
Automatic objects’ depth estimation based
on integral imaging

Fatemeh Kargar Barzi1 & Hossein Nezamabadi-pour1

Received: 23 October 2020 /Revised: 10 March 2022 /Accepted: 12 May 2022 /
Published online: 25 May 2022
# The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
A new approach for depth estimation based on integral imaging is proposed. In this
method, multiple viewpoint images captured from a three-dimensional scene are used to
extract the range information of the scene. These elemental images are captured through
an array of lenses over a high-resolution camera or an array of cameras. Then the scene is
computationally reconstructed in different depths using integral imaging reconstruction
algorithm. Finally, by processing the reconstructed images and finding objects of the
scene in these images using a matching technique with speeded-up robust features
(SURF), the depth information of the objects will be acquired. Experimental results show
that the proposed method has high accuracy and does not have many limitations of
standard image processing, including sensitivity to the surface type and size of the
objects.

Keywords Depth estimation . Image processing . Integral imaging . 3D reconstruction . SURF
features

1 Introduction

Measuring the distance between an object and a specific origin is a common problem in human
life. There are many methods to measure this distance. It can be calculated by processing the
images captured by a camera located at that origin. In this case, the distance between the object
and the camera lens is equal to the object’s depth. Depth estimation of an object from its 2-D
images is one of the primary problems in machine vision [3, 19, 50] and has a wide range of
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applications, such as 3-D reconstruction, speed estimation, object detection, and background
extraction [20, 32, 44].

There has been plenty of methods for depth estimation, which can be categorized into two
main groups: active methods and passive sensor-based methods. Active methods include laser
scanning [21] and structured light methods [14, 15]. These methods utilize physical sensors to
derive depth information [47]. Usually, these methods are more effective and efficient in
acquiring depth information. However, their required devices are expensive [4, 5, 49]. In
addition, because depth estimation is based on backlight information, it does not have high
accuracy in low-reflection environments such as black areas. Also, estimated depth values at
the boundaries of moving objects will not be reliable. Passive sensor-based depth estimation
methods use cameras to evaluate depth information [13, 18, 28, 46]. Therefore, these methods
are low-cost but slow [7]. The stereo technique [2, 22, 26, 40, 48] is one of the most popular
passive methods in which images from two cameras are used to estimate distances. The two
images are taken from a pair of cameras at two different positions. Depth estimation in this
method is based on the disparity between these two images. Although this system works well
in many environments, we should consider that in parts of the image in which illumination or
color is uniform, finding the pixels corresponding to the same points is complex. Furthermore,
in stereo imaging, all aspects of the environment don’t exist in all images. In other words,
some features will be hidden because of occlusion [41].

To estimate the depth of objects in obstructive environments, we need to increase the number
of cameras; therefore, we can see all the details of the environment. In [12], a depth estimation
method is presented based on the processing of images recorded by an array of micro-lenses. The
basis of this method is to compare the images in terms of the similarity of pixels. Although this
algorithm is highly accurate. Depth estimation accuracy will degrade when object surfaces do not
satisfy the Lambertian assumption or when concave surfaces exist. At a Lambertian surface, the
reflection of a beam from that surface has the same intensity in all directions. Still, on non-
Lambertian surfaces, from different angles, the intensity of the light is different. A method for
estimating depth based on integral imaging was proposed in [36, 45]. In this method, a soft-voting
system that considers the level of similarity among elemental images recorded from different
views is proposed. The accuracy of this method is reported between 83.98% and 93.71% for
simulated environments with 3DMAX software. Our purpose is to increase the precision of the
depth estimation of objects in real and occluded environments. In addition, in most of the methods
mentioned, the test objects are small and close to the lenslet array. In this paper, we intend to
introduce a method for estimating the depth of large objects at a far distance from the lenslet array.

