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Abstract
Sleep disorder diseases have one of the major health issues across the world. To handle
this issue the primary step taken by most of the sleep experts is the sleep staging
classification. The whole visual inspection process is carried out manually by the sleep
experts, which can be a highly time-consumed task and creates a lot of annotation errors
due to more human interventions. In this study, we introduce an efficient and robust
approach to improve the sleep staging accuracy. In this paper, we proposed an automated
deep nine-layer one-dimensional convolution neural network for multi-class sleep staging
classification (9 L-1D-CNN-SSC) using polysomnography (PSG) signals. The proposed
9 L-1D-CNN-SSC model comprises eleven layers with learnable parameters: nine con-
volution layers and two fully connected layers. The main objective of designing such a
model is to achieve higher classification accuracy for multiclass sleep stages classifica-
tions with reduced learnable parameters. The proposed network architecture is tested on
two different subgroups recordings of ISRUC-Sleep datasets namely ISRUC-Sleep
subgroup1 (ISR-SG-I), and ISRUC-Sleep subgroup3 (ISR-SG-III). The proposed model
is compiled with eight different individual experiments based on a single-channel elec-
troencephalogram (EEG), electrooculogram (EOG), electromyogram (EMG), and com-
binations of EEG + EOG+ EMG signals. The proposed 9 L-1D-CNN-SSC model
achieved the highest classification accuracy of 99.03%, 99.50%, and 99.03% for three
to five sleep stages classification, respectively with single-channel of EEG signals,
similarly, the model achieved 98.93% for two-state sleep stage classification with EMG
signals using the ISR-SG-I dataset. The same model achieved the highest classification
accuracy of 98.88%, 98.76%, and 98.67% for three-five sleep stages classification with a
single-channel EMG signal, and 99.24% for two-state sleep classification with single-
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channel EOG using ISR-SG-III dataset. It has been observed that the obtained results
from the proposed 9 L-1D-CNN-SSC model give the best classification accuracy perfor-
mance on multiclass sleep stages classification incomparable to the existing literature
works. The developed 9 L-1D-CNN-SSC deep learning architecture is ready for clinical
usage with high PSG data.

Keywords Sleep stage classification . Polysomnography signals . Deep learning .

1D-convolution neural network

1 Introduction

Nowadays it has been observed that the neurocognitive system directly decides the mental and
cognitive performance in a particular task. It’s very difficult to determine the subject’s sleep
behavior very accurately either numerically or any standard evaluation procedures [8]. Cur-
rently, sleep related diseases are an open challenge in the medical domain concerning different
diseases such as neurology disorder, rehabilitation, and psychology-related disorders. It’s also
very difficult to assess with a scenario of changes sleep characteristics in a known predictable
manner. These types of diseases are more challenging concerning analysis and getting proper
diagnosis solutions [23]. Sleep is one of the important ingredients for good human health and
also responsible for maintaining the fitness and functioning of the different core systems of our
body. It also put an impact on our proper functioning of mental and cognitive systems [12].

For human life, a total of one-third of its duration is constituted of the sleep cycle. It has
been observed from several studies that sleep deficiency causes so many consequences like
inability to solve the problem, not able to make proper decisions, not controlling the emotions,
and reflected several changes in people [11, 70]. Sometimes the improper quality of sleep
influenced different types of sleep-related disorders such as sleep apnea, insomnia, depression,
narcolepsy, hypersomnia, breathing-related disorders, and circadian rhythm disorders [77].
Sometimes it has been seen that sleep deprivation is considered a stress-related disorder or
sleep pathology, which causes high risk in performing some common cognitive risks such as
workplace incidents, road accidents happened [25]. According to a report of the National
Highway Traffic Administration of USA, due to drowsiness around one lakh, car accidents
happened, as consequence more than 1500 death cases resulted and injuries cases reported
around 71,000 annually [22].In this scenario, proper analysis of sleep stages is very important
for identifying sleep-related irregularities. So that it is very essential to analyze the sleep stages
behavior and accurate scoring of sleep states is a very crucial segment of the sleep staging
process [27].

The polysomnography test is the primary step for any type of sleep-related disorder. It is a
combination of different physiological signal which is useful during analyzing the sleep
patterns of an individual subject. Several polysomnographic recording is recorded for sleep
scoring: the EEG signal are used for monitoring the brain-behavior, the EOG signal used for
monitoring eye movements and the EMG signals are tracked the changes behavior muscle
tone. The entire sleep staging process is generally conducted through visualizing the sleep
patterns of the subject during sleep periods by well-trained sleep experts according to two
available standard sleep guidelines: the Rechtschaffen and Kales (R&K) [36] and the Amer-
ican Academy of Sleep Medicine (AASM) standards [78].As per AASM rules, the whole sleep
stages are divided into five sleep stages: wake stage (W), non-rapid eye movement (NREM)
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sleep stage1 (N1), NREM sleep stage2 (N2), NREM sleep stage3 (N3), and rapid eye
movement (REM) sleep stage. The main revision that occurred with AASM is, the merge of
two R&K-defined sleep stages S3 and S4 into one single sleep stage, called N3.

Each defined sleep stage in AASM behaves differently during sleep periods. In this study,
we are using an automated sleep stage classification system for these five sleep stages.
Generally, one subject can go through all these sleep stages during its sleep cycle periods.
One person can cover 3 to 5 sleep cycles, each of the time duration around 90–110 minutes
during a full sleep [41]. During the first phase of the sleep cycle, the period of NREM stages is
more and later part of the sleep cycles, periods REM stage increases. Earlier the sleep staging
is done through visual inspection for a period of 2 to 5 hrs. in 8 hrs. of sleep for one subject.
Traditionally, the sleep experts have segmented the entire sleep recordings into the 30-s
interval, called one epoch, and each epoch labeled with one of the sleep stages through
visualizing of its frequency and amplitude ranges, the characteristics of EEG waveforms,
blinking of eye movements (EOG) and muscle movements (EMG) [76].

This traditional way of monitoring sleep stages methods has so many disadvantages such as
requires more sleep experts to monitor the sleep recordings, time-consuming, and erroneous
[10]. Due to more human interpretations during recording and it may not report good
classification accuracy in the diagnosis of sleep stage classification [72]. Based on the
above-mentioned drawbacks, automated classification of sleep stages is introduced, which
ultimately gives benefits for quick diagnosis and also reported with increases of high classi-
fication accuracy [52, 55].

Sleep staging analysis and its scoring is a complicated procedure because of changes in
sleep characteristics related to different sleep stages and also the non-stationary nature of the
signal information [57].

The rest of the paper is presented as follows: In Section 2, the authors present the research
contributions with related to sleep staging. Section 3 describes a brief overview on CNNmodel
and its parameters. Section 4 describes briefly on the proposed methodology, which includes
descriptions of the dataset used, proposed 9 L-1D-CNN-SSC model, model training and
testing of 9 L-1D-CNN-SSC model are discussed. Section 5 presents the brief descriptions
of experimental results of the proposed model. Section 6 discusses about the results and
compares them with those by the state-of-the-art methods.Finally in Section 7 the concludes
the paper and present the future directions.

2 Related work

Most of the authors are proposed an automatic sleep stage classification system for identifying
the sleep patterns and diagnosis of several types of sleep-related disorders [29, 33, 34, 44]. In
general sleep, staging procedures are conducted mainly on two strategies, one with single-
channel input recording, and the other is multi-channel input recordings [60, 62, 63]. In the
first approach, only one channel is considered for extracting the informative features about the
sleep characteristics of the subjects. Similarly in a multi-channel system of recordings, a
number PSG signal is used that is more than one EEG channel, EOG channel, and EMG
channel [65, 66]. There is a standard procedure obtained for an automated sleep stage
classification by most of the authors to their sleep staging experiments through five basic
stages: 1) Signal the acquisition, 2) Pre-processing, 3) feature extraction,4) feature reduction,
and 5) classification [79, 82]. The 3)feature extraction step is used for extracting the different
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characteristics parameter from preprocessed signal stage 2).These feature values can be
extracted in frequency,time,time-frequency and non-linear domains [2].It has been seen that
some of the s, one additional step used by authors that is feature reduction or dimensionality
reduction stage. It is very helpful in screening the relevant features for the classification model.
From our survey, it has reported that some of the feature selection algorithms used by different
authors in their ASSC study are: principal component analysis (PCA) [46], relief algorithm
[50], linear discriminate analysis (LDA) [58], minimum redundancy maximal relevance
(mRMR) [71], and sequential forward and backward selection method [73, 74].Similarly in
case of classification model used in recent automated sleep stage classification includes:
support vector machine (SVM) [38, 53, 80], k-nearest neighbor (KNN) [104], k-means
clustering [84], decision tree (DT) [96], bootstrap aggregating [7],random forest (RF)
[20],naïve bayes [3],Gaussian mixture model (GMM) [97],adaboost [6], sparse auto
encoders (SAE) [61],and artificial neural networks (ANNs) [93].

