition of expression sequence (19)
and block size (8 × 5), the computation time of original LBP-TOP is 3.96s, while that of
I-LBP-TOP is 3.27s. Moreover, when the length of expression sequence is set to 40, the
computation time of original LBP-TOP and I-LBP-TOP is 8.38s and 7.21s, respectively.
With the increase of sequence length and block number, the time superiority of I-LBP-TOP
descriptor is more obvious.

4.4 Evaluation of the proposed geometric descriptors

In this subsection, we analyze the validation and superiority of our proposed geometric
descriptors. As mentioned in Subsection 3.3, the dimensions of GF and ST-GF descriptors
are 98 and 98×L, respectively. In the experiment, L is set to 6 in CK + database and 9 in
Oulu-CASIA database, which is the minimum length of the image sequence. Table 2 shows
the comparison results of GF and ST-GF descriptors on two databases (CK + and Oulu-
CASIA). We can see that compared with the GF, the overall recognition rate of ST-GF is
increased, especially for angry and sadness. ST-GF can enhance GF and better capture the
subtle changes of those two expressions.

Furthermore, our proposed ST-GF is compared with other geometric feature extraction
algorithms on CK+ database, as illustrated in Table 3. The method [36] extracted geometric
features according to facial key regions. For eyebrows and lips, the coordinate differences
of key points among frames are calculated as displacement information, while for the
eye regions, the projection ratio of horizontal distance to vertical distance is utilized. In
[33], Euclidean distances of facial landmarks are put into graph-based network to obtain
DAUGN-G expression recognition model. And [50] employed Riemannian sparse coding
and dictionary learning to code shape trajectories of 2D facial landmarks. From the com-
parison results, it is witnessed that our proposed ST-GF achieves a superior performance,
which outperforms the geometric features in recent years.

Table 3 Comparison results of different geometric features on CK+ database

Reference Method Verification method Class Accuracy (%)

[36] (2018) Ratio+displacement information(SVM) 10-fold 6 93.50

[33] (2020) DAUGN-G 10-fold 6 93.55

[50] (2020) Extrinsic SCDL(Bi-LSTM) 10-fold 7 93.75

Ours ST-GF(SVM) Leave-one-out 6 95.79

10-fold 95.48
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4.5 Feature visualization

To further demonstrate the separability of the proposed features, we utilize T-Distributed
Stochastic Neighbor Embedding (t-SNE) [28] algorithm to visualize the feature vector
extracted by I-LBP-TOP, Gabor and spatiotemporal geometric descriptor, respectively. The
t-SNE algorithm is a useful visualization technique to convert high-dimensional data into
two space. Figure 13 shows the visualization results on CK+ database.

Figure 13(a) shows the random distribution of original input data, with various types of
samples mixed together. A total of 6 clusters is having, representing each facial expression.
It may be observed from Fig. 13(b)to 13(d) that our feature extraction method can effec-
tively distinguish six kinds of expressions to a certain extent. Particularly, the expressions
of surprise, happiness and disgust can be well clustered together in the same category.

4.6 The influence of feature fusion on expression recognition rate

Subsequently, we explore the effectiveness of combining I-LBP-TOP feature, GMF and
ST-GF at the decision-level. The above three features utilize SVM classifiers with their
appropriate kernel functions and save the prediction results separately. For each single sam-
ple, the three classifiers adopt the principle that a few obeys the majority to determine
the final category. If the prediction result of every classifier is different, a classification is
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(a) Visualization of original input data.
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(b) Visualization of features extracted by I-LBP-

TOP descriptor.
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(c) Visualization of features extracted by Gabor

descriptor.
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SA
SU

(d) Visualization of features extracted by spa-

tiotemporal geometric descriptor.