Integral imaging system is one of the technologies that is based on processing a large number of
images for 3D reconstruction [6, 10, 23, 25, 31, 33, 35]. In this system, first, several images are
captured using an array ofmicro-lenses or cameras. These images are called elemental images. Then
using these pictures, the environmentwill be reconstructed, in 3D. The reconstruction process can be
done computationally. In this case, in the reconstructed image related to each specific depth, the
objects in that depth are apparent, and the other objects are a blur. Therefore, the object’s depth can
be realized by detecting on which depth, that object was clearly reconstructed.

In this paper, a newmethod for depth estimation based on integral imaging system is proposed.
In the proposed method, depth information is estimated by processing several images, which are
captured in a specific manner which will be explained in Section 2. Increasing the number of
elemental images will improve the quality of 3D reconstruction and hence the precision of depth
estimation. However, the system speed will be reduced due to computation increment. In the
proposed method, we estimate the depth information using five primary images to achieve good
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accuracy for depth estimation and acceptable computational speed. Furthermore, the results show
that because of the linear camera arrangement, the proposed method has acceptable performance
in estimating the depth of occluded objects. The validity of our approach has been demonstrated
by experimental results in different scenarios.

The following is a detailed description of this method. Section 2 introduces integral
imaging and two approaches have been proposed so far based on integral imaging.
Section 3 describes the new method presented in this paper. Experimental setup, an example
to explain more about the proposed method, and the results of reconstruction and depth
estimation are presented in Section 4. Finally, the paper concludes in Section 5.

2 Principles of integral imaging

The integral imaging technique was first introduced by Lippman [34] in 1908. With
progressing digital cameras and digital displays and using computers for processing tech-
niques, the attention to integral imaging has been increased. Today, there are many researches
in integral imaging using the most advanced technologies and imaging methods. Some of the
achievements of this researches are: Three-dimensional displays and TVs [42], automatic
target detection, [37], depth detection [1], three-dimensional imaging for photon counting [1],
3D imaging and 3D reconstruction for occluded objects [38], 3D imaging underwater [30],
medical imaging [27] and so on.

The method of integral imaging has two main stages: pickup and reconstruction. In the
pickup process, the elemental image array is captured through a lenslet array by an imaging
device. The pickup step of integral imaging uses a camera array, which is shown in Fig. 1. This
camera array contains several cameras in the form of 1-D line or 2-D plate. Determining array
characteristics such as the number of lenses, their arrangement (circular, linear, two-dimen-
sional), distance, angles, and size, strongly depends on the application [24].

The reconstruction step is the reverse process of the pickup and it can be performed either
optically or computationally. In integral imaging, the reconstruction is based on the principle
of reversibility of light rays. In the optical reconstruction, as it is the reverse of the pickup
process, elemental images are shown on a display panel such as a liquid crystal display (LCD)
as shown in Fig. 2. By placing the lens array used in the pickup step in front of the display
panel, a 3-D scene image will be reconstructed. The output of the computational reconstruction
in a specific depth Z0 is a 2-D image in which the objects originally located at Z0 are apparent
and objects located at other depths are blurred. The level of blurring of an object in the
reconstructed image is proportional to its axial distance from Z0.

To discuss the mathematical formulation, consider Fig. 3. Each voxel of object at position
(x, y, z) maps to several pixels, each one on an image plane behind the lens [23]. The pixels
intensity value of an elemental image i is inversely proportional to the square of the distance d
between that elemental image and the reconstruction plane. Therefore, for the reconstructed
point at (x, y, z) as shown in (1) and (2) [17, 23]:

Opq x; y; zð Þ ¼ Ipq xi; yið Þ
d2 x; y; zð Þ ð1Þ
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Fig. 1 A typical 2-D camera array used in the pickup step

Fig. 2 The 3D optical reconstruction principle based on the back projection of the elemental images through an
array of lenses with the focal length f. All elemental images are back-projected through their viewpoints and the
superposition of the ray cones projected from them will reconstruct the 3D scene
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xi ¼ sxp−
x−sxp
M

; yi ¼ syq−
y−syq
M

ð2Þ

Where O(x, y, z) is the intensity value of the reconstructed voxel x; y; zð Þ; I xið ; yiÞ is the
intensity value of the corresponding image point and d is the distance between the voxel and
image point. Magnification factor M is the ratio of the distance between the lenslet array and
the reconstruction image plane at z = L z, to the distance between lenslet array and the
elemental image plane (g), that isM = L/g. Finally, sx and sy are the elemental image sizes in x
and y directions, respectively.