In recent research developments, deep learning techniques are becoming more popular in
machine learning research applications and also used so many applications such as human-
brain computing, computer vision, natural language processing, and speech recognition.
Recently it has been found that deep learning concepts such as CNN [87, 99], RNN [28,
37], and LSTM [35] applied to the sleep staging approach. Currently, research on sleep staging
plays an important role in NCP and Human-Machine interaction (HMI). There are several
studies related to automated sleep staging using various physiological datasets and multimedia
data, such as EEG, EMG, EOG, ECG, and audio, etc. One of the most popular contributions of
sleep stage classification is the study of sleep behavior through human brain-computer-
interaction (BCI) [102, 105].Till now also traditional machine learning techniques used for
sleep staging, and recently in this research deep learning methods used in several contributions
of automated recognition of sleep stages. We now look upon some of the recent contributions
presented by different authors related to sleep staging using machine learning and deep
learning concepts.

2.1 Polysomnography (PSG) based sleep staging using machine learning approaches

Most of the research contributions until now depend on the machine learning techniques for
the recognition of sleep stages in an automated system. Krakovska et al. [35] used 6 EEG
channels, 2 EOG channels, and 1 EMG channel used for recordings of the sleep behaviour and
obtained features like variance, average amplitude, and spectral power. For classification of
sleep stages obtained using quadratic discriminate analysis and the accuracy result reported
about 74%.

In [54] the author considered multiple signals such as EEG, EOG, and EMG for the
automated sleep scoring through the extraction of features like skewness, kurtosis, variance,
entropy and used a dendrogram-based SVM (DSVM) classifier for classifying the sleep stages
and reported accuracy for the model as 88%.

Zhu et al. [106] obtained graph-oriented features from single-channel EEG and used SVM
classification techniques and the accuracy result was reported for six-state classification as
87.5%.

Hassan et al. [32] applied the EEMD algorithm for signal enhancement from single-channel
EEG signal and extracted statistical features are forwarded into boosting techniques and the
reported accuracy for two-six sleep stages is reported as 98.15%, 94.23%, 92.66%, 83.49%,
and 88.07% respectively.
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Silveria et al. [85] presented a six-state sleep staging approach using a discrete wavelet
concept and obtained a random forest classifier, the model achieved 90% accuracy.

Rahman et al. [75] introduced a single-channel EOG sleep scoring approach and extracted
statistical features by applying discrete wavelet transform techniques. The average accuracy
reported for six state classifications through RUSBoost, RF and SVM is 90%, 91%, and
91.7%.

Memar et al. [59] proposed two-state sleep staging and the acquired signal decomposed into
eight sub-bands, finally 13 features are extracted from each sub-band epoch. The suitable
features are identified through the mRMR feature selection algorithm. The model achieved an
overall accuracy of 95.31% through a random forest classifier.

Imtiaz et al. [42] presented automated sleep staging through home-based polysomnography
signal and the model reported accuracy for training and testing dataset are 89% and 72%
respectively through decision tree classification algorithm.

Dimitriadis et al. [16] proposed one channel EEG sensor ASSC techniques and estimated
cross-coupling frequency (CFC) from each epoch and the system achieved an overall accuracy
of 94% through multi-class Naïve Bayes classification techniques.

Sen et al. [81] proposed a sleep staging system using a single-channel EEG signal and
obtained 41 multiple feature parameters. The relevant features were selected through different
feature selection algorithms such as minimal redundancy maximal relevance (mRMR), ReliefF
feature selection algorithm, fast correlation-based feature selection algorithm (FCBF), and
Fisher score algorithm. Finally, the selected features were fed into five different classification
algorithms such as support vector machine(SVM), decision tree(DT), random forest(RF),
feed-forward neural network (FFNN), and radial basis function neural network (RBF)
and the RF classification model reported accuracy of 97.03% for six sleep states
classification problems.

Dikhya et al. [17] presented automated sleep staging system by obtaining the statistical
time-domain features, structural graph similarity feature based on single-channel of EEG
signal under R&K sleep scoring rules and the proposed model performed best using SVM
classifier, an average accuracy of 95.53%.

T. Zhang et al. [103] proposed a novel mechanism for feature selection using the filter
method with pairwise constraints. The author has obtained two different categories, one
section of data having affected with mild sleep problem and the other category section, healthy
controlled subjects. The whole recordings were collected from the S-EDF dataset. Finally, the
model reported an accuracy of 97.66% and 93.57% with consideration of category-1 and
category-2 data respectively.

Basha, A. J et al. [9] obtained the fuzzy-kernel SVM for classifying the sleep stages and
extracted the statistical features and the selected features were fed into the recurrent neural
network and the model reported an overall accuracy of 90.2%.

Shen, H et al. [83] proposed an improved model based on features with a combination of
locality energy and state-space model for automated classifying the sleep stages based on
single-channel electroencephalogram signals under the R&K and AASM sleep scoring guide-
lines. The model reached an overall classification accuracy of 92.04% and 78.92% using the S-
EDF and Dreams dataset respectively. Similarly, the same model reported accuracy of 79.90%
and 81.65% using Dreams and ISRUC-Sleep dataset.

Wang, Q. et al. [98] proposed a high-accuracy and high-efficiency automated sleep staging
system using single-channel EEG data and extracted 30 features of types time, frequency,
time-frequency features, and non-linear parameters. The selected features were classified
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through the ensemble learning stacking model and reported an overall accuracy of 96.67% for
the five-class sleep stages classification task. It has been also seen that the multi-modal signals
analysis also takes an important role during the diagnosis of different types of sleep-related
diseases. Therefore several sleep studies were conducted by the different researchers using
multi-channel signals.

Yan, R. et al. [100] develop an automated sleep staging system based on the eight
combinations of the four multi-modality channels of PSG signals and obtained a total of
232 features of statistical, time, frequency, time-frequency entropy, fractal and non-linear
parameters were extracted. The model reported an accuracy of 86.24% using a random forest
classifier with the ReliefF selected features.

Ghimatgar, H. et al. [24] introduced a multi-modality approach using a deep learn-ing
model and Hidden Markov Model (HMM) to improve the sleep staging performance using
multi-channel EEG data. The experimental data collected from sixteen neonates having an age
range of 38–40 weeks. The relevant features were screened using the MGCACO algorithm.
The model is trained using bi-directional long-short time memory and post-processing done
using HMM model. The proposed model reported an accuracy of 78.9% and 82.4% using the
K-Fold cross-validation and LOOCV techniques respectively.

Cooray, N. et al. [14] presented a sleep staging system followed by Rapid Eye Movement
sleep behavior disorder (RBD) detection. The extracted 156 features from EEG, EOG and
EMG channels and forwarded them into the RF classifier. The model reported an accuracy of
92%.

Diykh, M et al. [17] presented the new sleep staging system based on the statistical features
and weighted brain networks using multiple-channel of EEG signals under both R&K and
AASM sleep scoring guidelines. The proposed model has been per-formed on the two most
popular public datasets namely ISRUC-Sleep and S-EDF dataset. The model reported an
average accuracy of 96.74% with C3-A2 channel under the AASM scoring standards and 96%
with Pz-Oz channel under the R&K standards.

H. Korkalainen et al. [51] presented the deep learning approach for automatic sleep staging
system and analyzed the severity of obstructive sleep apnea (OSA). The overnight
polysomnography recordings obtained from S-EDF public dataset, both healthy and sleep
apnea subjects were considered for analysis of the sleep behavior. The model reported an
overall accuracy of 83.7% with single-channel EEG and 83.9% with single-channel EOG.
Similarly, for the clinical data, the model achieved an accuracy of 82.9 with EEG signal and
83.8% with combinations of EEG and EOG data.

2.2 Polysomnography (PSG) based sleep staging using deep learning approaches

Nowadays the researchers are majorly focused on deep learning techniques for sleep staging
because of its robustness, scalability, and adaptability with related to handle large amounts of
signal recordings and it’s processing. Another important advantage related to deep learning
models is, no need to require any explicit features for discriminating the subject’s sleep
behaviour [30]. It has witnessed that deep learning techniques working well in different
applications like image segmentation, recognition, detection, and natural language processing.
It has also been observed that deep neural models are widely used in different fields of the
biomedical research area. In recent research developments, it has found that notable increases
happened with the use of the deep neural network in the field of biomedical signals (EEG,
ECG, EMG, and EOG) [18].
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Recently deep learning concepts proposed in many challenging applications by the different
researchers with the input of biomedical signal data which includes epileptic seizures [18, 39,
45, 89], neurological disorders using CNN models [21, 40, 67, 94] and heart diseases using
ECH channel [18, 30, 39, 51].some of the recent contributions conducted by different
researchers using deep learning models for classifying sleep stages are described below here.

In [45], the author used a deep convolution neural network for automated sleep staging with
the input of single-channel EEG. The model achieved an overall accuracy of 74%.

Sors A et al. [89] presented automatic sleep stages scoring for five-sleep states based on
one-channel of EEG using the CNN model and the results reported for the proposed model are
87%.

Chambon et al. [94] introduced a deep learning model with the concept of multivariate
signal analysis such as EEG, EOG, and EMG using KNN. The proposed model reached an
overall accuracy of 80% with combinations of EEG + EOG + EMG.

In [40] the authors obtained five-layer convolution layers for classifying the sleep stages
based on two-channels of EEG and EOG signal and one-channel of EMG signal and achieved
result for the model is 83%.

Tripathy et al. [67] introduced a novel approach of sleep scoring based on coupling features
of EEG data and RR time-series information using deep neural networks. The model resulted
in an average accuracy of 95.71%, 94.03%, and 85.51% for the classification in between
NREM vs REM, deep sleep vs light sleep, and sleep vs wake respectively.

