
Acquisition super resolution from infrared images using
proposed techniques

H. I. Ashiba1

Received: 7 July 2020 /Revised: 8 April 2021 /Accepted: 23 May 2022 /

# The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
This paper suggests three novel proposed techniques for super resolution (SR) infrared
(IR) images. The first algorithm is relied on the image acquisition model, which considers
benefits of the sparse representations of low resolution (LR) and high resolution (HR)
patches using Bi-cubic interpolation and minimum mean square error (MMSE) estima-
tion. This estimation in HR image prediction stage providing a scheme can be interpreted
as a feed forward neural network. The second scheme is based on up-sampling for IR
images using Second Kernel Lanczos Interpolation (SKLI).The third scheme is depended
on up-sampling for IR images using Third Kernel Lanczos Interpolation (TKLI).This
technique is typically used to increase the sampling rate of a digital signal, or to shift it by
a fraction of the sampling interval.
The performance metrics are Peak Signal-To-Noise Ratio (PSNR) and computation time.
Simulation results prove that the success of three presented techniques in acquisition high
resolution of SR IR images. By comparing the three presented algorithms with Regular-
ized Interpolation (REI) and least squares Interpolation (LSI) schemes of IR images. It is
clear that the second suggested technique gives superior than REI and LSI schemes from
point views PSNR and computation time. On the other hand the third presented technique
is the best algorithms from point views PSNR and computation time to other techniques.

Keywords IR images . SR . SKLI . REI . LSI . Neural network . TKLI

1 Introduction

Image interpolation is an essential tool for image processing scientists to acquire a HR image
from a LR one. The motivation for the research in this field of image processing is the inability
of most imaging sensors to attain the required HR image at a moderate cost [2, 14]. The
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application of image interpolation in the field of IR image processing is a promising trend, as
IR images usually have low resolutions [15, 23]. Traditional kernel-based image interpolation
algorithms have been broadly studied. Most of the exploration in these kernel-based tech-
niques was to obtain the best interpolation basis functions [9, 21, 22, 30].

Splines, keys and o-moms are the most common families utilized to deduce the best
interpolation basis functions. These conventional methods are space-invariant and do not
consider the spatial activity of the picture to be interpolated [25, 30, 35]. They also are not
the mathematical model of the imaging process with a specific type of sensors. Spatially-
adaptive kernel depended on techniques, for example the warped-distance method, have been
developed [6, 29]. Although these adaptive methods improve the quality of the interpolated
image, especially, near edges, they still do not take into consideration the image capturing
mathematical model. The entire kernel-based algorithms and their adaptive variants can be
considered as signal synthesis algorithms [3, 6].

This paper drives its motivation and importance through the research topic and nature of
images used. The rapid and massively increasing development of Image processing technol-
ogies makes the acquiring of SR image is a research hotspot with a very wide range of
applications [5, 17] moreover applying SR techniques on a difficult nature images like IR
images makes it very challenging. The main challenge of acquiring a HR image directly
through an IR camera is the manufacturing difficulty, materials properties and imaging
environment. Although some researches offers designs to enhance the scanning parts such
as [4, 12, 24]. The method that offered the enhancement based on IR optical system by using
four different angles plate refractors placed in parallel inside the device is shown in [7, 8, 13].
It stills application limited due to fabrication complexity, size, cost and other manufacturing
challenges [20, 26].

Those researches drives to acquire HR IR image from a one or more LR images using HR
techniques [27, 32] .Offering three categories techniques based on image processing technol-
ogies interpolation [4, 5, 17], reconstruction [4, 12, 24] and learning. Interpolation techniques
are the earliest and the most essential tool in image processing although the reconstructed
image don’t satisfy the required quality, while reconstruction techniques offers a pretty stage in
image enhancement that assumes the LR image is a result of degradation models such as noise,
distortion, blurring and down sampling but still the need of prior knowledge to accurately
obtain HR images from LR one. Learning techniques represents the new era in image
processing resulting a satisfying results without the need of prior knowledge as it gets the
needed knowledge by studying the relationship between LR and HR images through a pre-
learned dataset of LR and HR image patches which means more processing at the initial setup
in the learning stage [27, 32, 33].