Fig. 13 The visualization results on CK+ database
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Table 4 Confusion matrix of I-LBP-TOP feature on CK+ database

Expression AN DI FE HA SA SU

AN 97.80 0 0 0 2.20 0

DI 1.70 96.60 0 1.70 0 0

FE 0 0 84.00 8.00 8.00 0

HA 0 0 0 100.0 0 0

SA 17.90 0 0 0 82.10 0

SU 0 0 0 0 0 100.00

Average 96.12

Table 5 Confusion matrix of GMF on CK+ database

Expression AN DI FE HA SA SU

AN 88.90 2.20 2.20 0 6.70 0

DI 0 100.00 0 0 0 0

FE 4.00 0 72.00 12.00 4.00 8.00

HA 0 0 2.90 97.10 0 0

SA 10.70 0 0 0 89.30 0

SU 0 0 0 0 0 100.00

Average 95.15

Table 6 Confusion matrix of ST-GF on CK+ database

Expression AN DI FE HA SA SU

AN 93.30 2.20 2.20 0 2.20 0

DI 1.70 96.60 0 0 1.70 0

FE 0 0 96.00 0 0 4.00

HA 0 0 2.90 97.10 0 0

SA 14.30 3.60 0 0 82.10 0

SU 0 0 0 0 0 100.00

Average 95.79

Table 7 Confusion matrix of hybrid feature at decision-level on CK+ database

Expression AN DI FE HA SA SU

AN 100.00 0 0 0 0 0

DI 0 100.00 0 0 0 0

FE 0 0 100.00 0 0 00

HA 0 0 0 100.00 0 0

SA 7.10 0 0 0 92.90 0

SU 0 0 0 0 0 100.00

Average 99.35
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randomly selected as the final result. Tables 4, 5, 6 and 7 shows the classification accu-
racy obtained by applying I-LBP-TOP feature, GMF, ST-GF and hybrid feature on CK+
database, respectively. The horizontal axis represents a predicted class among six emotions,
and the vertical axis represents the target class which is the correct label.

From the results in the table, we observe that fear and sadness are the most confused
expressions. On the one hand, because of the relatively small sample numbers of these
two expressions, it is difficult to extract a group of features that reveal the internal rules.
On the other hand, the slight dynamic variations of facial critical areas for both fear and
sadness create more difficulties to distinguish them clearly. Moreover, anger and sadness
tend to be identified with each other incorrectly, which may be due to their similar mouth
motion. As shown in Fig. 14, it is difficult to accurately distinguish some expressions even
for human. However, happiness and surprise can be easily recognized with an accuracy of
nearly 100%, which is attributed to their relatively large muscle deformations and drastic
changes in appearance.

Fig. 14 Failed cases in CK+ database. (a) Expressions are mislabeled as Disgust from Anger. (b) Expressions
are mislabeled as Sad from Anger. (c) Expressions are mislabeled as Anger from Sad
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Fig. 15 Comparison of recognition rate between single feature and hybrid feature

According to the results illustrated in Fig. 15, we note that there is always a descrip-
tor that performs better than the others when identifying a certain type of expression. For
instance, the I-LBP-TOP descriptor is better at identifying anger; GMFs have greater advan-
tages in recognizing disgust and sadness; and ST-GFs have the best recognition rate for fear.
When merging at decision-level, the recognition rate of each expression can be improved
owing to the different dominant expressions of these three descriptors.

Table 8 presents the comparison results of different methods on CK+ database. Fan et al.
[11], Zhao et al. [59], Chen et al. [7], Bougourzi et al. [5], and Shanthi et al. [48] all
used multiple hand-crafted feature fusion methods to evaluate the performance of model.
Even compared with the recent convolutional neural network framework proposed by Yang
et al. [53] and Kim et al. [27], our proposed traditional hand-crafted features perform bet-
ter with the same 10-fold cross validation. Experimental results illustrate that fused features
at decision-level are further enhanced based on the individual feature, achieving a final

Table 8 Comparison results of our proposed method and other seven methods on CK+ database

Reference Method Verification method Class Accuracy(%)

[11] (2015) PHOG-TOP+dense flow (handcrafted) Leave-one-out 7 83.70

[59] (2017) LBP-XT+LBP-YT+Gabor (handcrafted) Leave-one-out 6 95.80

[7] (2018) HOG-TOP+Geometric (handcrafted) Leave-one-out 7 95.70

[5] (2019) PCA-fusion (handcrafted) Leave-one-out 6 95.97

[48] (2020) LBP+LNEP (handcrafted) 10-fold 6 97.86

[53] (2017) WMDNN (ML-based) 10-fold 6 97.02

[27] (2019) Hierarchical DNN (ML-based) 10-fold 6 96.46

[38] (2019) FAN (ML-based) 10-fold 7 99.70

Ours Feature fusion (handcrafted) Leave-one-out 6 99.35

Feature fusion (handcrafted) 10-fold 98.71
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Table 9 Comparison results of our proposed method and other four methods on Oulu-CASIA database

