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Abstract
Video coding has been widely explored by academia and industry in recent years, mainly
due to the great popularization of video applications and multimedia-capable devices. The
Motion Estimation (ME) process receives special attention since it is one of the most com-
plex steps in video coding. The Test Zone Search (TZS) is the main algorithm employed for
integer ME in recent video codecs, such as those based on the High Efficiency Video Cod-
ing (HEVC), and has been used in the standardization process of the future Versatile Video
Coding (VVC) standard. However, even though it is designed as a fast ME algorithm, the
computational effort required by TZS is still very high, compromising the encoding process
in multimedia-capable devices that operate on limited energy or computational resources.
This work presents the Bypass Zone Search (BZS) algorithm, a learning-based solution for
fast ME that improves TZS, aiming at a better tradeoff between compression efficiency and
computational cost. First, a set of analyses on TZS is presented, which allowed the design of
two strategies to reduce the ME computational cost. The first one, named as Learning-based
Bypass Motion Estimation (LBME), consists of a machine learning-based approach that
predicts whether the best motion vector has already been found and bypasses the remaining
ME steps. The second strategy, named as Astroid Raster Pattern (ARP), is a novel search
pattern developed for the most complex TZS step, the Raster Search. By combining the
two proposed strategies in BZS, the ME processing time is reduced by 60.98% (Random
Access) and 63.05% (Low Delay) in comparison to TZS. The overall HEVC encoding time
is reduced by 14.32% (Random Access) and 17.64% (Low Delay), with a negligible loss of
0.0837% (Random Access) and 0.04% (Low Delay) in BD-rate.
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1 Introduction

In recent years, both academy and industry have put a large effort on video technology
research due to the increasing market interest on efficient multimedia products and appli-
cations. According to a Cisco report, by 2017 video traffic in mobile devices had been
responsible for 59% of the global mobile data traffic and the prediction is that by 2022
this number will grow to 79% [6]. Video streaming services are only possible thanks to the
use of video compression algorithms and the adoption of video coding standards, whose
primary aim is to reduce the video bitrate while minimally affecting its visual quality.

The High Efficiency Video Coding (HEVC) is a video coding standard launched by the
Joint Collaborative Team on Video Coding (JCT-VC) [31] as an evolution of the previous
standard, the Advanced Video Coding (H.264/AVC) [15]. Compared to its predecessor, the
HEVC achieves a bitrate reduction of 50%, considering equivalent image quality. However,
this high compression efficiency is achieved in HEVC encoders at the cost of a computa-
tional cost five times higher than the observed in H.264/AVC encoders [8], mainly due to
the introduction of several new tools and data structures in HEVC.

The HEVC encoder first divides each frame into equal-sized blocks, the Coding Tree
Units (CTUs), which largest possible size is 64×64. CTUs can be further divided recur-
sively based on a quadtree structure, creating Coding Units (CUs) with sizes that vary from
64×64 to 8×8 samples. Each CU can be further divided into symmetric and asymmetric
rectangular blocks called Prediction Units (PUs), for prediction purposes, and in square
Transformation Units (TUs) [34], for transformation and quantization. The best partitioning
for a CTU can only be defined based on a full Rate-Distortion Optimization (RDO) pro-
cess, which evaluates every possibility and compares them in terms of Rate-Distortion (RD)
cost. Thus, for each partitioning possibility considered, the full HEVC encoding process
needs to be performed for every CU, which includes intra and inter-frame prediction, trans-
formation/quantization, entropy coding and the reconstruction loop. To reduces the number
of block candidates, several algorithms have been proposed in the last years. In [22], the
authors increase the speed of the encoder by skipping the PU modes that are rarely used. The
decision mechanism is trained using a k-means clustering algorithm. Similarity, the authors
in [20] propose a CU early-termination classifier based on reinforcement learning to reduce
the computational complexity of CU decision.

Motion Estimation (ME) is part of the inter-frame prediction and is the main responsi-
ble for most of the compression gains achieved by HEVC. As ME is performed for every
PU within all tested CUs, its complexity is thoroughly affected by the number of parti-
tioning possibilities considered in the RDO-based decision process. In the HEVC reference
software [14], inter frame-prediction is responsible for 74% of the overall encoding time [1].

To reduce ME complexity, several fast block matching algorithms have been proposed
in the last decades, such as [7, 18, 38, 39]. Test Zone Search (TZS) is one of such fast
algorithms for IME, which is adopted in current state-of-the-art reference encoders, both
for HEVC and the future Versatile Video Coding (VVC) standard [5]. TZS provides good
compression efficiency by applying a four-step strategy that aims at predicting the region
close to the best block matching. These four steps are (i) Motion Vector Prediction, which
defines the start point for the next step; (ii) Initial Search, where an expansion is done in
a diamond or square pattern; (iii) Raster Search, where a sub-sampled Full Search (FS) is
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applied over the previous step best result and (iv) Refinement, where a new diamond or
square search is done around the best result of the previous step.