Zhihong Cui et al. [21] proposed a sleep scoring system with input of 30s multi-channel
signal information based on CNN and fine-grained properties, the model reported an average
accuracy of 92.2% with the ISRUC-Sleep public dataset.

Supra Tk A et al. [56] designed a system of sleep scoring through extracted time-invariant
information using CNN and find sleep stages transition information from the bidirectional
LSTM network. The reported classification accuracy performance reached to 86.2%.

Akyol, K. et al. [5] presented a stacking ensemble learning model for analysis of the single-
channel EEG signal and identifying the epileptic seizure detection. The clinical dataset was
collected from the Bonn University. Finally, the author has com-pared the performance of the
proposed model with the deep neural network (DNN) model. The model achieved an average
accuracy value of 97.17%.

Yildirim, O. et al. [101] developed a deep learning model using a one-dimensional
convolutional neural network (1D-CNN) using combinations of EEG, EOG, and EMG signal
for classifying the six-two sleep stages classification problems. The model reported an overall
accuracy of 91.00%, 91.22%, 92.36%, 94.64%, and 98.06% using the S-EDF dataset and
similarly, the same model achieved an accuracy of 89.54%, 90.98%, 92.33%, 94.34%, and
97.62% using SE-EDF dataset for classifica-tion of six-two sleep classes problems.

Zhu, T. et al. [107] proposed a sleep staging system using a neural network with the
implementation of the CNN concept and obtained inter and intra epoch features from the input
signal. The model reached overall accuracies of 93.7% with S-EDF and 82.8% with SE-EDF
datasets respectively.

Fernandez-Blanco, E et al. [19] proposed an ensemble technique for an automatic sleep
scoring system using multiple-channel of EEG signals, and the model was trained using
the convolutional neural network. The entire experiment work was done through a
widely accepted bench-mark dataset as SE-EDF dataset and the test was carried out with
help of leave-one-out cross-validation technique. The model achieved an accuracy of
92.67%.
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C. Sun et al. [90] presented multi-class sleep stages classification using PSG signals based
on a hierarchical neural network model. The model functioned in two phases, in the first phase
using through feature learning stage and the second phase is the sequence learning stage. This
study performed on 147 patients’ sleep recordings, which were obtained from the MASS
dataset. Finally, the model reported an overall accuracy of 87.8% and an F1score of 81.8
respectively.

Chenglu Sun et al. [91] developed an automated sleep staging system based on a two-stage
neural network model. During the first stage, the model learning hand-crafted features, and in
the second stage the model is learned. The author also intro-duced the data augmentation
techniques to resolve the class imbalance problem. The whole work was executed through two
public datasets such as S-EDF and Sleep apnea dataset. The proposed model reported the result
of F1score and Kappa score as 80.6% and 80% with healthy subjects, and 79% and 74% with
sleep-disordered subjects.

Antoine Guillot et al. [26] proposed an automated sleep staging system using a deep
learning model called as SimpleSleepNet, where the author retrieved two differ-ent categories
of data from the Dreams dataset, one completely healthy controlled and other section of data
are collected from the subjects who were affected by the sleep apnea subjects. The required
data prepared by the five different sleep experts in the different sleep centers. Finally, the
SimpleSleepNet framework achieved an average F1Score 89.9% with healthy controlled
subjects and 88.3% with apnea subjects.

Mehdi Abdollahpour et al. [1] proposed the automated sleep staging system using the
combinations of EEG and EOG signals. The extracted features from both the signals were
separated into two different sets, one set contained the EEG features and the other set
contained the fused feature of EEG + EOG. Each feature set is transformed into a horizontal
visibility graph (HVG). The images of the HVG are classified by the convolutional neural
network with the concept of transfer learning. The model has been performed on the two most
popular datasets such as S-EDF and SE-EDF datasets. The model achieved an overall accuracy
of 93.58% using the S-EDF dataset.

According to the existing contribution to sleep scoring, major challenges found that
choosing the correct features which helps to distinguish the sleep stages. It has found that
the maximum researchers extracted the time, frequency, and time-frequency features, then
after finalizing the relevant features either manually or applied some conventional feature
selection algorithm. In some cases, this selection algorithm increases the complexity factor and
consumes more time. Another challenge related to feature selection is that some features are
well fitted for some of the subjects but the same may not apply for another one.

The next challenge with earlier contribution is that, improper distributions of sleep epochs
for all the sleep stages. This imbalance of sleep information may produce biased results with
conventional machine learning algorithms. From the literature survey, it has found that the
maximum researchers extracted the time, frequency, and time-frequency features, then the
relevant features are selected either in manually or using some conventional feature selection
algorithm, which takes the computational time and also increases the complexity factor,
Another limitation regarding selected features, some of the features well suitable for classifi-
cation for some of the subject cases may be the same many not applicable for other categories
of subjects. This may create a problem to achieve higher classification accuracy.

Another challenge with subjects to sleep staging is that sometimes in the recorded data, it
may see that the sleep epochs are not distributed equally for all the sleep stages. This
imbalance of information may produce biased results with traditional machine learning
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algorithms. In most of the previous studies, these may not be properly addressed, so that
reported classification accuracy performance is not up to the mark level. With consideration of
all these issues, the authors obtained deep learning techniques for automated analysis and
classification of sleep stages using polysomnography signals. Though our input data is in the
form one-dimensional size. In this study, we propose a 9 L-1D-CNN-SSC for automated sleep
stages classification. To recognize the sleep behavior, here the authors have proposed an end-
to-end structure, without use any type of handcrafted features for learning. The proposed
model learning the features automatically from the obtained layers of the model. Apart from
this, other advantages of this architecture and addressing the multi-class sleep stage classifi-
cation problems without changing any of its layers and its parameters for two to five sleep
classes.

2.3 Contribution

The main contributions of our proposed research works are explained below:
1. The authors propose a 9 L-1D-CNN-SSC architecture for classifying multiple sleep

classes based on multi-modality signal fusions under the AASM sleep scoring rules using two
different categories of subjects’ sleep recordings.

2. The proposed architecture of 9 L-1D-CNN-SSC consists of a convolutional layer,
pooling layer, batch normalization layer, and fully connected layer. The performance of the
proposed model is also compared with the existing pre-trained model. The obtained features
from the last fully connected layers of the 9 L-1D-CNN-SSC model were fed into the softmax
activation function.

3. The complete sleep staging process was analyzed with the three different combinations
of signals and each one executed in the individual experiment. The first three experiments were
executed with the input of single-channel EEG, EMG, and EOG signal, and the final
experiment is performed with combinations of the three signals, EEG + EMG + EOG.

4. The proposed methodology uses fewer parameters to train the model and extracting the
prominent features from the input signal data automatically, which supports achieving the high
classification accuracy incomparable to the earlier contributions. Concerning the earlier
contribution of sleep staging using the CNN model by different researchers, our proposed
model is well competitive with the results of existing sleep studies, which use even complex
structure CNN architecture.

3 Background of CNN model

In recent years, deep learning techniques attempt excellent performance to learn the highly
complicated behavior from the input biomedical signals through a designed hierarchical
architecture model. Among the different modes in deep learning methods, the CNN model
is a more effective technique in biomedical signals and image analysis and classification
problems compared to traditional machine learning techniques. The network styles of the CNN
model are quite similar to the conventional ANN model structure, a CNN model framed with
compositions o the input and output layers, and a set of hidden layers. The hidden layers of the
CNN model comprise a set of convolution, pooling, and fully connected layers, which extracts
the highly commendable features from the input data automatically, which are more feasible in
concerns to each and individual neuron representing in each layer. Like ANN, CNN also

8057Multimedia Tools and Applications (2023) 82:8049–8091



depends on the previous layer’s weight and bias information to get the final result. The typical
structure of the CNN model for a one-dimensional signal is shown in Fig. 1.

The entire working procedures in CNN are implemented through two basic stages
1.feedforward stage, 2.backpropagation stage.

In the feedforward stage, the given input data are fed into the designed model, each input
data are multiplied with the layer’s parameters of each layer and finally, the achieved feature
map values are forwarded into the network output. During the backpropagation stage, the
values of the weights are adjusted in each successive layer in the network to control and reduce
the error values in the obtained model by implementing the proper loss function. Finally, the
error rate determines by comparing actual and desired outcomes.

The CNN model consists of several network layers such as convolution layers (CONV),
rectified linear unit (ReLU), batch normalization layers (BN), pooling layers, and fully
connected layer, each layers description is described in detail below:

3.1 Convolution layer

In the CNN model, the convolution (CONV) layer is the basic core section of a CNN model.
Generally, in one CNN architecture, there are more than convolutions layers are there, in this
layer the given inputs are processed through the set of learnable parameters and with the
number of filters with different dimension sizes. From each filter as an output, we generate a
set of feature maps values, which are computed from dot product small unit of given input data
and its weight values. It helps to learn the features from the input signal by learning the weight
parameters of the filters. The given size of input data for a convolution layer is ShXSwXSd, the
required output volume size of the layer is ShnewXSwnewXSdnew.The required output computed
using four hyper parameters 1. Number of filters (NF), 2. Size of filter (Fs), 3.Padding
size ( Ps), 4.Stride information (SI).The general form of computation the output volume from
convolution layers as follows:

Shnew ¼ Sh−FS þ 2*PS

SI
þ 1 ð1Þ

Fig. 1 Compositions of one-dimensional convolutional neural network
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Swnew ¼ Sw−FS þ 2*PS

SI
þ 1 ð2Þ

Sdnew ¼ N F ð3Þ

3.2 Batch normalization layer

The importance uses of batch normalization (BN) layer in the CNN model are normalizing the
data present inside the network [4].It also supports to increase the training speed and reducing
the internal changes of covariance values. The main intention to include BN layer in the model
is to make confirm that how best the activation function distributes in a stable manner
throughout the training procedure.