Research Method Accuracy (%)

[31] (2014) STM-ExpLet (handcrafted) 74.59

[49] (2015) Exemplar-HMM (handcrafted) 75.62

[59] (2017) LBP-XT+LBP-YT+Gabor (handcrafted) 74.37

[5] (2019) PCA-fusion (handcrafted) 79.99

[39] (2019) dynamic MTL (ML-based) 89.60

Ours Improved LBP-TOP (handcrafted) 75.63

Gabor (handcrafted) 69.58

Geometric (handcrafted) 74.79

Feature fusion (handcrafted) 80.63

recognition rate of 99.35% on CK+ database. Our whole approach outperforms other well-
known algorithms, which reveals its effectiveness and advancement in processing dynamic
expression sequences.

In addition, to further demonstrate the reasonability of our proposed method, the Oulu-
CASIA database is also used to provide quantitative comparisons with several methods
in other papers. The comparison results are shown in Table 9. The performance of our
proposed method on Oulu-CASIA database is inferior to CK+ database. In particular, the
Gabor feature of peak frame performs poorly. The main reason for the poor accuracy is
that the expression changes of some peak frames are relatively small and the resolution
of original image is low. However, the proposed method still outperforms the other four
methods based on hand-crafted features. According to Tables 8 and 9, although the best
result is the machine learning based(ML-based) method, it can not be ignored that it also at
the expense of a large amount of calculation and high hardware cost.

4.7 Evaluation of computational time

In the experiment, we examine the computational cost of our proposed method and LBP-
TOP on CK+ and Oulu-CASIA databases. Table 10 shows the average computational time
of feature extraction (Matlab platform) and classification (Python platform). Although the
feature extraction time on CK+ database is longer than that of Oulu-CASIA database
because of its high resolution, the classification time is faster. The feature extraction time

Table 10 Computational cost of our proposed method and LBP-TOP on CK+ and Oulu-CASIA databases

Descriptor Feature extraction time (s) Classification time (ms)

CK+ Oulu-CASIA CK+ Oulu-CASIA

I-LBP-TOP 3.070 0.960 0.51 0.98

LBP-TOP 3.830 1.040 0.69 1.00

GMF 0.079 0.047 0.70 0.95

GF 0.074 0.053 0.44 0.79

ST-GF 0.465 0.496 0.31 0.54

Hybrid feature 3.614 1.503 1.61 2.48
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Table 11 Comparing the influence of SVM Kernel function on individual descriptor

Kernel I-LBP-TOP (%) GMF (%) ST-GF (%)

Polynomial 96.12 95.15 95.47

RBF 26.86 26.86 94.17

MKL 93.53 94.50 95.79

of I-LBP-TOP, LBP-TOP and ST-GF comes from each image sequence, so it is more
time-consuming than single frame. Compared to LBP-TOP, our proposed I-LBP-TOP
descriptor shorten the runtime effectively. Moreover, the proposed geometric descriptor
takes the minimum amount time in both feature extraction and classification, showing
the potential for real-time implementation. Significantly, GMF is calculated by using
construct Gabor filters PhD.m and filter image with Gabor bank PhD.m function in PhD
toolbox. Even if per image is amplified to 40 Gabor amplitude images, the calculation speed
is still very fast in feature extraction stage. Based on the experimental results, although com-
putational cost of fused method is close to the sum of multiple single features, its remarkable
performance for FER cannot be ignored.

4.8 A selection of SVM kernel function

Ultimately, we evaluate the appropriate SVM kernel function for each individual descriptor,
as shown in Table 11. Since our data is linearly inseparable, we only verify the effects of
the polynomial kernel function, RBF kernel function, and MKL on classification accuracy,
where MKL stands for multiple kernel learning and is a linear combination of polynomial
and RBF kernel function.

Obviously, the choice of SVM kernel function plays a critical role in the performance
of classification. We find that the use of a RBF kernel function is better than a polynomial
kernel function in the case of fewer feature dimensions. On the contrary, the polynomial ker-
nel function is more effective when the feature dimensions are large. RBF kernel function
works better for ST-GF whose dimensions (from 98×6 reduced to 282) are less than sample
numbers (309). However, when the original dimensions of I-LBP-TOP and Gabor features
are much larger than 309, the polynomial kernel function performs better. In addition, the
representation ability of MKL is not always optimal. If the performance of single kernel
function is not poor, the effect of their combination may be enhanced. For instance, the poly-
nomial kernel function and RBF kernel function have the accuracy of 95.47% and 94.17%
on ST-GF, respectively, accordingly the MKL obtains the best result with the accuracy of
95.79%.