TZS employs a set of heuristics to search for the best block matching in reference frames,
taking advantage of the spatial and temporal correlation in neighboring areas of a candidate
block. However, despite being considered a fast ME approach, TZS is still one of the most
time-demanding algorithms in HEVC, since it is still executed several times for all PU
formats within every candidate CU in the quadtree [31].

In [3, 9], a set of strategies to reduce TZS complexity have also been proposed, either
by modifying its search pattern or by proposing fast mode decisions to speed up encoding
time. However, although achieving significant complexity reduction, these strategies incur
in non-negligible coding efficiency losses. More recently, the authors proposed in [10–12]
two different strategies based on an octogonal search pattern and on decision tree-based
early-termination models built with the C4.5 algorithm [28]. Such strategies have provided
interesting results in terms of complexity reduction with low impact in compression effi-
ciency, but further investigations revealed that a novel search pattern and more accurate
and lighter decision trees can be obtained with a different approach, as presented in this
paper.

This work presents a two-fold novel contribution, which were joined in an algorithm
named Bypass Zone Search (BZS):

– Learning-based Bypass Motion Estimation (LBME): a set of decision tree models that
predict whether the best block matching has already been found, thus bypassing the
remaining IME steps.

– Astroid Raster Pattern (ARP): a novel search pattern for the Raster Search step that
exploits regions with the highest probabilities of finding the best block matching.

When implemented in the HEVC reference encoder (version 16.14) [14], BZS is able
to reduce the IME processing time by 60.98% (Random Access) and 63.05% (Low Delay)
in comparison to TZS, with a negligible compression efficiency loss of 0.0837% (Random
Access) and 0.04% (Low Delay).

The rest of this paper is organized as follows: Section 2 discusses TZS and its computa-
tional cost. Section 3 presents related works on complexity reduction for motion estimation.
Section 4 presents a set of statistical analysis on the TZS behavior, which led to the proposal
of BZS, presented in Section 5. Section 6 presents the obtained results and comparisons
with related works. Finally, Section 7 concludes this paper.

2 Test zone search algorithm

Test Zone Search (TZS) is an incremental ME algorithm that achieves compression effi-
ciency close to the Full Search (FS) algorithm, even though it compares a smaller number
of blocks in the block matching process [14]. TZS performs an adaptive search for the best
Motion Vector (MV), aiming to avoid local minima results. The search is executed accord-
ing to the four steps in the flowchart of Fig. 1: (i) Motion Vector Prediction, (ii) Initial
Search, (iii) Raster Search and (iv) Refinement.

The first TZS step is the Motion Vector Prediction, as presented in Fig. 1, also simply
referred to as Prediction. Firstly, the co-located position (0,0) is chosen as initial search
region. Then, four MV predictors are considered to approximate the initial search region:
the MV from the left (A), upper (B), and upper-right (C) neighboring blocks, and the Median
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Fig. 1 Flowchart of the Test Zone Search (TZS) algorithm

predictor computed according to (1). As these MVs from neighboring blocks are already
available, the computational cost associated to this step is very small.

Median = A + B + C − Min(A, Min(B, C)) − Max(A, Max(B, C)) (1)

To determine the best predictor, the Prediction step chooses the one that leads to the best
results according to a similarity criterion, usually the Sum of Absolute Difference (SAD).
Equation (2) defines the SAD, where Cur represents the current block, Ref denotes the
reference block, with block size of M×N pixels and (x, y) and (s, r) denote MV coordinates
of reference and current blocks, respectively. The predictor with the smallest SAD value is
selected as the starting point for the next algorithm step.

SAD =
M−1∑

i=0

N−1∑

j=0

∣∣Cur(s + i, r + j) − Ref (x + i, y + j)
∣∣ (2)

The second step is the Initial Search, which is an expansion search applied to the Search
Area (SA). The SA is a region in the reference frame, around the best point resulting from
the first step, where the best block will be searched. The SA is defined by the Search Range
(SR) parameter, which indicates the number of samples around the central point where the
SA will be limited. The expansion done in the Initial Search can be executed in a diamond
or square pattern. During the Initial Search, the diamond/square size is expanded in powers
of two until the stop criterion or the predefined SA limit is reached. If after three expansions
no point achieves a better result (i.e., lower SAD) than the central point of the previous
expansion, the Initial Search execution is interrupted. The distance between the best candi-
date block obtained in Initial Search and the best block obtained in Prediction (named as
BestDistance) is stored for use in the next steps.