BNn = {B1, B2, B3……………Bm} Presents a minibatch size of m.
The batch normalization of BNn is computed using this set of mathematical equations.

μBNn ¼ 1

m
∑
m

i¼1
Bi ð4Þ

σ2BNn ¼ 1

m
∑
m

i¼1
Bi−μBNnð Þ2 ð5Þ

bBi ¼ BI−μBNnð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2BNn þ ∈

p ð6Þ

BI
BNn ¼ τ*bBi þ ϑ ð7Þ

cBi represent normalized input

BI
BN Batch normalization output for a minibatch Bn

Majorly BNn layer deployed in between convolution layers and ReLU layers, which permits
the users to fix the higher learning rates. The most important advantage with batch normal-
ization layer is, it mainly controls over fit issue and increase the training speed.

3.3 ReLU layer

It is a general trend in CNN model to deploy ReLU layer after each successive convolution
layers, the main intention to use of this activation function is establishes the nonlinear impact
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in the network. In the proposed work, we have obtained two different convolution functions
are used 1.ReLU and 2.Softmax.

In general, the ReLU activation function converts the negative map values into zeros
and maintains the positive values. The mathematically form of ReLU function defined
as

∅ xð Þ ¼ x; if the value of x≥0
0; if the value of x < 0

� �
ð8Þ

The role of softmax activation function is decides the probable classification of the output
classes. So that softmax function used in the final fully connected layer, for predicting which
input signal is belong to wake, N1, N2, N3 and REM sleep stages. The mathematically the
equation defined as:

Pi ¼ eS j

∑k
1 eSk

for j ¼ 1; 2; 3……::k ð9Þ

Where S is the input to the network model.
Pi is represents the output value.
The output values are lies in between 0 to 1.

3.4 Pooling layer

The main purposes of using pooling techniques in CNN model is reducing the number of
trainable parameters which helps indirectly reduce in complexity in execution. Finally it
helps to control the overfitting problem. After each layer of convolution, we applied the
max-pooling techniques for down sampling the feature map volume size and during this
layer, no parameters are to be trained. In general architecture of CNN model, the pooling
layer placed in between two convolution layers, for the purpose of down sampling the
feature map size. From many of studies, it has found that maxpooling techniques are
more effective with concern to CNN model. So that in our proposed model obtained
max-pooling techniques.

3.5 Fully connected layer

Generally in a CNN model, there is one or more fully connected layers (FC) are used after
successive convolution, ReLU and max-pooling layers. The operational procedure of FC
layer is same with accordance to conventional neural network, where each neuron is
associated to all the preceding layer neurons. The most important concern with related to
FC layer is, it holds number of learnable parameters which indirectly leading computa-
tional overhead during training. In the current research work, used only one FC layer in
our proposed model.

4 Methodology

The main intention of the proposed research work is to develop an artificial intelligence-based
deep learning classification model to automatically classifying the sleep stages, which
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alternatively help for diagnosing the major types of sleep diseases This paper proposed a novel
nine-layer one-dimensional convolutional neural network-based automated classification mod-
el for multi-class sleep staging classification (9 L-1D-CNN-SSC) using polysomnography
(PSG) signals. The main intention is to make use of the effective information of multi-modality
combinations of the signals to improve the sleep staging classification performance. The
concept of the proposed research work is shown in Figure 2 by block diagram. The proposed
methodology involves signal processing concepts and proposed 9 L-1D-CNN-SSC architec-
ture followed by finding the discriminatory features to distinguish these multi-modal signals
for training and testing. Mainly this research work executed through these four parts (i) input
module, which takes PSG signals,(ii) pre-processing is performed for eliminating the irrelevant
noise compositions which are contaminated in the recorded signals and passes them into the
9 L-1D-CNN-SSC model (iii) final decision, the output of the 9 L-1D-CNN-SSC model are
fed into the fully connected layer to take the final predictions,(iv) validated the results of the
proposed 9 L-1D-CNN-SSC architecture for two to five sleep stages classification problems
with the existing state-of-the-art works.

4.1 Sleep stages classes

According to the AASM sleep standards, the sleep classes can be divided into two to five sleep
stage classes. The only changes with the AASM sleep standards are N3 and N4 stages of the
R&K standards are merged into one stage called as N3 stage. The proposed sleep staging

Fig. 2 The block diagram of the proposed automated sleep scoring
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procedure is executed under the AASM sleep scoring rules. The brief description of sleep
classes considered in this proposed research work is shown in Table 1.

4.2 Experimental data

In this proposed study, we have obtained ISRUC-Sleep (ISR) datasets to evaluating the
proposed sleep staging method. It contained the sleep recordings from different medical
conditioned subjects who were affected by different types of sleep problems. The whole
database is divided into three sections such as ISR-SG-I, ISR-SG-II, and ISR-SG-III [5].In
ISR-SG-I, 100 subjects one-session sleep recordings were available, all were affected with
different types of sleep-related disorder and the average age of subjects in this section is
51 years, similarly, in the ISR-SG-II, 8 subjects sleep recordings were contained, among them
6 were male and 2 were female gender. In this section, two different recordings were collected
from subjects on two different dates; maximum subjects in this section were affected with
sleep apnea events. It has been found that the average age of participated subjects for this
section was 47. Finally, the ISR-SG-III section collected 10 subject’s sleep records, which
were completely healthy, controlled, and no prior symptoms with any type of sleep problems
in earlier periods. All these sleep recordings are done by the set of sleep exports at the center of
sleep in the Hospital of Coimbra University. Each sleep recordings were a collection of whole-
night PSG recording containing 6 EEG channel, 2 EOG channel, 3 EMG channel, 1 ECG
channel, airflow, abdominal efforts, pulse oximetry, and body position information. Each
recorded signal is segmented into 30-s fragments called epochs, and each epoch is represented
to one particular sleep stage and labeled according to AASM sleep manuals.

In the present work, two different categories of subjects, one set belong affected with sleep-
related disorders and other groups are utterly healthy category. Both the subjects’ recordings
were collected from ISRUC-Sleep public repository, which was used explicitly for sleep
scoring. Sleep-disordered subjects were obtained from the ISR-SG-I section; similarly, healthy
subjects were acquired from ISR-SG-III. In this experiment, the authors have randomly
selected five sleep-disordered subjects and five healthy controlled subjects from ISR-SG-I
and ISR-SG-III respectively. The subjects’ sleep recordings concerning different stages of
sleep are briefly described in Table 2.

The proposed model used three different channels of EEG, EMG, and EOG signals as
inputs for measuring the sleep stages scoring. In Figure 2, the 30s sample of C3-A2 channel of
EEG signal, ROC-A2 channel of EOG signal, and X1(Chin) channel of EMG signal sample of
the sleep-disordered subject-77 record is shown for five sleep stages, similarly, the sleep
behavior sample of the healthy subject-2 are shown in Figure 3. Each collection of records
from the subjects was different from other individuals due to different sleep patterns. The
resulting distribution of sleep stages also distinct differences in their observed sleep behavior,
and it may sometimes make the model challenging to train the model.

Table 1 The sleep class description considered in this proposed research work under the AASM standard

Sleep
Classes

5-Classes(5C) 4-Classes(4C) 3-Classes(3C) 2-Classes(2C)

Stages W vs. N1 vs. N2 vs. N3
vs. REM

W vs. N1+N2 vs. N3
vs. REM

W vs. NREM (N1,N2,N3)
vs. REM

W vs. NREM +
REM
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4.3 Preprocessing

In this section, the author has to discard non-sleep epochs from each PSG signal recordings,
because sleep stages classifications of certain epochs depend on information about its neigh-
boring epochs. Sometimes it has been observed that recorded signals are contaminated with
different types of artifacts and noise information. To remove these irrelevant portions from the
raw signal by implementing a Butterworth bandpass filter with the order of 10 at the
frequency ranges of 0.1–45 Hz. After that, all polysomnographic signals are segmented
into 30s epochs, and each epoch is labeled into a particular sleep stage. Sometimes it has
been seen that more than one sleep stage information represented to one epoch, in that
case, the author assigned the sleep stages to that particular epoch, which had maximum
periods of appearance. Similarly scoring for N2 sleep stages, considered the previous
epochs last part and current epochs first part, if there are containing more than one sleep
spindles and k-complexes then that stage to be considered as N2. Similarly, if the same
trends occurred in between N2 and REM sleep stages, then the middle of the epochs are
labeled as N2 otherwise it is annotated as REM stage. Sleep spindles are appeared in
between N2 and REM stages. Finally, we have applied normalization techniques and
here we use zero mean and unit variance and a normalized feature vector is generated.
Generally, it supports increasing the performance of the system.

4.4 Proposed 9 L-1D-CNN-SSC model architecture

The CNN concepts are frequently used for two-dimensional image processing [68].But
it is not restricted to two or three dimensional image classifications problems only,
but it also applicable for one-dimensional input data according to recent research
developments.

