
https://doi.org/10.1007/s11042-022-13243-x

Persian printed text line detection based on font size

Amirreza Fateh1 ·Mohsen Rezvani1 ·Alireza Tajary1 ·Mansoor Fateh1

Received: 26 December 2020 / Revised: 9 April 2021 / Accepted: 16 May 2022

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Text line segmentation is an essential step in the process of converting document images
into text. In OCR systems, text line segmentation affects the character segmentation stage
that has a direct effect on the recognition rate of the system. In scanned images, some lines
are skew or curl, and the correct recognition of these lines is another challenge in this field.
Also, in some languages like Persian, some of the words have diacritic. In this paper, we
introduce a novel text line segmentation method based on the final font size for Persian
printed document images to solve these problems. In this method, by finding a specific size,
the Connected-Components in a line are glued together. To this end, the pre-processing step
of the proposed method removes every small object from the input image using a de-noising
method. In the next step, the method measures the diameter of each connected component
(CC) in the image to detects the final font size. In the last step, the method finds all CCs
that horizontally are in the same direction and then connects them. Due to the lack of a
Persian OCR dataset, we created such a dataset. The experimental results are executed on
this dataset, and the proposed method reached 99.3% accuracy. It is important to note that
this dataset has some curved lines, which increases the challenges in the dataset.

Keywords Line detection · Font size · Persian printed · Connected component

1 Introduction

Recently, there is a substantial growth in the number of photo-to-text software, and many
organizations are trying to digitize all their documents to get rid of their paper-based
archived files. To this end, after scanning the documents, the scanned images are given to an
image-to-text system to extract the text. Text-line detection usually uses for improving the
accuracy of optical character recognition (OCR) techniques [9, 11, 26, 38, 43, 50]. Also, it
is one of the pre-processing steps in document layout analysis [9, 27, 38], text restoration
[22, 43], binarization [10], and camera-captured images [12, 17, 38, 53, 61].

One of the main requirements in designing text-line detection methods is having high
accuracy in extracting lines with a low computational cost [30]. Image distortions like the

� Mansoor Fateh
mansoor fateh@shahroodut.ac.ir

1 Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran

Published online: 24 June 2022

Multimedia Tools and Applications (2023) 82:2393–2418

/

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-022-13243-x&domain=pdf
mailto: mansoor_fateh@shahroodut.ac.ir


blurring of images, image acquisition by the low-resolution camera, and the light of mobile
camera flash are the major obstacle to achieve high accuracy in such methods [11, 26].
These distortions may happen in pages scanned by scanners or mobile phone cameras. The
OCR methods try to remove these obstacles as much as possible in the pre-processing step
[9, 26].

Another major problem that we face in the segmenting of a text line is non-linear warp-
ing. Warping decreases the readability of the text as well as reduces the OCR accuracy [26].
In the last decade, several methods have been proposed to overcome non-linear warping,
which are known as the de-warping methods [8, 19, 57, 58]. These methods can divide into
two categories: 1) 2D image processing techniques [19, 58], 2) 3D document shape restora-
tion techniques [8, 57]. Several methods [19, 41, 58, 60, 64] as well as the proposed method
fall into the first category. The second category needs image capture with some special cam-
era; also, for displaying the document surface, the method needs to use a 3D shape model
[26].

In addition to the problems mentioned above, in languages like Arabic and Persian, the
letters divide into two groups: connectors and non-connectors. Each connector letter con-
nects to the next letter in a word, which makes the segmentation more difficult. Also, in
these languages, some words have diacritic. The existence of diacritic has a reverse effect
on the accuracy in extracting lines [4]. In recent years, several text-line detection techniques
proposed for different languages like English, Chinese, French, Italian, and German. On the
other hand, there is still much work to be done for languages like Persian [2].

In this paper, we present a novel approach for text line detection. The method starts by
binarizing the input image, then removes all small objects from it. In the next step, the
method measures the diameter of each CC in the image and defines the final font size of the
image. Using the final font size of the image as the searching length, the method finds the
nearest horizontal neighbor of each CC, then connects all these CCs that are horizontally in
the same direction, and extracts all text lines.

We make the following contributions in this paper. The proposed method works on three-
channel RGB and grayscale images. The method is based on the size of the font extracted
from the image, which plays an important role in extracting curved lines. We have also
introduced a new dataset, which contains curved lines.

The remaining of the paper is organized as follows: a brief description of previous text-
line detection approaches is presented in Section 2. The proposed method is described in
Section 3. Performance evaluation and experimental results are given in Section 4, followed
by conclusions in Section 5.

2 Related works

As we mentioned, most of the existing text-line segmentation techniques are mainly pro-
posed for pre-processing steps of the document layout analysis, optical character recognition
(OCR), text restoration, binarization and camera-captured images. Several text-line segmen-
tation approaches have been proposed in the last decades. These approaches classified as
techniques based on: 1) CCs based methods [30, 37, 38, 43], 2) project profile-based meth-
ods [1, 5, 16, 25, 33, 36, 54, 56, 63], 3) smearing-based methods [3, 4, 7, 23, 33, 44, 56], 4)
bounding-based methods [56], 5) Hough transform-based methods [46], 6) combined meth-
ods [51, 56], 7) tree-based methods [45], and 8) deep learning-based methods [15, 34, 42].
These techniques are discussed in this section.

2394 Multimedia Tools and Applications (2023) 82:2393–2418



Mahmood and Srivastava [43] proposed a text line segmentation technique for Urdu
typewritten text based on edge information of the CCs. This technique is tested over two
benchmark datasets that collected, compiled and organized by themselves with an accuracy
of 87.36% and 84.75% respectively.

H. I. Koo [38] introduced a text-line detection method for the camera-capture document
images which developed by incorporating state estimation into the connected-components.
They extracted connected-components with the maximally stable extremal region (MSER)
method and then estimated the scales and orientations of connected-components after they
segmented the text-lines.

Yandong Guo et al. [30] proposed a text line detection method based on estimated opti-
mization cost for text line direction; in the first step, they extracted the CC from the image.
Then they appraised the direction of the text line in several local regions and tried to
optimize their estimation.

Koichi Kise et al. [37] proposed a text line segmentation method based on the Voronoi
diagram based on the CC analysis. They use the Voronoi diagram to get the approximate
coordinates of each line. The page segmentation process can be considered as selecting
the appropriate sections of the line as the boundaries of the document components. Also,
Lawrence O’Gorman [47] proposed a new text line segmentation method based on the
nearest-neighborhood clustering of CCs extracted from the document image.