Considering Fig. 3, distance d can be written as shown in (3) [23].

d2 x; y; zð Þ ¼ zþ gð Þ2 þ x−sxpð Þ2 þ y−syq
� �2h i

1þ 1

M

� �2

ð3Þ

The 3-D reconstructed image at (x, y, z) is equal to the summation of effect of all elemental
images at (x, y, z) , as shown in (4) [23].

O x; y; zð Þ ¼ ∑m−1
p¼0∑

n−1
q¼0Opq x; y; zð Þ ð4Þ

Where m and n are the number of the lenses in x and y directions, respectively. In this way, the
scene is reconstructed at any desired depth. Authors in [12, 36] proposed a methodology to
estimate the depth of objects in a scene using integral imaging-based approaches. The
following are the principles of these methods.

2.1 Depth estimation using minimum variance

In [12], a methodology is proposed to obtain the depth map of a scene using a minimum
variance criterion. In this method, using the integral imaging technique, objects are

Fig. 3 The computational reconstruction of a point source (x, y, z) on the object
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reconstructed in the 3D space. For each volumetric pixel (voxel) in space, spectral radiation
pattern (SRP) function is the radiation intensity. It is defined as L(θ, φ, λ) where −π/2 ≤ θ <
π/2 and 0 ≤ φ < 2π determine the radiation angle and λ denotes wavelength. Considering
Fig. 4, the effect of the i-th elemental image at (x, y, z) is defined as (5):

L θi;φi;λð Þ ¼ γi � I i ξ; η;λð Þ ð5Þ
Where

ξ; ηð Þ ¼ −gitanθi � cosφi; sinθið Þ
and g is the distance between the lens and its image plane. Also γi is R2

i =min R2
1;R

2
2;…;R2

N

� �

in which Ri is the distance between the i-th lens and the point (x, y, z).
For each voxel, by summing up the effect of N samples created by N sensors, SRP is

calculated. The variance of this function L can lead us to the depth information of the
environment. The SRP samples are correlated with each other in voxels which belong to an
object surface. Therefore, the variance of L has a minimum along with a range, z ∈ [zmin, zmax].
The depth of object surface is estimated by finding z such that the variance is minimized over
the range of interest. Although this method has yielded promising results, it has some
limitations in estimating the depth of non-Lambertian and concave surfaces.

2.2 Photo-consistency based maximum voting approach

In this approach [36], the depth map of the scene is generated using a voting strategy. This
voting strategy is based on the local information processing for each pixel. In this way, a
precise depth map with sharp boundaries is created by examining the similarity between

Fig. 4 Parameter definition for SRP
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different camera views. In the reconstructed image I at the depth level z, let us consider a pixel
at position (i, j) in the image and its square surrounding window W defined as (6) [36]:

Wij ¼ I iþ x; jþ yð Þ : −τ ≤x; y≤τf g ð6Þ
where (2τ + 1) is the size of the window. For a pixel at the position (i, j) of the image I, each
camera votes to the advantage of the pixel (i, j) at depth level z depending on the similarity
between the intensities of pixels of each camera and the pixels of reference camera R. Each
camera determines how much its pixel (i, j) brightness is similar to the pixel (i, j) image of the
reference camera. The similarity criterion, as seen in (7) is the Euclidean distance among the
pixel (i, j) from the reference camera and the pixels (x, y) from each camera [36].

dij x; yð Þ2 ¼ ∑N
k Ik x; yð Þ−IR i; jð Þð Þ2 ð7Þ

where N is the number of cameras. By summing up this distance for all pixels of the window
according to Eq. 4 and applying a weighting coefficient, the vote of cameras to the recon-
structed pixel at the depth level z is obtained (8) [36].