1D-CNN model shares the same properties like other CNN models, but only the difference
of 1D-CNN is with subject to convolution operation, only 1D convolution operation is
performed.The known input data in the form of 1D-CNN is biomedical signal data [69].In a

Table 2 Description of distribution of sleep stages

Sleep scoring standards American Academy of Sleep
Medicine(AASM) manuals

Database ISR-SG-I (Scored by one sleep expert) ISR-SG-III (Scored by one sleep expert)

Number of Subjects 05 05
Gender (Male/Female) 03/02 04/01
Age (years) 22–76 30–58
Epoch length (seconds) 30s 30s
Sampling Frequency (Hz.) 100 Hz 100 Hz
EEG,EOG,EMG Montage Referential Referential
Sleep Stages
Wake(W) 1000 (15%) 791(53%)
NREM-N1 519 (7%) 648 (4%)
NREM-N2 1215 (44%) 1098 (24%)
NREM-N3 589 (8%) 729 (4%)
REM 427 (19%) 484 (11%)
Total Epochs 3750 3750
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Fig. 3 Samples for each labeled
stage of a PSG signal from
ISR-SG-I a) C3-A2 channel of
EEG signal) ROC-A1 channel of
EOG signal) X1(Chin) of EMG
signal
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1D-CNNmodel, with input of input signal SI, and kernel Kw, then the convolution operation is
defined in Eq. (10):

SI*KWð Þn ¼ ∑
Kwj j

i¼1
KW ið Þ*SI iþ n−1ð Þ ð10Þ

From the above equation, the * operator determines the convolution operations in between the
kernel (weights) which slides over the given input data. The resulted outcome from the
convolution operation is called as feature map. The general formula for computing the output
from the convolution operation is defined in Eq. (11):

OL
n ¼ SW i; jð Þ*W i; jð Þ� �

n ð11Þ

The operation of the convolution layer is similar to the feature extraction stage, as the outcome
from this layer generated a feature map of the input matrix. The resulted feature map values
down-sampled further in the network using pooling layers, further, the values are processed
with a set of convolution operations. The final layer of the CNN model contains the neural
network layer, which is also called as a fully connected layer, mainly it performs classification
operation. Figure 4 presents the graphical representation of the proposed 9 L-1D-CNN-SSC
model for the automated classification of sleep stages.

The proposed 9 L-1D-CNN-SSC model comprises twenty layers: nine convolution layers
(CONV-1 to CONV-9), nine max-pooling layers (Polling-1 to Polling-9), and one fully
connected layer. Apart from these layers, the proposed model considered nine batch normal-
ization and ReLU layers. The proposed network extracted hierarchical feature information
automatically using a set of hidden layers. As we have mentioned earlier the use of more FC
layers may increase the computational overhead. Therefore in this research work, we have only
considered one FC layer, and finally, the model resulted in a vector of size five corresponding
to five different classes of sleep stages, and at last, a softmax activation function is applied in
the FC layer to determine the final class label.

The main objective of designing such a custom model is to increase the classification
accuracy is compared to the preexisting trained model. The first convolution layer of the
proposed model takes an input of preprocessed polysomnography signals of size 3000 × 1
sample points and the first layer model convolves it with 16 × 8 filters and with four stride
ratios to produce the resulting feature map of size 750 × 16.The second layer of the proposed
model is the pooling layer, in this work the authors have considered max-pooling techniques
with filter size 2 × 2 and a stride 1 to produce a lower dimension size of output volume of size
375 × 16. The BN layer and ReLU activation applied over the output of each max-pooling
layer of the models. Next, to the pooling layer, we have again applied the second convolution
layer and it carried the previous convolution layer output information and convolves it with 32
× 3 kernel of size with two stride ratios, it provides the output volume of size 352 × 32.

The same procedure is repeated for seven times again in this proposed model. In the
proposed model, the first convolution layer kernel of size 8 × 1 and the stride ratio set as four,
further convolution layer kernel size is 3 × 1 and for the remaining layers, the stride size is
1.In this proposed 9 L-1D-CNN-SSC model the total nine max-pooling operations performed
for down sampling the feature map volume size.BN and ReLU activation layers are performed
over the output of the max-pooling layer.

Finally, the output result of the convolution layer is fully connected to five neurons of a
fully connected layer and applied softmax function to determine the probability distribution
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Fig. 4 Sample sleep stages behaviour of healthy controlled subjects from ISR-SG-III a1) C3-A2 channel of EEG
signal b1) ROC-A1 channel of EOG signal c1) X1(Chin) of EMG signal
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over each class label and finally, the output decided upon the neurons having the maximum
probability score. All the layers of the proposed model and its parameter description repre-
sentations are given in Table 3. Algorithm 1 shows the pseudo code for basic block of the
proposed model with input vector V and number of neurons N. Similarly the Algorithm 2
presents the pseudo code of the proposed 9 L-1D-CNN-SSC model with input of PSG signals
for multi-class sleep stages classification.

Algorithm 1: Algorithm for basic block with input vector V and number of neurons 
N

Step 1: Input the data into basic block of model.

Step 2: Apply a 1D-Conv layer of 3x1 having stride value 1

Step 3: Apply batch normalization

Step 4: Apply Activation function ReLU

Step 5: Apply MaxPooling

Step 6: Return the obtained feature vector map.

Algorithm 2: Proposed 9L-1D-CNN-SSC model with input PSG signal vector E, 
and number of sleep classes C

Step 1: Input sleep data vector E

Step 2: Apply a 1D-Conv layer of 8x1 having stride 4 with N value of 16

Step 3: Apply Batch Normalization

Step 4: Apply Activation Function ReLU

Step 5: Apply Max Pooling of filter size 2x1, stride value 2

//reducing overfitting and computational complexity

Step 6: Repeat 1 time

Call Basic Block Algorithm with N value 32

Step 7: Repeat 7 times 

Call Basic Block Algorithm with N value 64

Step 8: Obtaining Max Poling of stride value 1

Step 9: Convert the 1D-Conv network into fully connected layer of 100 neurons

Step 10: Reduce the number of neurons equal to number of sleep classes C.

Step 11: Obtaining Softmax classifier to find the probability of each sleep classes

Step 12: The final class prediction taken having the class maximum probability.

The final parameterized structure of the -SSC model for multi-classification sleep stages is
described as follows:

1. H1: The first hidden layers contained 16 filters with a kernel size of 8. This is followed
by 4 strides with valid padding, and also obtained a rectified linear unit(ReLU) activation
function and batch normalization with kernel size 2.Finally the output shape of the layer is
(750,16).

2. H2: 32 filters with the kernel of size 3. This is followed by 2 strides, a ReLU activation,
and batch normalization with kernel size 2. The output shape is (375, 32).
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3. H3: 64 filters with the kernel of size 3. This is followed by 1 stride, a ReLU activation,
and batch normalization with kernel size 2. The output shape is (187, 64).

4. H4: 64 filters with the kernel of size 3. This is followed by 1 stride, a ReLU activation,
and batch normalization with kernel size 2. The output shape is (93, 64).

5. H5: 64 filters with kernel size 3. This is followed by 1 stride, a ReLU activation, and
batch normalization with kernel size 2. The output shape is (46, 64).

6. H6:64 filters with kernel size 3. This is followed by1 strides, a ReLU activation, and
batch normalization with kernel size 2. The output shape is (23, 64).

7. H7:64 filters with kernel size 3. This is followed by 1 stride, a ReLU activation, and
batch normalization with kernel size 2. The output shape is (11, 64).

8. H8:64 filters with kernel size 3. This is followed by 1 stride, a ReLU activation, and
batch normalization with kernel size 2. The output shape is (5, 64).

9. H9:64 filters with kernel size 3. This is followed by 1 stride, a ReLU activation, and
batch normalization with kernel size 2. The output shape is (2, 64).

Output: 5 output classes followed by a softmax activation function. The output stage is 5
i.e., 5 classes of 5 sleep stages (Wake, NREMN1 Stage, N2 Stage, N3 Stage, and REM stage).

4.5 Model training and testing

The main important step in the deep learning structure is the training of the 9 L-1D-CNN-SSC
model because it directly enhances the impact on the resulting accuracy of the entire sleep
staging system. The proposed research work has used two different percentages of data for
training, and testing. For experimental purposes, the author considered 70% training data, and
the rest of 30% is using testing data. The model performance is validated with unseen test data.
First of all, the PSG signal is presented to the semantic vector of 3000 bins. The training
process is optimized using categorical cross-entropy loss. For proper memory management,

Table 3 The configuration details of the proposed 9 L-1D-CNN-SSC architecture

Number Layer Type Filter Kernel Size Stride Size of activations

1 Input Signal ____ _________ _____ 3000×1
2 Convolution1 16 8 4 750×16
3 Pooling1 16 2 2 375×16
4 Convolution2 32 3 2 375×32
5 Pooling2 32 2 2 187×32
6 Convolution3 64 3 1 187×64
7 Pooling3 64 2 2 93×64
8 Convolution4 64 3 1 93×64
9 Pooling4 64 2 2 46×64
10 Convolution5 64 3 1 46×64
11 Pooling5 64 3 1 23×64
12 Convolution6 64 3 1 23×64
13 Pooling6 64 2 2 11×64
14 Convolution7 64 3 1 11×64
15 Pooling7 64 3 1 5×64
16 Convolution8 64 3 1 5×64
17 Pooling8 64 2 2 2×64
18 Convolution9 64 3 1 2×64
19 Pooling9 64 2 2 1×64
20 Fully connected 1 100 _______ 1×6
21 Softmax 1 6 _______ 5
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split the training samples into several mini-batches that are processed during the train of the
9 L-1D-CNN-SSC model in each iteration. In each batch, 100 signals are selected randomly
from the training samples (without repetition). The proposed model is trained for 100 epochs.
Finally, the model is tested by using unseen test data. The hyperparameter used for training the
proposed 9 L-1D-CNN-SSC model is described in Table 4 for the multi-class classification of
the sleep stages. The proposed 9 L-1D-CNN-SSC model is trained by using 70% training data
of the database, and finally, the 30% unused samples are used for testing the model perfor-
mances. The trained 9 L-1D-CNN-SSC model classifying the sleep stages by studying the
behavior of PSG signals for two to five sleep state classification problems (wake, NREM (N1),
NREM (N2), NREM (N3), and REM). Those classification results are compared with the
ground truth values, which provided by the sleep experts.