Projection profile is a technique for text-line segmentation, classified into two main
types: 1) vertical projection profile and 2) horizontal projection profile [1, 5, 16, 25, 56, 63].
The horizontal projection profile finds the interline gaps between lines and considers it a
separator between two consequent lines. This approach is used for printed-text, where there
is no overlapping or touching between lines [16, 33, 36, 54, 56]. Also, the techniques based
on the strip can deal with overlapping and touching text lines [25].

The smearing methods use for text-line segmentation; these methods are trying to seg-
ment the text area by making similar regions along with the text locations [4, 44]. This
approach uses both types of text (handwritten texts and printed texts), but it has some
weaknesses; it fails in case of overlapping or touching between lines [3, 4, 7, 23, 33, 56].

Another solution for text line segmentation is detecting the bounding box. First of all,
the method generates the histogram of the image, then specifies lines with a lesser number
of pixels, then tries to find the centroid of each line and determines the boundaries for each
line [56].

The Run-Length Smoothing method is used in smearing [51, 56]. This approach, at first,
smears the adjacent black pixels along the horizontal direction. If the distance of white
space between black pixels becomes less than the predefined threshold, the white pixels turn
black. The bounding boxes of the CCs surround text lines. Finally, using the Run-Length
Smoothing method, the strength of the histogram will be increased [51].

One of the practical methods used in text-line segmentation is the Hough Transform (HT)
[46]. Two of the most efficient methods of Hough Transform used for line segmentation are
Standard Hough Transform (SHT) and Progressive Probabilistic Hough Transform (PPHT)
[46]. Hough peaks are determined, and then, according to these peaks, the lines are extracted
[4].

One of the tree-based segmentation methods is XY-Cut [45], where each page is located
at the root of the tree and the final segmented areas are in the leaves of the tree. The method
recursively divides the image into two smaller rectangular areas showing tree nodes.

2395Multimedia Tools and Applications (2023) 82:2393–2418



Recently, researchers use deep learning techniques to segmenting text lines to reach more
accuracy. For extracting the document area, Lyu Bing et al. [42] use ARU-Net [28] to seg-
ment the text line. ARU-Net is a deep learning model for text line segmentation in historical
documents, which applies A-Net and RU-Net as base networks. In the extraction process,
some text lines may miss. Lyu Bing et al. use LeNet, a simple deep learning method [42],
to classify extracted articles and handwritten pictures.

Deep learning is one of the most effective techniques for text line segmentation, but to
gain a high accuracy, it needs to be trained by very large datasets. Due to the lack of a
Persian OCR dataset, we can not use these methods.

As mentioned before, one of the problems in the text line detection field is detecting the
curve/skewed text lines. There are several approaches proposed in the literature to mitigate
this problem. Hassan El Bahi et al. [18] proposed a new method to recognize the texts taken
from smartphones. In the pre-processing step, the method detects all contours of the image,
then by dilation technique removes the background of the image, finally by connecting the
CCs in each line, segments the region into text line images.

Rituraj Soni et al. [55] introduced a new method for the classification of the text regions
in natural scene images. Achieving this aim depends on choosing optimal-classifiers and
optimal-features. Using the improved MSER method, their method detects the possible text
regions; then, extracts eleven features from these regions. Using the CfsSubsetEval and BFS
parameters of the Weka tool [32], the method chooses an optimal-feature set from these
eleven features to discriminate the text and non-text components. In the end, with the help
of the Weka tool on the ICDAR 2013 training set, the method train many classifiers using
these optimal-features.

A hierarchical recursive text detection method is proposed in [59] to detect texts in com-
plex scenes. Besides, to detect these kinds of texts in complex scenes, [14] proposed an
Adaptive Convolution and Path Enhancement Pyramid Network (ACPEPNet), which can
more accurately locate the text instances with arbitrary shapes. In [31], The method com-
bines the saliency model with the text detection approach in a natural scene to generate text
saliency. The proposed method in [49] detects text regions from camera captured images
by using the Fuzzy Distance Transform that is based on an adaptive stroke filter. Finally, In
[35], a random forest classifier is used to recognize the newspaper texts. The inputs of the
random forest classifier are the features of characters extracted by different kinds of feature
extraction techniques.

OCRopus is a neural network-based approach that was first introduced in 2008 and
presents good pre-processing in OCR [6]. This method has given several updates to date.
The latest update of this method in 2017, which is available in [39], includes the follow-
ing sections: line detection, optical character recognition using LSTM, and using statistical
linguistic models.

The specific type of OCR software that we employed in our tests is an open-source OCR
program called Kraken, developed by Benjamin Kiessling at Leipzig University’s Alexander
von Humboldt Chair for Digital Humanities. Kraken detects each line, then uses a neural
network to recognize letters in each line. The latest Kraken update in the line recognition
field was released in 2021, which is available in [40].

2396 Multimedia Tools and Applications (2023) 82:2393–2418



Fig. 1 Text line segmentation process

3 Proposed approach

In this section, we describe our text line segmentation method. Our proposed method has
sub-processes of pre-processing, recognizing the final font size, extracting the main body
of the line, and building the box of each line. These sub-processes are shown in Fig. 1. The
proposed method removes noises and excess lines from the image in the “pre-processing”
step. The proposed method has a bottom-up design. In this way, in the “recognizing final
font size” step, it first extracts all CCs (CCs) of the image, then calculates the diameter of
each of them, then the final font size calculates according to the definition. In the “extracting
the main body of the line” step, Using the final font size of the image extracted from the
previous step, the proposed method performs a search on the horizon axis around each of
the CCs. If any other CCs are in that radius, the method connects the two neighboring CCs,
thus extracting the main body of each line. In the last step, the proposed method tries to
find any point or diacritic that does not stick to the main body of the line, and by using the
projection technique, extracts the whole line.

3.1 Pre-processing

Pre-processing is the first step in line segmentation. Algorithm 1 shows the steps of pro-
ducing a clean image that facilitates the processing of the next steps. In this step, firstly,
our method converts the 3-channel input image shown in Fig. 2a into a grayscale channel.
It then obtains a threshold for the image to converts the grayscale image into binary. This
threshold is calculated by the Otsu method [48]. Secondly, our method removes the salt-
and-pepper noises from the image [29]. Initial labeling and measuring are the other steps of
pre-processing.

For de-noising, the method performs median filtering of the input image in two dimen-
sions [24]. As shown in Fig. 2b, each output pixel contains the median value in a 3-by-3
neighborhood around the corresponding pixel in the input image. For initial labeling and
measuring, the method tags every CC with a separate label to become recognizable from

2397Multimedia Tools and Applications (2023) 82:2393–2418



Fig. 2 The pre-processing

other CCs. To separate CCs from each other and assign a label to each, we used the MAT-
LAB function bwlabel. As shown in Fig. 3, in this method, if the value of two adjacent pixels
is one and these two pixels connect along the horizontal, vertical, or diagonal direction,
these two pixels are part of the same object.