Applying SR techniques on IR images is a very interesting newly growing research topic
that researchers are offering different methods most are based on learning techniques in
different ways [19, 34]. One of the methods [27] offers the learning stage through combining
the information from visible images and IR images as images from different sensors carries
complementary information for the same scene, another method [33] offers the reconstruction
of SR image based on the sparse representation of images offering a pair of dictionaries where
HR and LR patches share the same sparse representation, another add on is the using of
compressed sensing (CS) [10, 11, 19, 34] making benefits of working with the CS framework
[1, 16, 18, 28, 31] to solve the sparsity reconstruction problem.

This research submits three novel models for IR images. The first technique is based on
image SR techniques that are used for resolution enhancement of LR images by estimating an
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HR image from one or more LR images. This suggested technique used to give more details
and enhanced visibility with SR image from LR one provides a pure big data processing model
with respect to the data size nowadays. The second scheme is based on interpolation for IR
images using SKLI. The third scheme is depended on up-sampling for IR images using TKLI.

The organization of the paper as follows: Section 2 gives motivations and related work.
Section 3 explains acquisition methods. Section 4 explains REI. Section 5 explains LSI of IR
images. Section 6 explains the SR applied to IR images. Section 7 presents the first presented
scheme. Section 8 presents the second presented scheme. Section 9 presents the third presented
scheme. Section 10 gives the simulation results. Finally, Section 11 gives the concluding
remarks.

2 Motivations and related work

The rapid and massively increasing development of image processing technologies
makes the acquisition of SR images a hot research topic with a very wide range of
applications [3, 6, 17, 29]. Moreover, applying SR techniques on low-quality images
like IR images makes it very challenging. The main limitation to acquiring an HR
image directly through an IR camera is the manufacturing difficulty, materials proper-
ties, and imaging environment. Some researches offered designs to enhance the scan-
ning section of the IR imaging system [4, 5, 8, 12, 13, 24]. These designs offered
enhancement schemes using four different-angle plate refractors placed in parallel inside
the device. This design is still application limited due to fabrication complexity, size,
and cost.

The manufacturing challenges directed research towards the acquisition of HR IR
images from one or more LR images using SR techniques [7, 20, 26, 27, 32]. The SR
acquisition techniques can be classified into three categories; interpolation techniques,
reconstruction techniques and learning techniques. Interpolation techniques are the ear-
liest and the most essential methodologies adopted for SR acquisition, but they give
images with low quality [4]. On the other hand, reconstruction techniques provide better-
quality images by assuming that the LR image is a result of a degradation model
comprising noise, distortion, blurring, and down-sampling, but there is still a need for
prior knowledge to accurately obtain HR images from the LR ones. Learning techniques
represent a new era in image processing resulting in satisfactory results without the need
for prior knowledge about the LR degradation model. So, the concepts of learning are
adopted in this paper [19, 33, 34].

Applying SR techniques on IR images is a very interesting and growing research
topic, and researchers offer different methods for SR acquisition from IR images based
on learning techniques [19, 27, 33, 34]. One of the methods [27] offers the learning stage
through combining the information from visible and IR images as images from different
sensors carrying complementary information for the same scene. Another method [33]
presents the reconstruction of SR images based on the sparse representation of them by
offering a pair of dictionaries, in which the HR and LR patches share the same sparse
representations. Another trend adopts compressed sensing (CS) [19, 34] for SR acquisi-
tion of images making benefits of working with the CS framework [1, 10, 11, 16, 18, 28,
31] to solve the sparsity reconstruction problem acquired from LR sensors, application
such as synthetic aperture radar, or IR imaging, or due to data storage limitations.
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3 Acquisition methods

In this paper, we will concentrate on how to perform the enhancement of IR images using SR
techniques. We propose different techniques to perform the required enhancement. The main
objective is to process the LR IR images to obtain HR images, which are more suitable than
the original ones for specific applications. Image enhancement is one of the most appealing
areas of image processing that witnessed a significant progress and a remarkable development.