5 Experiments and results

The whole experiments were executed on the most popular and widely used ISR-SG-I and
ISR-SG-III datasets. In this study,the authors have considered both subjects affected with
different types of sleep-related disorders and healthy controlled subjects.In both the datasets
five sleep stages recordings information are available. The detailed information with regarding
to sleep staging analysis and classification are presented in this section. Besides, both the
subgroups datasets are split into 70% training data and 30% testing data.

5.1 Experimental setup

The proposed model considered PSG signals as input, which is a combination of the EEG,
EMG and EOG signals. Collected PSG signal are segmented into 30-s time duration. The
acquired signals are sampled with the sampling rate of 100 Hz. Each epoch of PSG data hold
3000 sample points. We have conducted eight individual experiments for both the dataset ISR-
SG-I and ISR-SG-III respectively and the brief details of the experiments are presented in
Table 5. The complete illustration of the experimental steps is presented in Figure 5.

Hardware Requirements: To execute the entire experiments and analyze the performance
of the model, the authors establish an experimental set-up on a personal computer system with
an Intel Quad-Core i7 4th generation processor with a Level1 cache memory of 32 KB, Level2
cache memory of 256 KB, and 4 MB size of cache memory, and with 1 TB hard disk.

Software Requirements: This research work executed Microsoft Windows 10 as the base
operating system. MAT LAB 2015b version.

Table 4 Hyper parameters of the proposed model

Hyperparameter Value

Epochs 100
Minibatch size 50
Optimization algorithm Adam(learning rate:0.00002,beta1:0.9,

beta2:0.999,epsilon:0.00000001,
use locking: false,)

Loss cross-entropy
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5.2 Performance evaluation metrics

To evaluate the performance of the proposed 9 L-1D-CNN-SSC architecture, the authors
considered confusion matrix outcome with subject to sleep scoring using PSG signals.The
confusion matrix four terms True Positive (TP),False Positive (FP),True Negative (TN), and
False Negative (FN) are used for measuring the sensitivity [19], precision [90], F1Score [91]
and classification accuracy [26]. The mathematical exp- ression of these statistical indices is
defined in Eqs. (12)–(15).

Sensitivity ¼ TP
TP þ FN

X 100% ð12Þ

Table 5 Proposed experiments and its signal combinations

Experiments Datasets Signals

Experiment-1 ISR-SG-I EEG
Experiment-2 EOG
Experiment-3 EMG
Experiment-4 EEG+EOG+EMG
Experiment-5 ISR-SG-III EEG
Experiment-6 EOG
Experiment-7 EMG
Experiment-8 EEG+EOG+EMG

Fig. 5 Architecture of the proposed 9 L-1D-CNN-SSC model for multi-class sleep stage classification
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Precision ¼ TP
TP þ FP

X100% ð13Þ

Accuracy ¼ Sensitivityþ Specificity
2

X 100% ð14Þ

F1Score ¼ 2XTP
2TP þ FPþ FNð Þ ð15Þ

5.3 Results with the input of ISRUC-sleep subgroup-I dataset

5.3.1 Experiment-1

Using EEG signal In this experiment, the authors considered with single-channel C3-A2 of
EEG signal re-cordings of five sleep-disordered subjects. For this experiment also, the ratio for
training and testing is 70:30 with same number features are used. Table 6 presents the
confusion-matrix generated from the training set and testing set for five-state sleep staging.

The average accuracy resulted for training set data as 98.67% and for testing it re-ported as
98.49%. Similarly, the performances of sensitivity, precision and F1-score reported more than
96% for all the five sleep stages. The same performance results for both training and testing
data are presented in Table 7.The achieved results from both the data are closely near.

Similarly, with the same layer structure and hyper parameters values the proposed 9 L-1D-
CNN-SSC model applied for two to four classes of sleep stages classification. The reported
classification accuracy results for two-five sleep classes using single-channel EEG data are
presented in Table 8.The training and testing accuracy for two-five sleep classes for 100
epochs iterations are presents in Figure 6.

5.3.2 Experiment-2

Using EOG signal It has observed sometimes that rapid eye movements occurred during
different stages of sleep, it is also one of the sleep characteristics which may create disturb-

Table 6 Confusion matrix of EEG for five state sleep staging

C3-A2 Channel/Training Data (70%) C3-A2 Channel/Testing Data (30%)

Wake N1 N2 N3 REM Wake N1 N2 N3 REM

Wake 695 3 1 0 1 Wake 125 0 2 0 0
N1 5 305 3 0 4 N1 1 193 5 0 0
N2 4 0 794 4 1 N2 0 3 493 2 0
N3 1 0 5 408 0 N3 0 1 3 194 0
REM 1 0 10 0 380 REM 0 0 1 0 102
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ances in sleep patterns of the subjects. Here we extracted ROC-A1 channel of EOG signal. To
explore the sleep staging behaviour with selected features, the author considered single-
channel EOG information from subjects for being analysis the sleep behaviour. The ratio of
training data and testing data are same kept like for other two experiment.The confusion matrix
for this experiment is presented in Table 9.It can be observed that the average classification
accuracy achieved with training set as 98.32% and for testing test, the result reported as
98.31%. The evaluation performance results are presented in Table 10.

Figure 7 presents the classification accuracy performance results with 70% training and
30% testing data sets using input of single-channel EOG. It has observed from the accuracy
results, there is no overfitting issue occurred found from all the sleep classes. The performance
graph signifies that both training and testing accuracy gain positive learning. The highest sleep
staging accuracy achieved from two class and lowest from five sleep class classification.The
training and resting stages achieved accuracy for two-five sleep class are presented in
Table 11.

5.3.3 Experiment-3

Using EMG signal The third experiment carried with input of X1(Chin) channel of EMG
signal.The reported results of confusion matrix from both training and testing input data are
presented in Table 12.

The average accuracy resulted for training set data as 98.67% and for testing it re-ported as
98.49%. Similarly, the performances of sensitivity, precision and F1-score reported more than
96% for all the five sleep stages. The same performance results for both training and testing
data are presented in Table 13.The accuracy performance graph representation using training

Table 7 Performance values obtained using input of EEG

Classes Sleep Stages Sensitivity Precision F1-Score

5-Class (Training Set) Wake 99.29% 98.44% 98.86%
N1 96.21% 99.03% 97.60%
N2 98.88% 99.50% 99.19%
N3 98.55% 99.03% 98.79%
REM 97.19% 98.45% 97.81%

5-Class (Testing Set) Wake 98.43% 99.21% 98.81%
N1 96.98% 97.97% 97.47%
N2 99.00% 99.60% 99.30%
N3 97.98% 98.98% 98.48%
REM 99.03% 99.05% 99.51%

Table 8 Reported Performance Results for two-five sleep class based on single-channel EEG

Model Accuracy Rate (%)

Sleep Classes Training Accuracy Testing Accuracy

Two 99.29% 98.44%
Three 96.21% 99.03%
Four 98.88% 99.50%
Five 98.55% 99.03%
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Fig. 6 Detailed illustration of experimental steps

Table 9 Performance values obtained using an input of single-channel EOG

ROC-A1 Channel/Training Data (70%) ROC-A1 Channel /Testing Data (30%)

Wake N1 N2 N3 REM Wake N1 N2 N3 REM

Wake 697 1 1 0 1 Wake 123 2 2 0 0
N1 5 303 9 0 0 N1 1 193 5 0 0
N2 7 0 795 1 0 N2 1 0 497 0 0
N3 1 0 6 407 0 N3 0 0 4 194 0
REM 2 3 6 1 379 REM 0 2 2 0 99
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Table 10 Performance values obtained using an input of single-channel EOG

Classes Sleep Stages Sensitivity Precision F1-Score

5-Class (Training Set) Wake 99.57% 97.89% 98.73%
N1 95.58% 98.70% 97.12%
N2 99.00% 99.75% 99.38%
N3 98.31% 99.51% 98.91%
REM 96.93% 99.74% 98.31%

5-Class (Testing Set) Wake 96.85% 98.40% 97.62%
N1 96.98% 97.97% 97.47%
N2 99.80% 99.82% 99.80%
N3 97.98% 98.02% 97.99%
REM 96.12% 97.01% 96.56%

Fig. 7 Classification accuracy performance graphs of the proposed 9 L-1D-CNN-SSC architecture using single-
channel EEG with ISR-SG-I data: (a) training accuracy (b) testing accuracy for the two-five sleep classes
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and testing data with input of single-channel EMG are shown in Figure 8 and the same
information present in Table 14 for two-five sleep stages classification.