In the next step, the algorithm measures some properties of each label. These properties
are the length (in pixels) of the major axis and the minor axis of the CC (label). The major
Axis is the longest diameter of the CC. It goes from one side of the CC, through the center,
to the other side, at the widest part of the CC. The minor axis is the shortest diameter (at

Fig. 3 Using bwlabel

2398 Multimedia Tools and Applications (2023) 82:2393–2418



the narrowest part of the CC). Finally, as shown in Fig. 2c, the method removes some labels
that have this condition:

MajorAxisLength

MinorAxisLength
> ε (1)

By using this condition, the method measures the diameter of the label. IfMajorAxisLength
is much bigger than MinorAxisLength, the method removes that label. The resulting image
of the pre-processing phase is shown in Fig. 2d.

3.2 Final font size recognition

This phase aims to find the final font size of the image. The method needs the final font size
for connecting the CCs that are horizontally in the same direction.

2399Multimedia Tools and Applications (2023) 82:2393–2418



Fig. 4 CC’s diameter calculation

3.2.1 CC’s diameter calculation

Our method starts by measuring the diameters of all CCi’s pixels (where: 0 ≤ i ≤ Num-
ber Of CCs). Consider Fig. 4a as the image of CCi . In each pixel of CCi , for example, the
pixelj ,k shown in Fig. 4b, the method measures the distance between two edges of CCi at
four different angles: horizontally (Fig. 4c), vertically (Fig. 4d), and obliquely in two direc-
tions (Fig. 4e and f). The Euclidean distance was used to calculate each of these distances.
The Euclidean distance between two points like p and q is shown in (2).

d (p, q) =
√

(qx − px)
2 + (

qy − py

)2 (2)

Filters such as canny filters [13] can be used to extract CC edges. However, there is no
need to extract edges because the pixels’ values are binary. Therefore, any pixel that has at
least one black pixel in its neighborhood is an edge. By doing this, the speed of the algorithm
increases.

Then it sets the minimum distance as the CCi’s diameter in that pixel. This is according
to the definition of CCi’s diameter in this paper. At any point of CCi , the closest distance
between the two edges considered being the CCi’s diameter in that pixel. After completing
this step, the diameter of the CCi in all its pixels is specified. Then the diameter with the
most repetitions among the CCi’s pixels is introduced as the final CCi’s diameter. Finally,
the diameter value of all CCi’s pixels changes to this diameter value. The proposed method
chooses the largest number of repetitions of the diameter, as the final diameter. For example,
consider the CCi pixels that are visible with the red box around them in Fig. 5. Table 1
shows the diameters extracted from these pixels. As shown in Table 1, most parts of the CCi

have the same diameter. Algorithm 2 summarizes this step.

2400 Multimedia Tools and Applications (2023) 82:2393–2418



Fig. 5 Pixels’ diameter

3.2.2 Final font size

In the next step, the method gets all the different CC’s diameters with their number of
repetitions. The method chooses the diameter with the most number of repetitions as the first
font size. To improve method’s performance, we need to remove all points and diacritics
before calculating the number of repetitions. Otherwise, due to the existence of these objects
in documents, the algorithm may make errors in its calculations, and the final font size may
extract based on the diameter of these points and diacritics.

For removing all points and diacritics, we used the MATLAB function bwareaopen. But
before using this function, the algorithm needs to extract the number of pixels per CC. If
the number of pixels is less than a predetermined value, that CC is removed. This function

2401Multimedia Tools and Applications (2023) 82:2393–2418



Table 1 Some pixel’s diameter in CCi

3 2.8 4 4 2.8 3

3 3 4 4.2 3 3

3 3 4 4.2 3 3

3 3 2 2 3 2.8

is used to remove small objects from binary images. Therefore, first, the proposed method
finds the largest number of repetitions of the diameter in all CCis, then calculates the num-
ber of pixels of each CCi . Finally, the proposed method uses the bwareaopen function to
remove CCs whose number of pixels is less than ten times the diameter with the most rep-
etition. This ten times the largest number of repetitions of the diameter in CCi has been
achieved with many trial and error on different font types in various sizes and styles. By
removing a CC, the proposed method removes CC’s diameters from the diameters table.
After eliminating all points and diacritics, the method sorts the remaining diameters on the
image by number, then choosing the diameter with the greatest number of repetitions as the
second font size.

For removing all points and diacritics, we used we used the MATLAB function
bwareaopen. First, the method finds the largest number of repetitions of the diameter in
CCi , then calculates the number of pixels of the CCi . Finally, the method removes CCi’s
diameters from diameter’s table if the number of pixels of the CCi is less than ten times the
largest number of repetitions of the diameter in CCi . This ten times the largest number of
repetitions of the diameter in CCi has been achieved with a lot of trial and error on different
font types in different sizes and styles. After removing all points and diacritics, the method
sorts the remaining diameters on the image by number, then choosing the diameter with the
most number of repetitions as the second font size.

Sometimes the font-size of the title is extremely big (Fig. 6a), and the method segments
the title lines incorrectly. To solve this problem, first, the method separates the titles and

Fig. 6 Image with big title

2402 Multimedia Tools and Applications (2023) 82:2393–2418



saves them as a new image. Thus, we will have two images with different font sizes. As
shown in Algorithm 3, the proposed method finds all unique diameters after removing all
points and diacritics. If any of the unique diameters is more than twice the second font size,
the method detects the title in the image and chooses the second font size as the body’s font
size (the final font size of the body image). As a result, any diameter after this distance,
considered as the diameter of the title. The method considers the most repeated value of
remaining unique diameters as the title’s font size (the final font size of the title image). As
shown in Fig. 6b, the CCs whose their diameter is in the range of the body text diameter,
are placed in one image, and the rest of the CCs, are placed in another image (Fig. 6c).

The important point in the proposed method is to use the original image in the next
step. This means, after removing the small objects and calculating the final font size, the
remaining steps will use the original image, which also has all of the small objects.

2403Multimedia Tools and Applications (2023) 82:2393–2418



3.3 Extracting themain body of the line

The method has to connect any CCs that have been horizontally in the same direction to
get the approximate lines’ locations of the image. To reach this goal, every CC in the image
tries to find the nearest horizontal neighbor by using a searching method in the horizontal
direction. In this step, the line segmentation method uses the final font size as an input
parameter and searches in the horizontal direction in the specified length to find another
CC, if the searching method finds any white pixel that belongs to another CC, it connects
these two CCs. The searching length depends on the size of the final font size. We set an
adaptive coefficient for controlling the searching length. Using this adaptive coefficient and
multiplying it by the final font size, the best search length is obtained.