The methods of acquisition of SR images are classified into two main categories as shown
in Fig. 1: classical or conventional SR methods [19, 33, 34] and SIMSR methods.

Classical or conventional SR methods, as shown in Fig. 2a, are based on combining
multiple LR images of the same scene obtained at sub-pixel misalignments. On the other
hand, SIMSR methods, as shown in Fig. 2b, require only one LR image for the prediction and
construction of the SR image making benefits of a pre-learned database for the correspondence
between the LR image patches and the HR ones.

The selection of a suitable image enhancement technique is based on the application itself,
as there is no absolute theory or ultimate concept of image enhancement. A certain amount of
trials and errors is usually required to get the most appropriate enhancement technique. When
an image is processed for visual inspection, only the viewer is the ultimate evaluator for the
performance of the used enhancement algorithm, method or technique. Visual evaluation of
image quality is considered as a subjective process, and thus it makes the definition of a good
image a devious standard. When images are being processed for a certain application percep-
tion, the evaluation task becomes much easier. The best image processing method would be
the one yielding the best results for the application.

An SIMSR algorithm for enhancement of IR images is proposed in this chapter. The
proposed algorithm relies on the image acquisition model, which considers benefits of the
sparse representations of LR and HR patches of the images. It uses Bi-cubic interpolation and
MinimumMean Square Error (MMSE) estimation in the prediction of the HR image providing
a scheme that can be interpreted as a feed-forward neural network.

The proposed algorithm overcomes the limitation of having only LR images due to
hardware limitations. It is represented with a big data processing model. The performance of
the suggested algorithm is compared with the standard regularized image interpolation tech-
nique as well as an adaptive block-by-block Least Squares (LS) interpolation technique from
the Peak Signal-to-Noise Ratio (PSNR) perspective. It considers both visual quality and
resolution enhancement of the IR images. Results reveal the superiority of the proposed SR
algorithm.

SIMSR MethodsClassical or conven�onal 
SR methods 

Acquiring of SR Image

Fig. 1 Acquisition methods of SR images
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4 REI

This method can be formulated as the constrained minimization of a certain functional, called
stabilizing functional. The specific constraints imposed by this approach on the solution that
depend on the properties and form of the stabilizing functional used [11].

The solution of the REI problem is obtained by the minimization of the cost function [11]:

Ψ bf� �
¼ g−Dbf��� ���þ λ Qbf��� ���2 ð1Þ

where D is the decimation operator that is assume to relate the HR to the LR image, g is LR

image,bf is the estimated HR image,Q is the regularization operator, and λ is the regularization
parameter.

(a) Classical or conventional SR methods

(b) SIMSR methods

Fig. 2 Categories of different SR methods (a) Classical or conventional SR methods (b) SIMSR methods
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This minimization is created by taking the derivative of the cost function yielding:

∂Ψ bf� �
∂bf ¼ 0 ¼ 2DT g−Dbf� �

−2λQTQbf ð2Þ

2bf DTDþ λQTQ
� �

−2DTg ¼ 0 ð3Þ
where T refers to matrix transpose.

Solving for bf that provides the minimum of the cost function yields [11]:

bf ¼ DTDþ λQTQ
� �−1

DTg ¼ A λð Þg ð4Þ
The rule of the Q is to move the small eigenvalues of D away from zero, while leaving the
large eigenvalues unchanged. It also incorporates prior knowledge about the required degree of

smoothness of bf into the interpolation process.
The generality of the linear operator Q allows the development of a variety of constraints

that can be incorporated into the interpolation operation. For instance [11]:
1- Q = I. In this case the regularized solution reduces to the pseudo-inverse filter solution,

and it is represented as:

bf ¼ DTDþ λI
� �−1

DTg ð5Þ
2- Q = finite difference matrix. In this case, the operator Q is chosen to minimize the second
order difference energy of the estimated image.