V i; j; zð Þ ¼ M∑Wij

x;yð Þexp −d2ij x; yð Þ=THR� � ð8Þ

In this way, the image of the environment in the range z ∈ [zmin, zmax] with the desired steps is
reconstructed and the V (i, j, z) is calculated for all pixels of the reconstructed images. The
proposed Maximum Voting approach estimates the related depth of each pixel (i, j) based on
the maximum value of votes obtained when this process is applied at each depth level z.
Therefore, for all the pixels in the reference elemental image R, the z value, where the V (i, j,
z) is maximum, is selected as the range of pixel (i, j). Thus, a depth map of the scene is created.
This process is done in L*a*b* color space and the Euclidean distance d is calculated in this
space because of the property of distances between two colors and the human perceptual
difference between them.

3 Proposed method

Most of the methods, which estimate the depth with processing several images of the scene are
inspired by the stereo method and compare images to identify similar points [12, 36]. The
same method has been used in the proposed method. The proposed depth extraction system is
shown in Fig. 5. In the proposed method, we compare the reconstructed images of different
depths with the original image of the environment and choose an image in which the object of
interest has the highest sharpness. For automatic depth estimation, the sharpest image is found
using speeded-up robust features (SURF) detector and descriptor. Therefore, the depth related
to the sharpest reconstructed image of an object, is presented as the object’s depth.

The number of elemental images has a significant impact on the quality of reconstruction.
As the number of these images increases, the sharpness of the reconstructed image at depth Z
for the object located at depth Z increase. Therefore, in this case, in the reconstructed image
only the object of depth Z is in-focus and the rest of the scene is blurred. To describe the
proposed method, we first look at how to capture elemental images. Then we explain how to
find the objects of interest in those photos. In the next section, we will explain how to
reconstruct the environment at different depths. Section 3.4 also describes how to automati-
cally estimate and present the depth of objects.
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3.1 Recording elemental images

To capture small objects, an array of lenses, which is in front of a camera can be used. In this
way, with a single shot, we have several images of the object from different angles. If the
targets are large, instead of using small lenses, several cameras are used. The number of
cameras in the imaging step depends on the parameters such as the size of the object and its
depth. To arrange cameras, various arrays can be used. They can be placed in a horizontal line
parallel to the object, in a line perpendicular to the object, square array, or other structures. In
this paper, cameras are arranged linearly. This array is a suitable choice for crowd environ-
ments, because it allows us to see all the details of the objects in the environment which may
be occluded by the other.

The calculation of this depth estimation method is related to the number of elemental
images. The more increase in the number of elemental images, the more time it takes to
depth estimation. In similar methods, reconstruction has been done using at least seven
elemental images [16]. To reduce the calculations, we have reduced the number of
cameras and consequently the number of elemental images. We need at least two
cameras to estimate the depth, but exact information about the depth will not be available
with this number. As a result, we have gradually increased the number of cameras, and
by examining their reconstructed images according to our algorithm, we have arrived at
the conclusion that we can achieve acceptable accuracy with five elemental images and
still have proper computational time. In arranging the cameras, we must notice that the

Recording 
elemental images

Reconstruc�on in 
different depths

Object extrac�on

Object detec�on and matching in 
reconstructed images using SURF 

Depth 
es�ma�on

Fig. 5 An overview of the proposed method
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distance between the cameras should be such that all the objects we want to estimate
their depth are in their viewing angle. We’ve connected the cameras to ensure the
distance between them is the same in different imaging scenarios. In fact, with 5
cameras, we are able to capture all parts of the environment. Therefore, in the proposed
method, five cameras with linear arrangement capture elemental images as shown in
Fig. 6.

3.2 Object extraction

To automatically detect the depth of the objects in the environment, those objects must first be
identified in the captured images. Therefore, our goal is to extract the objects in the images and
separate them from the background. Background separation is the basic idea in many object
extraction algorithms. In the usual background separation method, the image of the environ-
ment containing the objects is subtracted from the background image. Then, using a simple
threshold on the resulting image, the objects will be recognized [39]. In this paper, we identify
the objects in the environment using this method.