In the next step, we used one of the morphological structuring elements called strel. Its
basic syntax is:

se = strel(Shape, parameters) (3)

Which we used one of the special types:

se = strel(′line′, Len, Deg) (4)

This type of strel, creates a flat, linear structuring element, where Len specifies the length,
and Deg specifies the angle (in degrees) of the line, as measured in the counterclockwise
direction from the horizontal axis. Finally, with another morphological operation called
closing, it connects CCs within the search radius of each other. And the lines are detected
correctly. Algorithm 4 shows how to calculate this adaptive coefficient.

3.4 Building the box of each line

Despite implementing all the previous steps to segment lines correctly, the method detects
some of the up and down word’s points as a new label (Fig. 7a). To handle this problem, we
had to describe the last part of our proposed method in this step. Firstly, the method finds
min(x), min(y), max(x) and max(y) for every label. As shown in Fig. 7b, if the position of
the point’s label is near to the main label, the method connects these labels. Otherwise, the
point’s label will be considered as another CC.

Fig. 7 Bounding Box steps

2404 Multimedia Tools and Applications (2023) 82:2393–2418



3.5 Time complexity

In Algorithm 1, the time complexity of the first two functions is in O(N), in which N is
the number of pixels in the image. Also, the time complexity of the third function is in
O(N + w), in which w is the number of labels in the image. And because N is so larger
than W, we considered it as O(N). Therefore, the time complexity of Algorithm 1 is equal
to O(N). In Algorithm 2, the time complexity is in O(N2

w), in which Nw is the number of
pixels labeled in the image. In Algorithm 3, the time complexity both choosing the diameter
with the most number of repetitions, and calculating the number of repetitions of unique
diameters are inO(N). Both for loops in theMain function are inO(w). The final-font-sizes
function is in O(d), in which d is the number of unique diameters in the image. Therefore,
the time complexity of Algorithm 3 is equal to O(N). Finally, in Algorithm 4, the time
complexity is in O(N).

4 Results and evaluation

In this section, we explain and discuss the experimental results. We also provide information
on how to make the dataset and the contents of them. Finally, we compare the results of
the proposed method with related works on our dataset. To validate the effectiveness of the
proposed system, we have conducted experiments with three different datasets. We have
used our own system to implement and evaluate the proposed method. The CPU of our
system is Intel(R)-Core(TM) i7-9750H, and our RAM is 16 GB.

4.1 Datasets

Due to the lack of a Persian OCR dataset, we made a standard dataset. The generated dataset
is publicly available. We collected the documents’ text of our dataset from various sources
like newspapers, magazines, and books. The collected text is made in different sizes, fonts,
and styles and saved as images in png format. Some of the words in these documents have
diacritic.

To create datasets in different fonts, styles, and sizes from a text, we have used the
python-docx library. Using this library, you can easily produce text in various sizes, styles,
and fonts. The latest version of this library is for 2019. python-docx saves input text as a
Microsoft Word file. For more details on this library, refer to the documentation provided
for the python-docx library. Finally, each page of the Microsoft Word file will be saved as an
image in png format. The size of each page is 1653×2339. This dataset is available in [21].

Our advantage over other existing datasets is the presence of different font types in var-
ious sizes and styles of Persian in a relatively significant number of lines. We have created
images from six famous Persian font types in three styles and six different sizes.

We used six distinct font types to test our proposed method, including Arial, Nazanin,
Ziba, IranNastaliq, Tahoma, and XB-Niloofar. These font types are common in writing
magazines, books, and newspapers. We used all three types of bold, italic, and regular fonts
in our dataset. We have also used font sizes 8, 10, 14, 18, and 22 in our dataset. Also, the
total number of lines in this dataset is more than 24,000 lines. Table 2 shows a summary of
the dataset information.

To further evaluate the performance of the proposed method, we used two more datasets
to test the proposed method. The first dataset is in Arabic. This dataset which is called the
Arabic OCR dataset is available in [62]. The images in this dataset are in different sizes.

2405Multimedia Tools and Applications (2023) 82:2393–2418



Table 2 A statistic of the font
types and sizes used in building
our data-set

Font style Font type #of lines

Bold

Arial 1421

Nazanin 1441

Ziba 1231

IranNastaliq 793

Tahoma 1873

XB-Niloofar 1460

Italic

Arial 1402

Nazanin 1449

Ziba 1227

IranNastaliq 791

Tahoma 1685

XB-Niloofar 1434

Regular

Arial 1402

Nazanin 1449

Ziba 1227

IranNastaliq 791

Tahoma 1685

XB-Niloofar 1434

Arabic OCR dataset aims to solve a more straightforward problem of OCR with images that
contain only Arabic characters. Figure 8 shows an example of the images in this dataset.

To evaluate the performance of the proposed method, we randomly selected 50 images
from this dataset and tested the proposed method on these images. The images in this dataset
are single columns lines, but lines have a small amount of rotation, which increases the
complexity of the dataset.

We prepared the second database ourselves. The images in this dataset are provided by
the HP Scanjet 4890 scanner with default settings. We have scanned 80 images from various
sources such as magazines, newspapers, and books with this scanner, which is available
in [20]. This dataset’s images have more complexity than the images of the previous two
datasets. One of the most considerable complexities of the images in this dataset is the
pages’ rotation, which creates skew lines. As shown in Fig. 9, which is one of the images in
this dataset, the images in this dataset have rotation, making line recognition difficult.

Fig. 8 Sample of Arabic OCR dataset

2406 Multimedia Tools and Applications (2023) 82:2393–2418



Fig. 9 Sample of dataset 3

Images’ quality in dataset 3 is 300, 200, or 120 dpi. The maximum number of lines in the
images of this dataset is 35 lines. Some images in this database were rotated up to about 10
degrees, and some other pages were curved, which increase the complexity of the dataset.

4.2 Parameter tuning

In the previous section, we defined some parameters, coefficients, and constants with spe-
cific values. In this subsection, we will explain in detail how to obtain these values. We said
before the proposed method removes CCs which, the number of pixels is less than ten times
the diameter with the most repetition. This Coefficient value has been achieved with many
trial and error.

We obtained the best value for this coefficient among several values of 5, 10, 15, and 20
by performing a test on 50 images of the first dataset. Figure 10 shows part of a page that
its text is in XB-Niloofar font type, regular font style, and font size 18. Figure 11 shows the
result of using each of these coefficients in Fig. 10. As shown in Fig. 11a, some points are
not omitted if the diameter coefficient is low. On the other hand, if the diameter coefficient
is high (Fig. 11c, and d), some letters of the alphabet are omitted incorrectly. Therefore,
choosing the suitable diameter coefficient is very important (Fig. 11b).