The 2-D Laplacian is preferred for minimizing the second-order difference energy. It is the
most popular regularization operator. The λ controls the trade-off between the fidelity of the
data and the smoothness of the solution.

The solution of REI problem is implemented by the segmentation of LR image into
overlapping segments and the interpolation of each segment separately using Eq. (6) .The
REI formula can be given as the following:

bf i; j ¼ DTDþ λQTQ
� �−1

DTgi; j ð6Þ

where gi, j and bf i; j are the lexicographically-ordered LR and the estimated HR blocks at
position (i, j), respectively.

5 LSI

In this technique, the IR image to be interpolated is split into small overlapping blocks to
obtain an interpolated version of each block. It is supposed that the relationship between the
available LR and the estimated HR block is offered by [4]:

bxij ¼ WYij ð7Þ

where Yi, j and bXi; j are the lexicographically-ordered LR and the estimated HR blocks at the
block indices (i, j), respectively.W is the weight matrix required to obtain the HR block from
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the LR block. This matrix is required to be adaptive from block to block to accommodate for
the local activity levels of each block.

The first look at Eq. (6) leads to the LS solution that can be obtained by minimizing the
Mean Square Error (MSE) of the estimation as follows [4]:

Ψ ¼ Xij−bXij

��� ���2 ¼ Xij−WYij
�� ��2 ð8Þ

Differentiating both sides of Eq. (13) with respect to W gives:

∂Ψ
∂W

¼ −2 Xij−bXij

� �
Yij
� �T ð9Þ

This minimization leads directly to the following solution for W.

Wkþ1 ¼ Wk−η
∂Ψ
∂W

� �k
¼ Wk þ μ Xij−bXk

ij

	 

Yk

ij

� �T
ð10Þ

where η is a constant and μ is the convergence parameter and k is the iteration number.
So, we consider that the model relates the available LR block to the original HR block,

illustrated in Fig. 3. This model is offered by the following relation [16]:

Yi; j ¼ HXi; j ð11Þ

The matrix H represents the filtering and down-sampling process that transforms the HR
block to an LR block.

Thus, we can get the following cost function:

Φ ¼ H Xi; j−bXi; j

� ���� ���2 ð12Þ

The above equation means the MSE between the available LR block and a down-sampled
version of the estimated HR block.

LPF LSI
HR Image HR Image

HR Image

(NxN)

LR Image

(N/2)x(N/2)

Horizontal 
LPF

Ver�cal 
LPF

Fig. 3 LSI from an N × N HR block to an N/2 × N/2 LR block
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This leads to:

Φ ¼ Yi; j−HbXi; j

��� ���2 ¼ Yi; j−HWYi; j

�� ��2 ð13Þ

The LSI final Eq. [6]:

Wkþ1 ¼ Wk−η
∂Ψ
∂W

� �k
¼ Wk þ μHT Yij−HbXk

ij

	 

Yk

ij

� �T
ð14Þ

The adaptation of Eq. (20) can be easily performed since it does not require the original HR
block to be known a priori.

6 SR Applied to IR Images

This idea is based on applying an SR technique on IR images. The representation of LR and

HR images as vectors are zl∈RMl and yh∈RMh respectively, whereMh = q2Ml and q is a scale-
up factor of type integer that is higher than 1. We also refer toH∈RMh�Mh as blur operator, and

K∈RMl�Mh as the decimation operator for q in each axis. A well-known anti-aliasing low-pass
filter is applied on the image to generate an LR image from an HR image [18]:

zl ¼ KHyh þ A ð15Þ
where A is an additive noise vector or error in this process.

The relative problem of the reconstruction of yh from zl is denoted as zooming and
deblurring. A bicubic low-pass filter and a Gaussian low-pass filter are possible blur kernels
(blur operator H).