Fig. 6 Image recording in the proposed method. In this paper, linear camera arrangement is used
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3.3 Reconstruction in different depths

After recording elemental images, a computational reconstruction algorithm, as discussed in
Section 2, generates a set of 3D slice images in different depths. The depth of the image with
the highest sharpness of the object is considered as the depth of the object. In other words,
consider an infinitesimal point source at (x, y, z0). In the pickup stage, this voxel of 3D object
maps into several pixels in the display plan of the lenslet array. And in the reconstruction
process, to reconstruct the depth image at an arbitrary depth distance of z, we find the
corresponding voxels for all of these pixels. Then, we assign the intensity value of each pixel
to the corresponding voxel. If we consider the rays emanating from these pixels as shown in
Fig. 7, they will converge at the point (x, y, z0) and then continue their path as a diverging
beam. Therefore, at reconstruction planes z < z0 or z > z0 the computed voxels will not
coincide in the 3D scene, leading to a blurred image of the voxel (x, y, z0). However, they will
coincide at the reconstruction plane z = z0 and produce a sharp image of the original voxel.
The accuracy of depth estimation is equal to the step between the distances selected for
reconstruction.

3.4 Automatic depth estimation

Our purpose is to find the objects of the environment in each reconstructed image automat-
ically. To this end, we have benefited from SURF matching technique [8, 9]. This approach
uses a fast Hessian detector and gradient-based descriptor. The Hessian-based BLOB detector,
which is used to find the points of interest, approximates the Difference of Gaussian (DoG)
with box filters. What’s more, for orientation assignment, wavelet responses in both horizontal
and vertical directions are used by applying adequate Gaussian weights. Also, for feature
description, SURF uses wavelet responses. A neighborhood around the vital point is selected
and divided into subregions. Then, to get the SURF feature descriptor, for each subregion, the
wavelet responses are taken and represented. The sign of Laplacian computed in the detection

Fig. 7 The 3D reconstruction of an infinitesimal point source in integral imaging
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step is used for detecting interest points. To speed-up matching process, the features are
compared only if they have the same type of contrast (based on the sign) [29]. Therefore, the
SURF features of the objects in the scene are detected and matched with the SURF features of
reconstructed images. In this way, the reconstructed image, which has the highest clarity of
object, can be found automatically. Finally, the depth of the object will be the depth in which
the image with the highest clarity is reconstructed. Comparing the match rate of three popular
image matching techniques, i.e., Scale-Invariant Feature Transform (SIFT) [11], SURF and
Oriented FAST and rotated BRIEF (ORB) [43], shows the best performance in detection is in
most cases related to the SIFT feature, but this method is much slower than SURF and ORB
[43]. Therefore, we used SURF features to accelerate the depth estimation process and reduce
the computation time. The validity of our approach in finding reconstructed images, in which
the objects have the highest sharpness has been demonstrated by experimental results.

4 Experimental setup

To estimate the depth based on the integral imaging method, we captured the environment
using five cameras. Since the 3D image disparity occurs mostly along the horizontal rather
than the vertical direction for the objects considered in this work, we capture the environment
using a linear array of cameras. Instead of using multiple cameras, different viewpoint images
can be captured by shifting a single camera to different positions. However, an array of five
cameras have been selected such that the third camera is oriented at line-of-sight to the first
object with two cameras at its right side and two at its left side. As depicted in Fig. 3, the x-axis
is chosen to be the camera line, the z-axis to be the optical axis of the cameras, and the y-axis
to be perpendicular to the table’s surface. The specification of the cameras is given in Table 1.
Then computational reconstruction was performed at various depths. In the following, we
recognized the objects of the environment in the reconstructed images using the initial images.
All programs have been implemented in MATLAB software.