2407Multimedia Tools and Applications (2023) 82:2393–2418



Fig. 10 Sample of first dataset image

Table 3 shows in more detail than Fig. 11 the error rate of each coefficient in separating
points and main text. As shown in Table 3, the value 10 is the best possible coefficient
among coefficients and has the lowest error rate among coefficients. Besides, we calculated
the confusion matrix for the coefficient with the value of 10. Table 4 shows the confusion
matrix for 50 images of the first dataset, which contains nearly 50,000 labels. The number
of correct and incorrect predictions are summarized with count values and broken down by

Fig. 11 Removing points and small objects from image

2408 Multimedia Tools and Applications (2023) 82:2393–2418



Table 3 The error rate of each coefficient in separating points and main text

Coefficient value Point error Main text error Total error error rate

5 2790 70 2860 0.05

10 960 196 1156 0.03

15 840 508 1348 0.07

20 674 1862 2536 0.05

Highest accuracy or lowest error unique is in bold

each class. In addition, the ROC curve of these four coefficients is shown in Fig. 12. The
recall and precision calculation are as follows:

Precisioni = Mii∑
i Mij

(5)

Recalli = Mii∑
j Mij

(6)

One of the challenges we have been facing in this step was finding the best searching
length, especially when the image has more than one column containing text (Fig. 13a). As
shown in Fig. 13c, because of the short searching length, sometimes the searching method
cannot find any CCs around the main CC to connect them. As a result, the searching algo-
rithm cannot detect the line correctly. As shown in Fig. 13b, the opposite can also happen,
especially if the image has multiple columns.

As we said in the last paragraph, by increasing or decreasing the searching length, the
method encountered different kinds of problems. These problems are exacerbated in curve
lines (Fig. 14a). Short searching length poses the same problem as previously described and
could not recognize all the CCs of a line correctly (Fig. 14c). But, as shown in Fig. 14b,
by increasing the searching length, the method could not separate two consecutive lines in
a column correctly and connects them. Using this adaptive coefficient and multiplying it
by the final font size, the method does not need to do anything more to detect curve lines
(Fig. 14d).

4.3 Experimental result

Table 5 shows the performance results of our method versus five widely used methods
for text-line extractions: i)Smearing [23], ii)XY cut [45], iii)Voronoi diagram-based [37],
iv)Seam curving [52], vi)Docstrum [47]. In this part, we obtain these results when tested
on our dataset with six different font types and Bold styles. As shown in Table 5, our

Table 4 Confusion matrix for the coefficient with the value of 10

Predicted: Main text Predicted: small obj Recall

Actual: Main text 29966 196 99.35%

Actual: small obj 960 18370 95.03%

Precision 96.89% 98.94%

2409Multimedia Tools and Applications (2023) 82:2393–2418



Fig. 12 ROC curves for coefficient with the value of 5, 10, 15, and 20

method has the best performance in all cases. We have also used formula (7) to calculate
the accuracy in each case:

accuracyi,j = #of linescorrectlysegmented

totlal#of lines
, i ∈ f ont styles, j ∈ f ont types (7)

Fig. 13 Searching length problem

2410 Multimedia Tools and Applications (2023) 82:2393–2418



Fig. 14 Searching length problem

Table 5 The Bold style accuracy of proposed method and five states of the art methods for different font
types

Font type Smearing X-Y Cut Voronoi Seam curving Docstrum Proposed method

Arial 99.23% 95% 95.99% 30.61% 69.74 99.51%

Nazanin 98.89% 95% 95.98% 30.05% 71.06 99.44%

Ziba 98.94% 96.02% 96.99% 32.58% 64.83 99.35%

IranNastaliq 98.87% 95.84% 95.59% 29.26% 57.76 99.24%

Tahoma 99.04% 98.02% 98.02% 32.14% 54.99 99.41%

XB-Niloofar 98.84% 96.99% 96.03% 28.22% 62.81 99.45%

Total accuracy 98.98% 96.28% 96.57% 30.6% 63.49% 99.42%

Highest accuracy or lowest error unique are in bold

Table 6 The Italic style accuracy of proposed method and five states of the art methods for different font
types

Font type Smearing X-Y Cut Voronoi Seam curving Docstrum Proposed method

Arial 99.07% 96.01% 95.01% 28.67% 66.69 99.71%

Nazanin 98.69% 97.03% 95.03% 29.95% 67.7 99.1%

Ziba 99.59% 96.98% 96.01% 31.05% 61.78 98.94%

IranNastaliq 98.1% 95.07% 94.82% 28.95% 53.73 98.36%

Tahoma 98.75% 96.14% 95.01% 33.71% 57.74 99.47%

XB-Niloofar 98.88% 97% 97.98% 28.1% 59.62 99.3%

Total accuracy 98.89% 96.46% 95.68% 30.26% 61.68% 99.22%

Highest accuracy or lowest error unique are in bold

2411Multimedia Tools and Applications (2023) 82:2393–2418



Table 7 The Regular style accuracy of proposed method and five states of the art methods for different font
types

Font type Smearing X-Y Cut Voronoi Seam curving Docstrum Proposed method

Arial 99.14% 98% 97% 28.74% 66.98 99.71%

Nazaninzanin 99.03% 97.03% 95.03% 29.81% 67.98 99.38%

Ziba 99.67% 96.01% 97.96% 30.81% 62.02 98.94%

IranNastaliq 98.23% 94.94% 94.56% 29.08% 54.11 98.36%

Tahoma 98.81% 96.97% 97.98% 33.47% 57.98 99.41%

XB-Nilofar 99.02% 96.03% 94.98% 32.64% 59.97 99.3%

Total accuracy 99.02% 96.64% 96.39% 30.98% 61.97% 99.26%

Highest accuracy or lowest error unique are in bold

Fig. 15 Ziba font problem

Table 8 The Bold style accuracy of proposed method and five states of the art methods for different font sizes

Font size Smearing X-Y Cut Voronoi Seam curving Docstrum Proposed method

8 95.81% 93.48% 93.48% 21.34% 54.99% 97.3%

10 97.43% 94.85% 95.25% 26.87% 57.68% 99.03%

14 99.75% 96.55% 96.86% 28.56% 60.83% 99.69%

18 99.9% 96.6% 97.05% 33.42% 65.72% 99.91%

22 99.96% 97.86% 98.08% 35.84% 70.4% 100%

Total accuracy 98.98% 96.28% 96.57% 30.6% 63.49% 99.42%

Highest accuracy or lowest error unique are in bold

Table 9 The Italic style accuracy of proposed method and five states of the art methods for different font
sizes