As the work is based on the sparse representation of patch pairs, we have to learn the
correspondence between LR and HR patches of the same dimensions. So, we obtain an image

yl∈RMh by applying bicubic interpolation on the input LR image and as we address the
zooming and deblurring setup, we look forward at recovering the difference image byhl ¼ yh−
yl and then apply byh ¼ byhl þ yl to get the final recovery. So, we keep the LR details and only
predict the lost HR details. For the concept of image reconstruction based on patches, let an
image patch that is centred at location Q and of size

ffiffiffiffi
m

p � ffiffiffiffi
m

p
and that is extracted from the

image vector y of sizeMh by the linear operator RQ to be pQ = RQy . A local model could be

suggested to predict an HR patch PQ
h =RQyh from an LR one PQ

l ¼ RQ yl . Once obtaining all
HR patch predictions, the recovery of the HR image takes place by averaging of the
overlapping recovered patches on their overlaps. Another factor should be taken into consid-
eration is the trade-off between reconstructed image quality and the run time, while choosing
the size of the overlap between adjacent patches. In order to achieve the best reconstruction
quality, work has to be performed with maximally-overlapping patches (overlapping between

adjacent patches is of
ffiffiffiffi
m

p � ffiffiffiffiffiffiffiffiffi
m−1

p
pixels in the horizontal and vertical directions).

Finally, we briefly mention the sparsity-based synthesis model. The core idea of this model
is that a signal S ∈ Rm can be represented as a linear combination of signal prototypes taken
from a dictionary D ∈ Rm × n , namely S = Dα + η, where α ∈ Rnis the sparse
representation vector and η is noise or model error. Similar to the previous approaches [35],
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we assume that each LR patch can be represented over a dictionary Dl∈Rm�nl by a sparse
vector αl∈Rnl , and similarly a HR patch is represented over Dh∈Rm�nh by αh∈Rnh [16, 20].

6.1 Low-cost pursuit stage

To sparsely represent the patches, an under-complete dictionary (nl < m) is sufficient enough.
To allow a low-cost scale-up scheme Dlis assumed as an under-complete orthonormal
dictionary. Therefore, the inner products of the LR patch with the dictionary atoms are shown
in Fig. 4,the LR coefficients results.

αl ¼ Dlð ÞTPl ð16Þ

A convolutional network is then used to compute the LR coefficients for all overlapping

patches PQ
l

n o
. The sparsity pattern xl∈ −1; 1f gnl is computed as:

xl; j ¼ 1; αl; j
�� �� > δ

−1; Otherwise
; ∀ j ¼ 1;…; nl;



ð17Þ

where δ is the maximal threshold satisfying that set, adaptively, for each LR patch based on a
residual error criterion.

∑
j¼1

nl

αl; j
�� ��2 αl; j

�� ��≤δ� �
≤mρ2 ð18Þ

Where, ρ is a pre-specified parameter that indicates the targeted accuracy.

6.2 Neural network model

The proposed model for single-image SR can be interpreted as a feed-forward neural network
providing a highly fast and simple implementation. The objective of this proposed model is to
find the network parameters to get the best prediction of HR patches from the corresponding
LR ones. The suggested network consists of the following parameters,

Fig. 4 Patching Process
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Θ ¼ Dl;Dh; Shl; bh;Vhlf g ð19Þ
We assume that the process of learning the model parameters is off-line, using a set of LR-HR
image pairs. Patches are extracted from each image pair yl, yhl at the same locations, resulting

in a training set consisting of N paired LR HR patches PQ
l ;P

Q
h

n o
.

The optimization problem formulates the training model parameters Θ [13]

Argmin
Θ

∑
N

K¼1
‖Dh Φ bh þ Vhx

Q
l

� �h i
○ Shl Dlð ÞTPQ

l

h i� �
−PQ

h ‖
2
2 ð20Þ

The product above is the Hadamard product.
To reduce the complexity of solving this joint optimization problem in order to allow

learning of model parameters, an initial estimation of Dl, and Dh dictionaries is set using
directional PCAs [28] and K-SVD [1] as well-known approaches. Having the true sparsity
patterns for each patch pair and given the Dl, and Dh dictionaries estimates, setting an initial
estimate for the covariance matrix Shl directly by solving a LS problem. After having the
mentioned initial estimates, Dh and Shl can be updated together to be well-tuned .Now, we
reach the network innermost layer, where we update the restricted Boltzmann machine
parameters Vhl , bh, while the remaining parameters are kept fixed to the previous estimates.
Finally, a last tuning of the Dh dictionary takes place to enhance the prediction in terms of HR
patch error.