The third step of TZS, called Raster Search, is a sub-sampled FS performed within the
SA. iRaster is a constant defined in the HEVC reference software (HM-16.14 [14]), set to
5 by default, used to determine the sub-sampling stride performed both horizontally and
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vertically. Due to this characteristic, the Raster Search is the most complex step of the TZS
algorithm since there is no stop condition in its execution. However, Raster Search is only
performed when the difference between the best MVs obtained from Initial Search and
Prediction (BestDistance) is too large. If BestDistance is smaller than iRaster, the Raster
Search step is skipped. The total of n candidate blocks compared in the Raster Search step
is defined in (3).

n =
⌈

1+(SR×2)
iRaster

⌉2
(3)

Refinement is the last TZS step, which provides a greater accuracy for the MV obtained
from previous steps. A new search identical to the one performed in Initial Search occurs
around the best candidate block found in the previous step. If after two expansion levels no
block with smaller SAD is found, the Refinement step is stopped.

3 Related work

Several authors have proposed in the last decades different strategies and approaches to
reduce the ME complexity. Sub-optimal block matching algorithms have emerged as the
most efficient and commonly employed approaches, such as the Diamond Search [39], the
Hexagon Search [38], the Cross-Diamond-Hexagonal Search [7], and the Efficient Three-
Step Search [18] algorithms. Test Zone Search (TZS) [14] is currently considered the state-
of-the-art solution for sub-optimal ME, since it presents better compression efficiency than
its predecessors and substantially decreases complexity in comparison to the optimal FS
algorithm. However, TZS still requires larger computational effort than the previously cited
sub-optimal algorithms, especially due to the higher number of comparisons per block.

Following a different approach, authors in [21] reduce the complexity of the TZS algo-
rithm by limiting the Diamond Search direction through information from neighboring
blocks. Also, early-termination schemes based on machine learning techniques [10] have
been proposed to limit the TZS execution, achieving significant complexity reduction. How-
ever, in most cases, limiting the search algorithms results in worse final image quality.
Therefore, several authors propose strategies to improve quality with low computational
cost. In this sense, the authors in [36] recently proposed a neural network-based strategy to
improve the quality of the predicted block through the estimation of residual information.
With the goal of improving image quality, the authors in [33] propose a new metric to be
used during the encoding process, capable of attributing sensitive information of the human
visual system to the error calculation.

Some authors have also proposed different search patterns for the ME step in order
to reduce complexity. In [3] and [12] the authors reduce the number of search points by
employing either a dynamic SA or a new format that prioritizes regions with higher prob-
ability of finding the best match. Other authors propose search patterns refined according
to the characteristics of the block being coded, as presented in [9]. Such strategies show
that intelligently reducing the number of search points leads to acceptable results in terms
of compression efficiency. In [25], the authors reduce the range for search refinement
by estimating initial points for the MVs, based on dual-tree complex wavelet transform.
Also, some authors propose new algorithms to improve the various tools involved in the
ME or to replace the ME module present in the HEVC, as presented in [13] and [24].
Finally, some authors have recently proposed strategies for accelerating the ME process by
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dynamically optimizing the Search Range according to neighboring PUs characteristics
[17], or by exploring data parallelism through the implementation of the ME module in
GPU [23].

Even though there are many important advances on complexity reduction strategies for
inter-frame coding in recent years, as summarized in [37], most of these solutions are
either not directly applied to TZS or lead to a poor tradeoff between complexity reduction
and compression efficiency. This way, this work proposes a hybrid learning-based scheme
for the ME process, which is an alternative to the TZS algorithm capable of considerably
reducing the IME complexity with negligible loss in coding efficiency.

4 Time and statistical analysis

The main goal of this section is to present an analysis on the TZS algorithm and identify its
most time-consuming steps. Besides, the section aims at analyzing which TZS steps and SA
regions are the main responsible for finding the best block matching. For this, the next sub-
sections present two important analyses that serve as basis for the solution proposed in this
work. First, Section 4.1 presents a run-time analysis of the TZS steps and an analysis on the
best motion vector occurrences along these steps. Then, Section 4.2 presents an analysis on
the distribution of such occurrences in Raster Search.