Font size Smearing X-Y Cut Voronoi Seam curving Docstrum Proposed method

8 95.61% 93.42% 93.8% 19.56% 51.24% 96.37%

10 97.94% 95.47% 93.99% 25.68% 54.9% 98.68%

14 99.29% 95.94% 94.9% 28.45% 59.03% 99.61%

18 99.79% 96.97% 96.39% 33.49% 64.63% 99.95%

22 99.87% 98.32% 97.39% 36.18% 69.48% 99.96%

Total accuracy 98.89% 96.46% 95.68% 30.26% 61.68% 99.22%

Highest accuracy or lowest error unique are in bold

2412 Multimedia Tools and Applications (2023) 82:2393–2418



Table 10 The Regular style accuracy of proposed method and five states of the art methods for different font
sizes

Font size Smearing X-Y Cut Voronoi Seam curving Docstrum Proposed method

8 96.18% 93.7% 94.56% 21.09% 51.53% 96.37%

10 98.02% 95.72% 94.9% 26.5% 55.14% 98.77%

14 99.42% 96.13% 95.74% 29.03% 59.35% 99.68%

18 99.84% 97.07% 96.87% 34.01% 64.94% 99.95%

22 99.91% 98.5% 98.1% 36.75% 69.75% 100%

Total accuracy 99.02% 96.64% 96.39% 30.98% 61.97% 99.26%

Highest accuracy or lowest error unique are in bold

Table 11 The text lines
recognition accuracy with an
average runtime of the proposed
method and other methods on the
Arabic OCR dataset

Methods Accuracy Average runtime per image (s)

Kraken 98.75% 23.22

OCRopus 99.1% 18.24

Smearing 95.1% 14.45

Proposed method 99.24% 8.33Highest accuracy or lowest error
unique are in bold

Table 12 The text lines
recognition accuracy with an
average runtime of the proposed
method and other methods on
dataset 3

Methods Accuracy Average runtime per image (s)

Kraken 91.23% 28.43

OCRopus 94.51% 25.33

Smearing 85.88% 19.44

Proposed method 98.35% 15.55Highest accuracy or lowest error
unique are in bold

Fig. 16 Problem of removing small objects in OCRopus method

2413Multimedia Tools and Applications (2023) 82:2393–2418



Fig. 17 The output of the Kraken method on dataset 3

Also, Tables 6 and 7 show the performance results of our method versus five widely
used methods for text-line extractions. As shown in Tables 6 and 7, our method has the best
performance in all cases except the “Ziba” font. As shown in Fig. 15a and b, even though
the “Ziba” and “Tahoma” font sizes are the same, the diameter of the “Ziba” font is smaller
than the “Tahoma” font. As a result, the final-font-size of the “Ziba” font, and the searching-
length, are smaller. As shown in these tables, as much the font size is larger, the easier it
is to recognize text lines, as the number of words within a line decreases and the final font
size increases.

Tables 8, 9, and 10 show the performance results of our method versus five widely used
methods for text-line extractions: i)Smearing [23], ii)XY cut [45], iii)Voronoi diagram-
based [37], iv)Seam curving [52], vi)Docstrum [47]. In this part, we obtain these results
when tested on our dataset with five different font sizes and three styles: Bold, Regular, and
Italic. As shown in Tables 8, 9 and 10, our method has the best performance in most cases.

As mentioned beforehand, we used two more datasets to evaluate the performance of
the proposed method further. In addition to the proposed method, we test the smearing
method, which is the best method among the related works, and the OCRopus and the
Kraken methods, which are more up-to-date than other methods, on these two datasets.

2414 Multimedia Tools and Applications (2023) 82:2393–2418



Tables 11 and 12 show the accuracy with average runtime of the proposed method and other
methods on the Arabic OCR dataset and the dataset 3. As shown in Tables 11 and 12, the
proposed method has the best performance among all methods.

Due to the high complexity of the third dataset compared to the other two datasets, the
accuracy of the methods in this dataset is lower. As shown in formula (7), the accuracy
of each method represents the percentage of the number of lines that have been extracted
correctly. The OCRopus method, despite its good accuracy in detecting lines, also has many
disadvantages.

One of the main problems with the OCRopus method is its high runtime, which can take
up to 30 seconds in images with many CCs. This high runtime is one of the main problems
of this method, but the problems do not end here. One of the most critical problems of this
method is removing small objects and points in the image. Figure 16a is one of the output
lines in the proposed method. Figure 16b shows the output of the same line in the OCRopus
method. As can be seen, most of the points were removed in this method. Failure to run
the program in images with high resolution (more than 300 dpi) is another problem of this
method. The proposed method is specific to the Persian language. In Persian, the number of
dots is much higher than in languages such as English. Therefore, in the proposed method,
the dots are well kept.

Same as the OCRopus method, the Kraken method has high runtime. The Kraken method
has low accuracy on images that are skewed or curved. For this reason, it does not work well
on dataset 3. Figure 17 shows an example of the output of the Kraken method on dataset3.
As shown in Fig. 17, most lines overlap, which reduces the performance of the OCR system.

Both OCRopus and Kraken methods have difficulty detecting images that are skewed or
curved. While the skewness of the lines or their curvature has less effect on our method.
Our method is resistant to curvature and skew due to the use of the final font size.

5 Conclusion

In this paper, we introduced a new text-line detection method for printed text images by
using the final font size. The proposed method measures the diameters of each CC from any
direction, then chooses the maximum of these diameters as the font size of that CC. The
algorithm tries to select one of the font sizes as the final font size by defining an adaptive
parameter. Finally, the algorithm tries to connect any CCs that are horizontally in the same
direction. The proposed method is tested on more than 24000 lines with different font types,
sizes, and styles. The proposed method can process document images with the following
points: i) Persian text with and without diacritics; ii) non-linear warping text lines; iii) skew
text lines; iv) six Persian font types: Nazanin, Ziba, IranNastaliq, XB-Niloofar, Arial, and
Tahoma; v) Bold, italic and regular style; vi) and different font sizes 8,10,14,18,22 including
the mix between them. As the method has good results and reached 99.3% accuracy on our
dataset, we still need to do more evaluation on other Persian fonts and extend this to Arabic
and other languages. Also, text line segmentation for handwriting documents and scene text
detection are some other challenges of our future purpose.