7 The first presented scheme

This approach is based on single-image super resolution applied to IR images. This scheme is
shown in Fig. 5.

The steps of this approach shown in Fig. 6 can be summarized as follows:
Input: The LR IR image zl, Scale up factor q, and model parameters Dl, Dh, Shl, bh, Vhl .
Output: Estimated HR image yh.

Bi-Cubic

Interpola�on
SIMSR 
model

Patching Process 
(Extract 

overlapping 
patches)

Apply Predic�on 
Model on Each 

Patch

Recover 
Image from 
Predicted 
Patches

LR 
Image

HR 
Image

Fig. 5 Block diagram of proposed SIMSR applied to IR Images
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Capture LR IR image zl.
Apply bicubic interpolation with scale up factor q on the zl to generateyl.

1. Extract overlapping patches PQ
l

n o
at centred location Q from yl image. .

2. Compute the LR representation αl from the LR patches Pl and Dl using Eq. (16).
3. Compute the LR sparsity pattern xl from the LR representation αl using Eq. (17).
4. Compute the MMSE for the HR representation αh using Eq. (20).

Apply the recovery process for the HR patches Ph from the LR representation and Dh .
Recover the HR imageyh.

8 The second presented scheme

This scheme presents up-sampling using SKLI. Lanczos is a spatial domain interpolation
technique which is implemented by multiplying a sinc function with a sin window which is
scaled to be wider and truncated to zero outside of the main lobe. In case of the SKLI, the main
lobe of the sinc function along with the one subsequent side lobes on either side is used as a
sinc window.

The Lanczos window is a product of sinc functions sinc(x)with the scaled version of the
sinc function sinc(x / a) restricted to the main period −a ≤ x ≤ a to form a convolution kernel
for re-sampling the input field [9]. In one dimension, the Lanczos interpolation formula is
given by.

L xð Þ ¼
sic xð Þsic x

a

� �
−a≤x≤a

0 otherwise

8>>>><
>>>>:

ð21Þ

Equivalently,

P PDL Dαl(xl) αh(xh)

Sparse Coding Reconstruc�on

Predic�on

MMSE

Fig. 6 Block diagram of the first proposed algorithm
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L xð Þ ¼

1 x ¼ 0

a sin πxð Þsin πx
a

� �
πxð Þ2 −a≤x≤a

0 otherwise

8>>>>>>>><
>>>>>>>>:

ð20Þ

where a is the filter size parameter that determines the size of the kernel. The Lanczos kernel
has (2a − 1) lobes: a positive one at the center, and (a − 1) alternating negative and positive
lobes on each side, L(x) is the Lanczos kernel.

The two lobed Lanczos windowed sinc function for the SKLI is given by:

L2 xð Þ ¼
sin πxð Þ
πx

sin
πx
2

� �
πx
2

−2≤x≤2

0 otherwise

8>>>>>>>><
>>>>>>>>:

ð23Þ

where a is a positive integer, typically 2, is used for controlling the size of the kernel. The
parameter a corresponds to the number of lobes of the sinc.

9 The third presented scheme

This technique suggests interpolation using TKLI. In case of the TKLI, the main lobe of the
sinc function along with the two subsequent side lobes on either side is used as a sinc window.

The three lobed Lanczos windowed sinc function for the TKLI is given by:

L3 xð Þ ¼
sin πxð Þ
πx

sin
πx
3

� �
πx
3

−3≤x≤3

0 otherwise

8>>>>>>>><
>>>>>>>>:

ð24Þ

The effect of each input sample on the interpolated values is defined by the Filter’s recon-
struction Kernel called the Lanczos Kernel. It is the normalized sinc(x) function. Then
multiplied this function by the Lanczos window. This window is the central lobe of horizon-
tally stretched for the sinc(x/a).