Eight video sequences provided by the Ultra Video Group [32] were used to perform the
evaluations: four Full HD (FHD) sequences (Bosphorus, ShakeNDry, HoneyBee, Jockey)
and four Ultra HD (UHD) sequences (Beauty, BuildingHall2, YachtRide, ReadySetGo). All
video sequences employed in these evaluations were not employed in the experimental
phase presented later in this work. In Table 1, the main properties of each analyzed video
sequence are presented. The Temporal Perceptual Information (TPI) [16] is a typical motion
activity metric calculated based on the difference between the luminance samples at the
same location in space of successive frames. Thus, more abrupt motion activity between
adjacent frames results in higher values of TPI. As recommended in the Common Test Con-
ditions (CTC) [30], each video was encoded with Quantization Parameter (QP) 22, 27, 32,
and 37. The Random Access (RA) temporal configuration was used in all encoding runs.
Maximum CU size was set to 64×64 and maximum CU partition depth was set to 4. The
required modifications for extracting information were implemented in the HEVC reference
software (HM-16.14). All experiments have been carried on a workstation with an Ubuntu
14.04.5 OS, running on an Intel Xeon E5-2640v3@2.60GHz processor and with 32GB of
DDR3 RAM.

Table 1 Analyzed video
sequences properties Sequence Frames FPS Bit Depth TPI

Bosphorus 600 120 8 38.2

ShakeNDry 300 120 8 44.4

HoneyBee 600 120 8 45.1

Jockey 600 120 8 52.5

Beauty 300 120 10 56.5

BuildingHall2 300 50 10 58.1

YachtRide 300 120 10 61.1

ReadySetGo 300 120 10 63.4
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4.1 Best matching and runtime analysis

As discussed in Section 2, TZS is an adaptive hybrid algorithm composed of four basic
steps. The first analysis presented in this sub-section aimed at finding out which step usually
provides the best MV. During each TZS execution, the best MV chosen at the end of every
step was collected. Then, at the end of the full TZS algorithm, the best MV found was com-
pared to the MVs chosen at the end of each step. Figure 2 shows the obtained results for the
full set of analyzed sequences. These are average results considering the four recommended
QPs and the SR parameter set to 256.

The chart in Fig. 2 shows that the great majority of the best MVs are found precisely in
the first phase of TZS, the Prediction step, with an average of 84.72% of the occurrences.
The Initial Search step found 10.49% of the best MVs, whereas Raster Search presented the
smallest contribution in best MV findings (only 0.67%). Finally, the Refinement step found
the best MV in 4.1% of the cases. Notice that the YachtRide sequence is the only one with
an unusual time distribution. There is an atypical situation in the specific case, with a lot
of movement in the waves that fill most of the frame region. For this reason, the Prediction
step is not sufficient to determine an accurate initial vector for most blocks in each frame.

In order to verify whether the complexity employed in each step is correlated with the
occurrence rate of best MVs, a second analysis is presented in Fig. 3 for each video sequence
in terms of processing time demanded by each TZS step. The average execution time for
each step also considers results obtained for the four recommended QP values. Notice in the
figure that the Prediction step is the least demanding process in terms of execution time. On
average, Prediction is responsible for approximately 5% of the overall TZS execution time.
This is due to the low complexity required to access information from previously encoded
blocks and perform the prediction according to a fixed number of predictors, which results
on a constant processing time.

Likewise, the Refinement step also demands a small computational effort to execute the
search. On average, 7% of the overall TZS time is associated to the last step. This is because,
as the name suggests, Refinement only refines the best results found during Initial Search
or Raster Search. This way, only a few expansions are executed, since the previous steps
generally converge to regions close to the best point. Even in cases where previous steps

50% 60% 70% 80% 90% 100%

Average
YachtRide
Rd.SetGo

B.Hall2
Beauty

ShakeNDry
Jockey

HoneyBee
Bosphorus

BEST MATCHING DISTRIBUTION 

SEC
NE

U
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Predic�on Ini�al Search
Raster Search Refinement
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Fig. 2 Best block matching distribution by TZS step
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Fig. 3 Normalized running time share per TZS step. The two percentage values for each video indicate the
encoding time share of Raster Search and the amount of Raster Search executions

point to regions far from the optimal point, Refinement is terminated within a few iterations,
due to its stop condition of two expansions.

The Initial Search step, unlike Refinement, expands the search pattern more often, since
only the Prediction step is performed before it. Thus, the Prediction step tries to approximate
the best possible region considering the four initial predictors, whereas the Initial Search
step is responsible for finding the best point within that region. Due to these characteristics,
the Initial Search step is unpredictable as to the number of expansions performed in the
search pattern, since it depends heavily on the results of the Prediction step and on the video
content. Figure 3 shows that the execution time share of Initial Search varies significantly
from one video sequence to another, but it is always more demanding than both Prediction
and Refinement steps. On average, Initial Search is responsible for 20% of the overall TZS
execution time.