References

1. Ahmad I, Wang X, Li R, Ahmed M, Ullah R (2017) Line and ligature segmentation of urdu nastaleeq
text. IEEE Access 5:10924–10940

2415Multimedia Tools and Applications (2023) 82:2393–2418



2. Alaei A, Nagabhushan P, Pal U (2011) Piece-wise painting technique for line segmentation of uncon-
strained handwritten text: a specific study with persian text documents. Pattern Anal Appl 14(4):381–
394

3. Aljarrah I, Al-Khaleel O, Mhaidat K, Alrefai M, Alzu’bi A, Rabab’ah M (2012) Automated system for
arabic optical character recognition. In: Proceedings of the 3rd International Conference on Information
and Communication Systems. pp 1–6

4. Ayesh M, Mohammad K, Qaroush A, Agaian S, Washha M (2017) A robust line segmentation algorithm
for arabic printed text with diacritics. Electron Imaging 2017(13):42–47

5. Banumathi K, Chandra AJ (2016) Line and word segmentation of kannada handwritten text docu-
ments using projection profile technique. In: 2016 International Conference on Electrical, Electronics,
Communication, Computer and Optimization Techniques (ICEECCOT). IEEE, pp 196–201

6. Breuel TM (2008) The ocropus open source ocr system. In: Document recognition and retrieval XV, vol
6815. International Society for Optics and Photonics, p 68150F

7. Brodić D, Milivojević ZN (2013) Text line segmentation with the algorithm based on the oriented
anisotropic gaussian kernel. J Electr Eng 64(4):238–243

8. Brown MS, Seales WB (2004) Image restoration of arbitrarily warped documents. IEEE Trans Pattern
Anal Mach Intell 26(10):1295–1306

9. Bukhari SS, Shafait F, Breuel TM (2013) Coupled snakelets for curled text-line segmentation from
warped document images. Int J Doc Anal Recog (IJDAR) 16(1):33–53

10. Bukhari SS, Shafait F, Breuel TM (2009) Adaptive binarization of unconstrained hand-held camera-
captured document images. J UCS 15(18):3343–3363

11. Bukhari SS, Shafait F, Breuel TM (2009) Ridges based curled textline region detection from grayscale
camera-captured document images. In: International Conference on Computer Analysis of Images and
Patterns. Springer, pp 173–180

12. Bukhari SS, Shafait F, Breuel TM (2009) Coupled snakelet model for curled textline segmentation of
camera-captured document images. In: 2009 10th International Conference on Document Analysis and
Recognition. IEEE, pp 61–65

13. Bustacara-Medina C, Florez-Valencia L, Diaz LC (2020) Improved canny edge detector using principal
curvatures. J Electr Electron Eng 8(4):109

14. Cheng Q, Wang G, Dong Q, Wei B (2020) Arbitrary-shaped text detection with adaptive convolution
and path enhancement pyramid network. Multimedia Tools Appl 79(39):29225–29242

15. Chernyshova YS, Sheshkus AV, Arlazarov VV (2020) Two-step cnn framework for text line recognition
in camera-captured images. IEEE Access 8:32587–32600

16. Cheung A, Bennamoun M, Bergmann NW (2001) An arabic optical character recognition system using
recognition-based segmentation. Pattern Recog 34(2):215–233

17. Diem M, Kleber F, Sablatnig R (2013) Text line detection for heterogeneous documents. In: 2013 12th
International Conference on Document Analysis and Recognition. IEEE, pp 743–747

18. El Bahi H, Zatni A (2019) Text recognition in document images obtained by a smartphone based on deep
convolutional and recurrent neural network. Multimedia Tools Appl 78(18):26453–26481

19. Ezaki H, Uchida S, Asano A, Sakoe H (2005) Dewarping of document image by global optimization. In:
Eighth International Conference on Document Analysis and Recognition (ICDAR’05). IEEE, pp 302–
306

20. Fateh A (2021) Persian dataset of scanned images. https://drive.google.com/file/d/1czMAGodDxBDQa
jNfSdYibFBJ9pooa69 /view?usp=sharing

21. Fateh A (2021) Persian dataset in different font types, sizes, and styles. https://drive.google.com/file/d/
1jaDp7qI6480yNImRZQpkY aOJ8o7mv8J/view?usp=sharing

22. Fakhari A, Kiani K (2021) A new restricted boltzmann machine training algorithm for image restoration.
Multimed Tools Appl 80(2):2047–2062

23. Forczmański P, Markiewicz A (2016) Two-stage approach to extracting visual objects from paper
documents. Mach Vis Appl 27(8):1243–1257

24. Garg B (2020) Restoration of highly salt-and-pepper-noise-corrupted images using novel adaptive
trimmed median filter. SIViP 14:1555–1563

25. Garg R, Garg NK (2014) A new approach for line segmentation in punjabi language using strip based
projection profile method

26. Gatos B, Pratikakis I, Ntirogiannis K (2007) Segmentation based recovery of arbitrarily warped docu-
ment images. In: Ninth International Conference on Document Analysis and Recognition (ICDAR 2007),
vol 2. IEEE, pp 989–993

27. Grana C, Serra G, Manfredi M, Coppi D, Cucchiara R (2016) Layout analysis and content enrichment
of digitized books. Multimed Tools Appl 75(7):3879–3900

2416 Multimedia Tools and Applications (2023) 82:2393–2418

https://drive.google.com/file/d/1czMAGodDxBDQajNfSdYibFBJ9pooa69_/view?usp=sharing
https://drive.google.com/file/d/1czMAGodDxBDQajNfSdYibFBJ9pooa69_/view?usp=sharing
https://drive.google.com/file/d/1jaDp7qI6480yNImRZQpkY_aOJ8o7mv8J/view?usp=sharing
https://drive.google.com/file/d/1jaDp7qI6480yNImRZQpkY_aOJ8o7mv8J/view?usp=sharing


28. Grüning T, Leifert G, Strauß T, Michael J, Labahn R (2019) A two-stage method for text line detection
in historical documents. Int J Doc Anal Recog (IJDAR) 22(3):285–302

29. Guo D, Qu X, Du X, Wu K, Chen X (2014) Salt and pepper noise removal with noise detection and a
patch-based sparse representation. Adv Multimed 2014:

30. Guo Y, Sun Y, Bauer P, Allebach JP, Bouman CA (2015) Text line detection based on cost opti-
mized local text line direction estimation. In: Color Imaging XX: Displaying, Processing, Hardcopy, and
Applications, vol. 9395. International Society for Optics and Photonics, p 939507

31. Gupta N, Jalal AS (2019) A robust model for salient text detection in natural scene images using mser
feature detector and grabcut. Multimedia Tools Appl 78(8):10821–10835

32. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining
software: an update. ACM SIGKDD Explor Newsl 11(1):10–18

33. Hussain S, Ali S et al (2015) Nastalique segmentation-based approach for urdu ocr. Int J Doc Anal Recog
(IJDAR) 18(4):357–374