& Interpolation formula

Given a one-dimensional signal with samples si, for integer values of i, the value S(x)
interpolated at an arbitrary real argument x is obtained by the discrete convolution of those
samples with the Lanczos kernel:
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s xð Þ ¼ ∑
xb cþa

i¼ xb c−aþ1
xb csi L x−1ð Þ ð25Þ

where a is the filter size parameter that determines the size of the kernel and ⌊x⌋ is the floor
function. The bounds of this sum are such that the kernel is zero outside of them. The Lanczos
kernel has (2a − 1) lobes: a positive one at the center, and (a − 1) alternating negative and
positive lobes on each side, L(x) is the Lanczos kernel.

For a two dimensional function such as an image s (x, y), an interpolated value at an
arbitrary point (x0, y0) using TKLI is given by

(b) REI result

(h) The third suggested scheme result

(e) The SR third

scenario model result

(f) The first suggested 

approach

(g) The second suggested scheme result

(c) LSI result

(d) The SR second 

scenario model result

(a) LR IR image

Fig. 7 Case 1 of truck image SNR = 25 dB. a LR IR image b REI result c LSI result d The SR second scenario
model result e The SR third scenario model result g The second suggested scheme result h The third suggested
scheme result
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sˆ x; yð Þ ¼ ∑
xb cþa

i¼ xb c−aþ1
∑
yb cþa

j¼ yb c−aþ1
s i; jð Þ L x−ið Þ L y− jð Þ ð26Þ

where sˆ(x, y)denotes the interpolated up-sampled image.
x, y represents spatial coordinates.
The final equation for IR image interpolation using SKLI, upon substituting a = 2 is given

by:

(e) The SR third

scenario model result

(d) The SR second 

scenario model result

(f) The first suggested 

approach

(g) The second suggested scheme result (h) The third suggested scheme result

(b) REI result (c) LSI result
(a) LR IR image

Fig. 8 Case 2 of truck image, SNR = 25 dB. a LR IR image b REI result c LSI result d The SR second scenario
model result e The SR third scenario model result f The first suggested approach g The second suggested scheme
result h The third suggested scheme result
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sˆ x; yð Þ ¼ ∑
xb cþ2

i¼ xb c−1
∑
yb cþ2

j¼ yb c−1
s i; jð Þ L x−ið Þ L y− jð Þ ð27Þ

where sˆ(x, y)denotes the interpolated up-sampled image.
x, y represents spatial coordinates.
The final equation for IR image interpolation using TKLI, upon substituting a = 3 is given

by:

(f) The first suggested

Approach result

(c) LSI result

(e) The SR third 

scenario model result

(d) The SR second 

scenario model result

(g) The second suggested scheme result (h) The third suggested scheme result

(a) LR IR image

(b) REI result

Fig. 9 Case 3 of truck image SNR = 25 dB. a LR IR image b REI result c LSI result d The SR second scenario
model result e The SR third scenario model result f The first suggested Approach result g The second suggested
scheme result h The third suggested scheme result
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sˆ x; yð Þ ¼ ∑
xb cþ3

i¼ xb c−2
∑
yb cþ3

j¼ yb c−2
s i; jð Þ L x−ið Þ L y− jð Þ ð28Þ

where sˆ(x, y)denotes the interpolated up-sampled image.
x, y represents spatial coordinates.

(e) The SR third

scenario model result

(f) The first suggested 

approach

(d) The SR second 

scenario model result

(b) REI result

(a) LR IR image

(c) LSI result

(h) The third suggested scheme result(g) The second suggested scheme result

Fig. 10 Case 4 of truck image SNR = 25 dB. a LR IR image b REI result c LSI result d The SR second scenario
model result e The SR third scenario model result f The first suggested approach g The second suggested scheme
result h The third suggested scheme result
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10 Simulation results

In this section, four IR images have been used to test the REI method, the LSI model, the SR
algorithm, SKLI and TKLI techniques. Firstly, the model of image down-sampling process
given in Fig. 3 is applied to the original images to yield the LR images down-sampled by a
factor of two in both directions.