5 Conclusion

In this paper, we present an efficient facial expression recognition framework combing
I-LBP-TOP, GMF and ST-GF at the decision-level for more accurate and competitive clas-
sification. The I-LBP-TOP descriptor can extract not only dynamic texture features, but
also static texture features to characterize facial appearance changes. The adopted GMF can
obtain the orientation and scale information effectively. In addition, the proposed method
that directly utilizes the facial key points as geometric feature achieves simple calcula-
tion and high recognition accuracy. In the fusion strategy at decision-level, each descriptor
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has the same weight and the advantages are fully exerted to boost the performance of
recognition.

Experiments performed on the CK+ and Oulu-CASIA facial expression databases con-
firm that the superiority of the proposed approach over other existing methods. Our
proposed hybrid feature has reached the improved performance on 6 basic expressions
with an average recognition rate of 99.35% on CK+ database and 80.63% on Oulu-CASIA
database. Nonetheless, there is still room for further improvement in the accuracy of our
algorithm in identifying fear and sadness. In the future, we will consider using data aug-
mentation methods to increase the sample size of fear and sadness to solve the problem of
sample imbalance, and develop more powerful structures to simulate the movement of facial
critical areas from videos. Further, robust features need to be designed to resist head pose
variation, occlusion, illumination effect in real-time environment.
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57. Zhao G, Pietikäinen M (2006) Dynamic texture recognition using volume local binary patterns. In:
Dynamical vision. Springer, pp 165–177

58. Zhao G, Pietikainen M (2007) Dynamic texture recognition using local binary patterns with an
application to facial expressions. IEEE Trans Pattern Anal Mach Intell 29(6):915–928

59. Zhao L, Wang Z, Zhang G (2017) Facial expression recognition from video sequences based on spatial-
temporal motion local binary pattern and gabor multiorientation fusion histogram. Math Probl Eng,
vol 2017

60. Zheng Q, Tian X, Yang M, Su H (2019) The email author identification system based on support vector
machine (svm) and analytic hierarchy process (ahp). IAENG Int J Comput Sci 46(2):178–191

61. Zheng Q, Tian X, Yang M, Wu Y, Su H (2019) Pac-bayesian framework based drop-path method for 2d
discriminative convolutional network pruning. Multidim Syst Sign Process:1–35

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

2687Multimedia Tools and Applications (2023) 82:2663–2688



Affiliations

Ruyu Yan1 ·Mingqiang Yang1 ·Qinghe Zheng1 ·DeqiangWang1 ·Cheng Peng1

� Deqiang Wang
wdq sdu@sdu.edu.cn

Ruyu Yan
yan17860779713@163.com

Qinghe Zheng
15005414319@163.com

Cheng Peng
chengpeng8169@163.com

1 School of Information Science and Engineering, Shandong University, Qingdao, Shandong 266237,
China

2688 Multimedia Tools and Applications (2023) 82:2663–2688

http://orcid.org/0000-0002-5598-8357
mailto: wdq_sdu@sdu.edu.cn
mailto: yan17860779713@163.com
mailto: 15005414319@163.com
mailto: chengpeng8169@163.com

	Facial expression recognition based on hybrid geometry-appearance and dynamic-still feature fusion
	Abstract
	Introduction
	Related work
	Static image based approaches
	Dynamic image sequence based approaches
	Multi-feature fusion based approaches

	Proposed model
	Texture and Spatial-Temporal Motion LBP Descriptor
	Gabor magnitude descriptor
	Geometric descriptor
	Classification
	Multi-feature fusion at decision-level

	Experimental results
	Facial expression databases and preprocessing
	The effect of block numbers and overlapping ratio on I-LBP-TOP descriptor
	Comparison of I-LBP-TOP with original LBP-TOP and other components
	Evaluation of the proposed geometric descriptors
	Feature visualization
	The influence of feature fusion on expression recognition rate
	Evaluation of computational time
	A selection of SVM kernel function

	Conclusion
	References
	Affiliations