4.1 Image database

To evaluate the proposed method, we employed it to estimate the depth of objects in several
different scenarios. Two of these scenarios are shown in Fig. 8. In the first scenario, five
objects with different surfaces and shapes are placed at a distance of 50 to 285 cm from the
camera. In this environment, a small cube covers the part of the white bottle, and a ball covers
the red bottle. Therefore, this environment is occluded. In addition, the red bottle surface is
non-Lambertian. In the second environment, six letters are written on cards and placed at 60,
105, 160, 205, 248, and 395 cm from the camera array, respectively. The card with the letter
“B” is fully occluded by the card of the letter “F”. This scenario has been designed to assess

Table 1 Camera parameters

Camera specifications Nikon D7200

Focal length 18 mm
Lens size 23.4 mm × 15.7 mm
Image size 540 × 810
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the accuracy of the proposed method in reconstructing corners, curves, and lines in scenes with
different levels of occlusion.

4.2 An example

In this section, we will explain the proposed method with an example. Figure 9 shows
elemental images of six cards within 60 to 395 cm of the camera array.

Figure 10 shows examples of reconstructed images in different depths of the environment
shown in Fig. 9. Consider reconstructed image in-depth 60 cm in Fig. 9c. As shown, this
image contains an in-focus image of the card of “F” letter and a blurred effect of all other
objects.

Now we extract the cards from the reconstructed images as described in Section 3.2. The
cards containing letters “A”, “B”, “C”, “D”, and “F” are identified in Fig. 11d by subtracting
the background image from one of the elemental images.

In this step, we examine reconstructed images to find the in-focus image of the detected
objects. Figure 10 shows a set of reconstructed images of different depths in our second
scenario. To find the depth of the F letter, the image which has an in-focus F letter in the image
set of Fig. 10 should be found. To achieve this goal, SURF features on the image of F letter are
detected then the SURF features are also searched in the collection of images in Fig. 10. In the
following, the most similarity between the features of image 12(a) with the features found in
the image collection is searched. As shown in Fig. 12c, the most similarity was found in a
picture reconstructed at a depth of 65 cm. As a result, the depth of the card on which the letter
F is inserted is equal to 65 cm.

In this way, we identify the images in which the objects have the highest sharpness and
estimate the objects depths. We also follow the algorithm steps outlined in this section for our

Fig. 8 Two scenarios used to evaluate the proposed method. a In the first scenario five different objects are
placed in front of an array of cameras. b In the second scenario we estimate the depth of 6 different cards

Fig. 9 Five elemental images captured to extract depth information of six cards
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second scenario. Figure 13 shows the reconstructed images in which each object is in-focus.
These images are selected through matching using SURF features.

4.3 Evaluation method

To evaluate the proposed method, we calculate the percentage of the average relative error (9).

Er ¼ DPr−DRej jð Þ=DReð Þ*100 ð9Þ
where Er is the relative error percentage, DPr is the depth estimated by the proposed method
and DRe is the actual depth value.

Fig. 10 The reconstruction results of elemental images of Fig. 8, a to f: in six depths of 35, 55, 60, 70, 95, and
110 cm
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4.4 The effect of camera numbers on the depth estimation

In this section, we will investigate the effect of changes in the number of cameras on the
accuracy of the proposed method. To this end, we change the number of cameras in each of the
scenarios of the database from 2 to 10 and calculate the depth of the objects with the proposed
method. In each scenario, we calculate the average estimation error of the proposed method for
all of the objects and as a result the average accuracy of the proposed method. Figure 14 shows
the average accuracy of the proposed method versus the number of cameras in both scenarios.
As expected, the accuracy of depth estimation falls with a decrease in the number of viewpoint
images. Still, even in the case of heavy occlusion of our environment, the depth estimation
accuracy is more than 80% for the number of cameras, being as low as 5. On the other side,
there is a tradeoff between the number of elemental images and the computational time,
therefore, we can achieve acceptable accuracy with 5 elemental images and still have accept-
able computational time.