The REI method, the LSI model, the SR algorithm, SKLI and TKLI techniques are then
tested on the obtained LR images.

Figure 7 gives the proposed approaches results of the first experiment for SNR = 25 dB.
Fig. 7a shows the original IR LR image. Fig. 7b shows the enhanced image after REI. Fig. 7c
shows the enhanced image after the LSI. Fig. 7d shows the enhanced image after SR second
scenario model. Figure 7e shows The SR third scenario model. Figure 7f gives the first
proposed approach result. Figure 7g shows the second proposed approach result. Figure 7h
shows the third proposed approach result.

Similar experiments have been carried out on other IR images and the results are given in
Figs. 8, 9, 10. The characteristics of all IR images that utilized in experiments are shown in
Table 1. The quality metrics that are used for evaluating this research are the PSNR and
computation time. The higher the value of the PSNR, the better is the ability to enhancement
IR images. The numerical results of cases for all presented techniques are shown in Tables 2
and 3.

The obtained results prove that the success of three suggested techniques in SR IR images.
By comparing the three presented algorithms, it is clear that the third suggested technique
gives superior results than other modes. This technique is the best algorithms from point views
the PSNR and the computation time.

From the Fig. 11 clear that, It is clear that the second suggested technique gives superior
than REI and LSI schemes from point views PSNR and computation time. On the other hand
the third presented technique is the best algorithms from point views PSNR and computation
time to other techniques.

Table 1 IR Images dataset properties

Image Name Image Size

Truck 128×128
Plane 128×128
Tree 128×128
Man 128×128

Table 2 Numerical PSNR Results for all cases utilizing different schemes

PSNR(dB) Truck Plane Tree Man

REI 14.63 17.05 17.03 16.01
LSI 21.75 25.78 22.64 23.43
SR first scenario model 25.41 28.77 26.79 30
SR second scenario model 22.6 25.86 24.37 26.69
SR third scenario model 21.41 24.43 23.6 25.01
The first suggested approach 26.98 30.57 27.76 32.85
The second suggested scheme 37.84 40.20 35.82 36.34
The third presented scheme 31.03 42.73 37.17 37.83
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From Tables 2 and 3, the higher value of the PSNR, the better is the resolution of IR
images. The lower value of the computation time, the ability to enhancement IR images.

From these tables, it is clear that the results are good from the visual, PSNR and
computational time perspectives.

11 Conclusion

This paper presents three novel techniques for SR IR images. The first algorithm is based on
picture acquisition model, that utilizes the benefits of the sparse representations of LR and HR
patches. The HR image prediction stage providing feed forward neural network model. The
second technique is based on up-sampling for IR images using SKLI. The third scheme is

Table 3 Numerical computational time results for all cases using different algorithms

Computation Time(Sec.) Truck Plane Tree Man

REI 8.29 7.07 8.81 8.17
LSI 8.64 5.47 21.55 4.99
SR first scenario model 4.49 5.4 9.81 2.5
SR second scenario model 8.07 5.5 18.85 14.7
SR third scenario model 8.68 5.8 22.15 14.9
The first suggested approach 4.20 4.08 10.11 5.14
The second suggested scheme 0.047 0.045 0.046 0.050
The third presented scheme 0.045 0.044 0.045 0.045
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Fig. 11 Numerical results graph for all images using different techniques with respect to PSNR
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depended on up-sampling for IR images using TKLI. This approach is used to increase the
sampling rate of a image. The obtained results prove that the success of three presented
techniques in acquisition HR of IR images. By comparing between all techniques, it is clear
that the second technique gives superior than REI and LSI schemes from point views PSNR
and computation time. On the other hand the third technique is the best models from point
views PSNR and computation time to other techniques.. The obtained results have shown
good visual quality and a promising scheme to apply more SR algorithms on IR images.
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