5.3.4 Experiment-4

Using combinations of EEG + EMG + EOG signals In our final experiment of this proposed
study was conducted with combinations of EEG, EMG and EOG channels. These combinations
provide sleep characteristics information which may give more accurate identification of the sleep
irregularities and the results of the confusion matrix are tabulated in Table 15 and the reported
performance results using EEG+EMG+EOG signals are presented in Table 16.

The average accuracy achieved with training set as 98.44%, similarly the results reported
with testing data as 98.52%.The results exceeded above 95% for sensitivity, precision and F1-
Score. For these combinations of multi-variate signals, the performance of classification

Table 11 Reported accuracy results using single-channel EOG for two-five sleep class

Model Accuracy Rate (%)

Sleep Classes Training Accuracy Testing Accuracy

Two 98.87% 98.91%
Three 98.61% 98.61%
Four 98.49% 98.49%
Five 98.44% 98.4%

Table 12 Performance values obtained using input of single-channel EMG

X1(Chin) Channel/Training Data (70%) X1(Chin) Channel /Testing Data (30%)

Wake N1 N2 N3 REM Wake N1 N2 N3 REM

Wake 698 0 2 0 0 Wake 125 0 2 0 0
N1 5 303 7 0 2 N1 1 195 3 0 0
N2 3 1 797 2 0 N2 0 1 493 1 3
N3 0 0 7 407 0 N3 0 1 1 196 0
REM 1 3 2 0 385 REM 0 0 4 0 99

Table 13 Performance values obtained using an input of single-channel EMG

Classes Sleep Stages Sensitivity Precision F1-Score

5-Class (Training Set) Wake 98.57% 98.71% 98.64%
N1 95.58% 96.19% 95.89%
N2 99.25% 99.75% 99.50%
N3 98.31% 99.51% 98.91%
REM 98.47% 99.48% 98.97%

5-Class (Testing Set) Wake 98.43% 99.21% 98.81%
N1 97.99% 98.98% 98.48%
N2 99.00% 99.80% 99.40%
N3 98.99% 99.49% 99.24%
REM 96.12% 97.06% 96.59%
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accuracy achieved using the proposed 9 L-1D-CNN-SSC model from both training and testing
data are presented in Table 17 and the same result information are presented in graphical forms
in Figure 9.

5.4 Results with the input of ISR-SG-III data

To analysis the effectiveness of the proposed methodology, the authors applied with the ISR-
SG-III data, which contained only healthy controlled subjects.The experimental setup and
input channel information is same as Experiment-1 to Experiment-4.The same channel C3-A2
of EEG, ROC-A1 of EOG, Chin(X1) of EMG signal used for sleep staging classification with
input of healthy controlled subjects sleep recordings. Experiment-5 to Experiment-8 is exe-
cuted with input of single-channel EEG, EOG, EMG signal and combinations of the EEG +

Fig. 8 Accuracy performance achieved using single-channel EOG: a1) with training data, b1) with testing data
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Table 14 Reported accuracy results using single-channel EMG for two-five sleep class

Model Accuracy Rate (%)

Sleep Classes Training Accuracy Testing Accuracy

Two 98.93% 98.91%
Three 98.81% 98.61%
Four 98.76% 98.49%
Five 98.51% 98.4%

Table 15 Performance values obtained using input of single-channel EEG + EMG + EOG

EEG+EMG+EOG/Training Data (70%) EEG+EMG+EOG//Testing Data (30%)

Wake N1 N2 N3 REM Wake N1 N2 N3 REM
Wake 1802 1 7 0 3 Wake 657 1 7 2 1
N1 24 1035 13 2 2 N1 4 462 6 0 0
N2 12 5 2661 6 4 N2 4 1 1209 0 1
N3 3 1 11 1288 1 N3 1 0 15 515 1
REM 2 4 21 1 966 REM 2 0 3 1 482

Table 16 Performance values obtained using input of single-channel EEG + EMG + EOG

Classes Sleep Stages Sensitivity Precision F1-Score

5-Class (Training Set) Wake 99.39% 97.78% 98.58%
N1 96.19% 98.95% 97.55%
N2 99.00% 99.66% 99.33%
N3 98.77% 99.31% 99.04%
REM 97.18% 98.98% 98.07%

5-Class (Testing Set) Wake 98.35% 98.35% 98.35%
N1 97.88% 99.57% 98.72%
N2 99.51% 99.75% 99.63%
N3 96.80% 99.42% 98.10%
REM 98.77% 99.38% 99.08%

Table 17 Reported accuracy results using single-channel EEG + EMG + EOG for two-five sleep class

Model Accuracy Rate (%)

Sleep Classes Training Accuracy Testing Accuracy

Two 99.43% 98.93%
Three 99.01% 98.61%
Four 98.76% 98.56%
Five 98.37% 98.46%
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EOG + EMG signals respectively. The detailed accuracy results for all the four experiments
using ISRUC-Sleep (subgroup-III) dataset are given in Table 18.The graphical representation
of resulted accuracy with both training and testing data using single-channel EEG,EOG,EMG,
and EEG + EOG + EMG are shown in Fig. 10, Fig. 11, Fig. 12, Fig. 13 and Fig. 14
respectively.

5.5 Summary of experimental results

In the current research work, we have conducted sleep staging studies with considering two
subgroups sleep recordings (ISR-SG-I/ISR-SG-III).For all the individual experiments we used

Fig. 9 Accuracy performance results using single-channel EMG: a2) using training data, b2) testing data

Table 18 Accuracy performances values for ISR-SG-III data

Channel Single-Channel EEG Single-Channel EOG Single-Channel EMG EEG+EOG+EMG

Sleep Classes Training Testing Training Testing Training Testing Training Testing

2 98.64% 98.51% 99.34% 99.24% 99.34% 99.14% 99.34% 99.21%
3 98.61% 98.31% 98.98% 98.68% 98.98% 98.88% 98.98% 98.78%
4 98.49% 98.12% 98.66% 98.56% 98.66% 98.76% 98.66% 98.56%
5 98.4% 97.96% 98.44% 98.4% 98.51% 98.67% 98.37% 98.46%
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only proposed 9 L-1D-CNN-SSC model and with same training and testing dataset size
(70:30).The proposed model is an effective with subjects to sleep scoring without any manual
feature extraction or feature screening. The reported summary results obtained from both the
datasets with input of single and multi-variate signals using the proposed 9 L-1D-CNN-SSC
model presents in Table 19.

6 Discussion

Many similar research works have been conducted by different researchers on multiple sleep
staging using different methodologies through machine learning techniques. The proposed
9 L-1D-CNN-SSC architecture can automatically be learning high-level features from the
input signals directly. The obtained results indicate that the proposed scheme achieved
improved sleep stages classification accuracy compared to earlier similar contributed works
using the DL approach. Table 20 presents the performance comparisons results between the
proposed methodology and the existing similar multiple sleep staging studies using different
deep learning techniques. Similarly the performance of the proposed model also compared
with the recent contributions with subject to sleep staging using different traditional machine
learning classification models and the same achieved results are presented in Table 21. It has
been found that the proposed framework achieved higher classification accuracy in compar-
ison to the other state art of the contributions.

Fig. 10 Accuracy performance graph representation using single-channel of EEG + EOG + EMG for two to
five sleep class: a3) with training data, b3) with testing data
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The performance of the proposed model is evaluated from two different subgroups of ISR
dataset. The proposed model yielded the higher classification accuracy of 99.03%,99.50%, and
99.03% for three to five sleep states classification using single-channel EEG signals, similarly,
the reported results for two-state sleep stages classification as 98.93% with single-channel
EMG and combinations of single-channel EEG + EMG + EOG respectively using SG-I
dataset. Further, the proposed model obtained a higher classification accuracy of 98.88%,
98.76%, and 98.67% using single-channel EMG for the same three to five sleep classes,
similarly, the highest classification accuracy performance for two-state sleep stages as 99.26%

Fig. 11 Accuracy performance results using ISR-SG-III from single-channel EEG: a4) training accuracy, b4)
testing accuracy
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with single-channel EOG using ISR-SG-III dataset. Furthermore, it has been observed that the
obtained results from the proposed 9 L-1D-CNN-SSC model give the best classification
accuracy performance for multiple sleep stages classification incomparable to the existing
literature works.

The proposed 9 L-1D-CNN-SSC model results indicated that the model is performed
excellent with concern to two-five sleep stages classifications incomparable to the existing
literature works. It has been seen that several similar works are completely based on
handcrafted features and shallow classifiers. From this point, the proposed model completely
differs from the rest of the work and provides good potential for sleep staging analysis. Despite

Fig. 12 Accuracy performance results using ISR-SG-III from single-channel EOG: a5) training accuracy, b5)
testing accuracy
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the improved performance on classification accuracy, the proposed model reported some more
advantages related to the other works: (i) the proposed model eliminates the traditional
techniques for classification using multi-stage pipeline architecture, which creates a lot of
complexity during execution and raises a lot of errors. (ii) the proposed model learned the
features automatically from the polysomnography signals during the model training, therefore
it does not require any types of handcrafted features (iii) the proposed model used less number
of learnable parameters for training model incomparable to the existing some of the pre-trained
DL models, (iv) with the same hyperparameter values, the sleep staging performance is
significantly improved for two to five sleep states classification using both the subgroups of
a dataset and (v) the proposed architecture obtains higher classification accuracy performance
in comparisons with the existing state-of-the-artworks.