4.5 Results

Our query set includes 11 objects of various types. This is composed of six 2D alphabetical
patterns of “A,” “B,”, “C”, “D”, “E”, “F”, and “E” with 540 × 810 pixels each located at 60,
105, 160, 205, 248 and 395 cm from the origin of a pinhole array, respectively. In addition, our
query set includes five 3D objects with different shapes. The dimension of the pinhole array

Fig. 11 Object extraction details. a One of the elemental images, b background image, c after subtracting the
background image from the elemental image, d detected objects
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used is given by 1 × 5 pinholes, and the distance between the pickup plane and the pinhole
array is set at 18 mm. In each environment, a total number of 351 discrete frames of the scene
are reconstructed at the output plane ranging from z = 50 cm to z = 400 cm with the
increment of z = 1 cm between each frame. Therefore, estimated depth is a natural number
between 50 and 400. Some of the final reconstructed plane images are shown in Fig. 13. If we
decrease the reconstruction step, the accuracy of the depth estimation will increase, but this
will increase the computation and the depth estimation time too.

The experimental results are summarized in Table 2, where the estimated depth of 11
objects is reported. The results shows that the proposed method yields an error rate of 5.53% to
10.35% for depth estimation in real environments. In the article [36], which has the best
performance in estimating depth using an integral imaging based technique, the accuracy is
reported to be 83.98% to 93.71% but we have achieved an accuracy of 80% to 97.47%. This
indicates that the maximum accuracy has been improved. Table 3 shows the high error and
mean error values associated with the depth estimation methods. Results show that the high
error of the proposed method is better than the Min-variance method and close to the max-
voting while we have a lower mean error. Therefore, the proposed method has been able to
provide better accuracy while it doesn’t have the limitations of previous methods.

Fig. 12 Matching the SURF features in the reconstructed images and the image of “F” letter. a, b the SURF
features on the image of F letter and reconstructed image, respectively. cDetecting F letter in reconstructed image
of depth 65 cm
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5 Conclusions

A novel depth extraction method for 3D objects, behind occlusions, based on computational
integral imaging has been presented. Unlike most previous methods, which are proposed to
estimate the depth of small objects that are located near the camera array, in this method, we
estimate the depth of large objects at a far distance from the camera array. For depth
estimation, we first record several images from different views using an array of cameras.

Fig. 13 Reconstructed images in which desired objects are in-focus. a Image of occluded objects and recon-
structed slice images at b 50 c 100 d 150 e 200, and f 285 cm
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Then we use the integral imaging algorithm to reconstruct the environment at different depths.
The necessary information for estimating the range of an object of interest can be found in the
3D reconstructed images. A reconstructed image at depth z0 contains an in-focus image of the
object initially located at z0 and a blurred effect of all other objects. To evaluate the
performance of the proposed method, various scenarios have been investigated. Two groups
of images acquired with a 1 × 5 camera array, were used to test the performance of the depth
estimation method. In addition, a measure was used to assess the quality of the depth
estimation results. The experimental results demonstrate that using this method, the precision
of depth estimation in occluded scenes increases. At the same time, there are no limitations
such as sensitivity to gender and type of the object surface and its size. Future research
includes using this method to estimate the speed of vehicles. The vehicle ‘s depth (car-to-
camera distance) is calculated over a time interval. The distance traveled by the vehicle is equal
to the difference of estimated depths at the beginning and end of this time interval. The vehicle
speed will be calculated as the distance traveled divided by the time elapsed.

Fig. 14 Depth estimation accuracy versus the number of cameras in the a first scenario and b second scenario of
the database

Table 2 Experimental results in two different scenarios

First environment Second environment

Real depth (cm) Estimated depth(cm) Error (%) Real depth(cm) Estimated depth(cm) Error (%)

50 43 14 60 65 8.33
100 80 20 105 115 9.52
150 135 10 160 165 3.12
200 195 2.5 205 215 4.87
285 270 5.26 248 260 4.83

395 405 2.53
Average error 10.35 5.53

Table 3 High error and mean error of the 3 methods

High error (%) Mean error (%)

Min–variance [12] 54.13 32.3
Max–voting [36] 16.12 11.17
Proposed method 20 7.94
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