34. Jo J, Koo HI, Soh JW, Cho NI (2020) Handwritten text segmentation via end-to-end learning of
convolutional neural networks. Multimed Tools Appl 79(43):32137–32150

35. Kaur RP, Kumar M, Jindal MK (2019) Newspaper text recognition of gurumukhi script using random
forest classifier. Multimedia Tools Appl 1–14

36. Kchaou MG, Kanoun S, Ogier J-M (2012) Segmentation and word spotting methods for printed
and handwritten arabic texts: a comparative study. In: 2012 international conference on frontiers in
handwriting recognition. IEEE, 274–279

37. Kise K, Sato A, Iwata M (1998) Segmentation of page images using the area voronoi diagram. Comput
Vis Image Underst 70(3):370–382

38. Koo HI (2016) Text-line detection in camera-captured document images using the state estimation of
connected components. IEEE Trans Image Process 25(11):5358–5368

39. Last release of ocropus (2017). https://github.com/ocropus/ocropy
40. Last release of kraken (2021). https://github.com/mittagessen/kraken
41. Lavialle O, Molines X, Angella F, Baylou P (2001) Active contours network to straighten distorted text

lines. In: Proceedings 2001 International Conference on Image Processing (Cat. No. 01CH37205), vol.
3. IEEE, pp 748–751

42. Lyu B, Akama R, Tomiyama H, Meng L (2019) The early japanese books text line segmentation base
on image processing and deep learning. In: 2019 International Conference on Advanced Mechatronic
Systems (ICAMechS). IEEE, pp 299–304

43. Mahmood A, Srivastava A (2018) A novel segmentation technique for urdu type-written text. In: 2018
Recent Advances on Engineering, Technology and Computational Sciences (RAETCS). IEEE, pp 1–5

44. Malakar S, Halder S, Sarkar R, Das N, Basu S, Nasipuri M (2012) Text line extraction from handwrit-
ten document pages using spiral run length smearing algorithm. In: 2012 International Conference on
Communications, Devices and Intelligent Systems (CODIS). IEEE, pp 616–619

45. Nagy G, Seth S, Viswanathan M (1992) A prototype document image analysis system for technical
journals. Computer 25(7):10–22

46. Nguyen TT, Dai Pham X, Kim D, Jeon JW (2008) A test framework for the accuracy of line detec-
tion by hough transforms. In: 2008 6th IEEE international conference on industrial informatics. IEEE,
pp 1528–1533

47. O’Gorman L (1993) The document spectrum for page layout analysis. IEEE Trans Pattern Anal Mach
Intell 15(11):1162–1173

48. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE transactions on systems,
man, and cybernetics 9(1):62–66

49. Paul S, Saha S, Basu S, Saha PK, Nasipuri M (2019) Text localization in camera captured images using
fuzzy distance transform based adaptive stroke filter. Multimedia Tools Appl 78(13):18017–18036

50. Rahmati M, Fateh M, Rezvani M, Tajary A, Abolghasemi V (2020) Printed persian ocr system using
deep learning. IET Image Processing 14(15):3920–3931

51. Rais M, Goussies NA, Mejail M (2011) Using adaptive run length smoothing algorithm for accurate text
localization in images. In: Iberoamerican Congress on Pattern Recognition. Springer, pp 149–156

52. Seuret M, Ben Ezra DS, Liwicki M (2017) Robust heartbeat-based line segmentation methods for regular
texts and paratextual elements. In: Proceedings of the 4th international workshop on historical document
imaging and processing, pp 71–76

53. Shahab A, Shafait F, Dengel A (2011) Icdar 2011 robust reading competition challenge 2: Reading
text in scene images. In: 2011 international conference on document analysis and recognition, IEEE,
pp 1491–1496

54. Shaikh NA, Mallah GA, Shaikh ZA (2009) Character segmentation of sindhi, an arabic style scripting
language, using height profile vector. Aust J Basic Appl Sci 3(4):4160–4169

2417Multimedia Tools and Applications (2023) 82:2393–2418

https://github.com/ocropus/ocropy
https://github.com/mittagessen/kraken


55. Soni R, Kumar B, Chand S (2019) Optimal feature and classifier selection for text region classification
in natural scene images using weka tool. Multimedia Tools Appl 78(22):31757–31791

56. Soujanya P, Koppula VK, Gaddam K, Sruthi P (2010). In: Comparative study of text line segmenta-
tion algorithms on low quality documents. CMR College of Engineering and Technology Cognizant
Technologies, Hyderabad, India

57. Tan CL, Zhang L, Zhang Z, Xia T (2005) Restoring warped document images through 3d shape
modeling. IEEE Trans Pattern Anal Mach Intell 28(2):195–208

58. Ulges A, Lampert CH, Breuel TM (2005) Document image dewarping using robust estimation of curled
text lines. In: Eighth International Conference on Document Analysis and Recognition (ICDAR’05).
IEEE, pp 1001–1005

59. Wang X, Song Y, Zhang Y, Xin J (2017) A hierarchical recursive method for text detection in natural
scene images. Multimedia Tools Appl 76(24):26201–26223

60. Wu C, Agam G (2002) Document image de-warping for text/graphics recognition. In: Joint IAPR Inter-
national Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic
Pattern Recognition (SSPR). Springer, pp 348–357

61. Yin X-C, Zuo Z-Y, Tian S, Liu C-L (2016) Text detection, tracking and recognition in video: a
comprehensive survey. IEEE Trans Image Process 25(6):2752–2773

62. Youssef H (2020) Arabic dataset ocr. https://drive.google.com/drive/folders/1–wsm4NIZB8Reu70jg-
wBO56Pq%89N6fs

63. Zeki AM, Zakaria MS, Liong C-Y (2013) Segmentation of arabic characters: A comprehensive survey.
In: Technology Diffusion and Adoption: Global Complexity, Global Innovation. IGI Global, pp 251–288

64. Zhang Z, Tan CL (2003) Correcting document image warping based on regression of curved text lines.
In: Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings. IEEE,
pp 589–593

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

2418 Multimedia Tools and Applications (2023) 82:2393–2418

https://drive.google.com/drive/folders/1--wsm4NIZB8Reu70jg-wBO56Pq%89N6fs
https://drive.google.com/drive/folders/1--wsm4NIZB8Reu70jg-wBO56Pq%89N6fs

	Persian printed text line detection based on font size
	Abstract
	Introduction
	Related works
	Proposed approach
	Pre-processing
	Final font size recognition
	CC's diameter calculation
	Final font size

	Extracting the main body of the line
	Building the box of each line
	Time complexity

	Results and evaluation
	Datasets
	Parameter tuning
	Experimental result

	Conclusion
	References