Fig. 13 Accuracy performance results using ISR-SG-III from single-channel EOG: a6) training accuracy, b6)
testing accuracy
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7 Conclusion

In this paper, the authors proposed a 9 L-1D-CNN-SSC model for automated sleep stages
classification using PSG signals. The proposed architecture contains 11 learnable layers, which
helps to learn the features automatically from the multi-modality signals. The main objective of
designing such architecture is to improve the sleep staging classification accuracy results with
better learnable parameters compared to the traditional shallow learning models.The entire
experiments executed in eight individual experiments based on single-channel EEG, EMG,

Fig. 14 Accuracy performance results using ISR-SG-III from single-channel EOG: a6) training accuracy, b6)
testing accuracy

8083Multimedia Tools and Applications (2023) 82:8049–8091



Table 19 Overall accuracy performances of the proposed model for ISR-SG-I and ISR-SG-III

Dataset Input Signals Model Accuracy Rate (%)

Sleep Classes

2C 3C 4C 5C

ISR-SG-I Single-Channel EEG 98.44% 99.03% 99.50% 99.03%
Single-Channel EOG 98.91% 98.61% 98.49% 98.40%
Single-Channel EMG 98.93% 98.81% 98.73% 98.67%
Single-Channel EEG+EOG+EMG 98.93% 98.61% 98.56% 98.46%

ISR-SG-III Single-Channel EEG 98.51% 98.31% 98.12% 97.96%
Single-Channel EOG 99.24% 98.68% 98.56% 98.40%
Single-Channel EMG 99.14% 98.88% 98.76% 98.67%
Single-Channel EEG+EOG+EMG 99.21% 98.78% 98.56% 98.46%

Table 20 Performance comparisons among the proposed model with different fine-tuned CNN model

Study Dataset Number of
Channels
/Signals

Method Accuracy Rates (%)

2C 3C 4C 5C

Ref [45] Sleep-EDF 1EEG CNN ___ ___ ___ 75%
Ref [1] Sleep-EDF 1EEG 1D-CNN 97.85% 94.23% 92.24% 90.48%

1 EOG 1D-CNN 98.06% 93.76% 91.88% 89.77%
1EEG+1EOG 1D-CNN 98.06% 93.76% 91.88% 89.77%

Ref [56] Sleep-EDF 1EEG CNN+BLSTM ___ ___ ___ 82%
Ref [89] SHHS-1 1EEG ___ ___ ___ 87%
Ref [68] Sleep-EDF

expanded
1 EEG CNN ___ ___ ___ 91.97%
2 EEG ___ ___ ___ 92.66%
Ensemble ___ ___ ___ 92.65%

Ref [69] Sleep-EDF 1 EEG PSD+CNN ___ 89.8% 83.3% ___
Ref [87] Bonn Univ 1 EEG DL+LSTM 71.38% ___ ___ ___
Ref [21] ISRUC-Sleep 1 EEG DL+CNN ___ ___ ___ 92.2%
Ref [43] Sleep-EDF 1 EEG DL+RNN+LSTM ___ ___ ___ 86.7%
Ref [95] Sleep-EDF 1 EEG CNN ___ ___ ___ 85.62%
Ref [15] ISRUC

(Subgroup-I)
1 EEG+
1 EOG+
1 EMG

Meta-learning
+Transfer learning+
CNN

___ ___ ___ 68.74%

ISRUC
(Subgroup-III)

1 EEG+
1 EOG+
1 EMG

Meta-learning
+Transfer learning+
CNN

___ ___ ___ 73.89%

Ref [92] Sleep-EDF 1 EEG CNN 98.10% 96.86% 93.11% 92.95%
Ref [13] Sleep-EDF 1 EEG DNN ___ ___ ___ 83.6%
Proposed

Work
ISR-SG-I 1 EEG 1D-CNN 98.44% 99.03% 99.50% 99.03%

1 EOG 98.91% 98.61% 98.49% 98.40%
1 EMG 98.93% 98.81% 98.73% 98.67%
EEG+EOG+

EMG
98.93% 98.61% 98.56% 98.46%

ISR-SG-III 1 EEG 1D-CNN 98.51% 98.31% 98.12% 97.96%
1 EOG 98.91% 98.61% 98.49% 98.40%
1 EMG 98.93% 98.81% 98.73% 98.67%
EEG+EOG+

EMG
98.93% 98.61% 98.56% 98.46%
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and EOG signals and the final experiments are combinations of EEG, EMG, and EOG signals
with the ISR-SG-I and ISR-SG-III data respectively.The proposed model obtained excellent
performance for two to five sleep states classification for both the subgroups of the ISRUC-
Sleep dataset. The results obtained from the 9 L-1D-CNN-SSC model exhibited the superiority
of other existing CNN models. The proposed model architecture achieved the highest classi-
fication accuracy of 99.07%,99.50%, and 99.03% with single-channel EEG signals using the
SG-I dataset, similarly, the same model reported accuracy using the SG-III dataset of
98.88%,98.76%, and 98.67% using single-channel EMG for three-five sleep stages classifi-
cation. The same architecture performed accuracy of 98.91% with ISR-SG-I and 99.24% with
ISR-SG-III using single-channel EOG signals for two sleep states classification tasks.

The main difference between the performance of the proposed model and state-of-the-art
works is, the existing sleep staging systems are dependent upon the hand-engineered feature
extraction approaches, which require tuning of parameters, their performance highly depends
upon the selection of the hyperparameter and the sleep data. As such the model does not
generalize well across the different types of sleep-related datasets. On the other hand, the

Table 21 Performance comparisons of the proposed 9 L-1D-CNN-SSC model with the existing contributed
automated sleep stages classification using different machine learning techniques

Study Dataset Number of
Channels / Signals

Method Accuracy Rates (%)

2C 3C 4C 5C

Ref [48] Sleep-EDF 1EEG MSFE+MSP+SVM ___ ___ ___ 93.8%
Ref [85] Sleep-EDF 1EEG DWT+RF ___ 93.9% 92.3% 91.5%
Ref [42] Sleep-EDF 1EEG SM+DT ___ ___ ___ 78.85%
Ref [32] Sleep-EDF 1EEG EMD+

ENSEMBLE
___ ___ ___ 87%

Ref [7] Sleep-EDF 1 EEG EMD+Bootstrap
aggregating

___ ___ ___ 89%

Ref [29] Sleep-EDF 1 EEG WT+RF ___ ___ ___ 88%
Ref [31] Sleep-EDF 1 EEG EMD+RusBoosting ___ ___ ___ 83%
Ref [86] ISRUC-Sleep 1 EEG Multiple Features +

Bayesian
___ ___ ___ 83%

Ref [49] ISRUC-Sleep 1 EEG Statical Features +
SVM

___ ___ ___ 93.97%

Ref [88] ISRUC-Sleep 1 EEG Multiple features +
SVM

___ ___ ___ 86.75%

Ref [96] ISRUC-Sleep 1 EEG Energy+RF ___ ___ ___ 75.29%
Ref [64] ISRUC-Sleep 1 EEG Multidomain

features + SSAE
___ ___ ___ 82.3%

Ref [47] ISRUC-Sleep 1 EEG Entropy features +
SVM

___ ___ ___ 83.33%

Proposed
Work

ISR-SG-I 1 EEG 9 L-1D-CNN-SSC 98.44% 99.03% 99.50% 99.03%
1 EOG 98.91% 98.61% 98.49% 98.40%
1 EMG 98.93% 98.81% 98.73% 98.67%
1 EEG+
1 EOG+
1 EMG

98.93% 98.61% 98.56% 98.46%

ISR-SG-III 1 EEG 9 L-1D-CNN-SSC 98.51% 98.31% 98.12% 97.96%
1 EOG 98.91% 98.61% 98.49% 98.40%
1 EMG 98.93% 98.81% 98.73% 98.67%
1 EEG+
1 EOG+
1 EMG

98.93% 98.61% 98.56% 98.46%

8085Multimedia Tools and Applications (2023) 82:8049–8091



existing models also involve laborious designs such as first extracted the features and selected
the suitable features, and then input into a classifier, all these steps need hyper-parameters
whose joint effort is quite laborious. On the other hand, the proposed 9 L-1D-CNN-SSC model
is an end-to-end system, which is completely based on the deep learning concept, which takes
input signals and gives the decision without any kind of feature extraction, selection, and
laborious parameter tuning. The model learns the discriminative information automatically
from the input signal data and the learning and classification process is completed
automatically.

The proposed model not required any types of handcrafted features and shallow learning
classification models for the classification of polysomnography signals and it can assist
clinicians during the sleep scoring. To date, there is no pre-trained CNN models exist for
biomedical signals. Therefore it is one of the major challenges lies here to get large amounts of
the biomedical signal dataset. In the future; the authors will collect the biomedical signal data
from different medical institutes and test the efficiency of the model. Furthermore, the
proposed work to be extended for different types of sleep related diseases. The authors will
also include the data augmentation techniques to overcome the data imbalance issues. Finally,
it has been observed that the proposed framework improves the existing state of the art and
achieves better classification results for the two-five sleep classification tasks. The proposed
fully automated sleep staging classification systems could replace the traditional error-prone
classification models.
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