Finally, Raster Search is the most complex step and accounts for 68% of the TZS exe-
cution time, on average, even though it is performed only in 3.51% of the TZS executions.
As previously explained, this step comprises a search similar to FS, but in a subsampled
way. Even though it compares a much smaller number of blocks than FS, the computational
effort of Raster Search is much larger than the required by other TZS steps, as Fig. 3 shows.
This scenario becomes even more costly in high resolution sequences, in which the Initial
Search can direct the search to a region far from the central SA point, forcing the execution
of Raster Search in most blocks. This is the case of the Beauty sequence, which comprises
the face of a woman in a dark scenario with hair in movement, leading the Raster Search
execution to areas far from the central point. In this case, Raster Search is responsible for
more than 84% of the overall TZS time. In contrast, in HoneyBee the execution time of
Raster Search was only 15%. This is an atypical case, since the sequence presents a scenario
where there is almost no movement. This way, the distance between the best block and the
center of the SA is usually small and therefore the Raster Search step is rarely executed.

The analysis presented in this section allows identifying TZS steps in which the
employed computational effort is sometimes wasted. It is noted that a great computational
effort is employed in steps that rarely yield the best MVs found by TZS, especially in Raster
Search and Refinement. One can notice that the vast majority of the best MVs are found in

3542 Multimedia Tools and Applications (2023) 82:3535–3560



the first two steps (95.21%), which correspond to only a quarter of the overall TZS complex-
ity (25.42%). On the other hand, the last two steps are responsible for finding out only 4.79%
of the best MVs, whereas they require 74.85% of the overall TZS complexity. However,
simply skipping these last steps incurs in non-negligible losses in compression efficiency. A
set of tests performed over the same video sequences revealed that a BD-rate increase of up
to 5.79% is noticed when the Raster Search step only is skipped. Thus, based on this anal-
ysis, Section 5.1 presents an intelligent algorithm that allows dynamically bypassing some
TZS steps, maintaining compression efficiency and significantly reducing complexity.

4.2 Best matching distribution in raster search

The previous analysis showed that Raster Search is the most time demanding step of TZS,
although it is also the step that yields the smallest share of best MVs. However, Raster
Search is essential for the proper functioning of the TZS algorithm, since it can recover
the direction of the search region to find the best block if previous steps have failed in this
process. Therefore, an evaluation of the best MV occurrence was performed specifically for
the Raster Search. To perform this, the same setup described in the previous analysis was
employed. However, in this case two different SR values were considered in two separate
analyses: 64 and 256.

For each Raster Search execution, the best position (i.e., the final MV chosen by the
Raster Search step) was mapped to a matrix that represents the SA, where each matrix cell
counts the number of best MV occurrences at that point. Thus, at the end of the sequence
encoding, each matrix cell represents the number of times that the best candidate block
was found in that position within the SA. Considering a Search Range (SR) of 256, the SA
dimension ranges from -256 to +256 samples. As the sub-sampling value (iRaster) is equal
to 5, 103 points are compared both horizontally and vertically, resulting in a total of 10,609
candidate block comparisons in this step. Therefore, the occurrence matrix created for the
analysis with SR 256 has 103×103 positions, representing each candidate block compared
in Raster Search. Similarly, when the SR of 64 is used, a total of 676 block comparisons is
performed and the occurrence matrix has 26×26 positions.

For better visualization, the obtained results were plotted as heat maps in Fig. 4, where
the warmest colors represent points at which most of the MVs were found, and cooler colors
represent regions rarely chosen. The occurrence values were normalized, therefore rang-
ing from 0 to 1 in the color scale. For this analysis, two sizes of SR were evaluated. On
the left of Fig. 4, the heat maps show the analysis for the SR value of 64, whereas in the
right the SR is set to 256. In both cases, the heat maps are shown in two-dimensional and
three-dimensional plots. The plots in Fig. 4(a)-(c) and (e)-(g) show the heat map for three
video sequences (HoneyBee, Beauty, and Bosphorus), which are those that presented the
most extreme behavior among all analyzed sequences. The remaining sequences presented
a behavior similar to the average, shown in Fig. 4(d) and (h), which considers the eight
analyzed sequences.

HoneyBee shows a less uniform distribution than the other analyzed sequences for both
SR 64 and 256. This is perceived by irregular elevations throughout all the SA. This dis-
tribution can be better observed in the 3D chart of Fig. 4(e). In Beauty, a more prominent
horizontal distribution pattern is noticed in Fig. 4(b) and (f). On the other hand, Bosphorus
shows a high concentration around the vertical axis, as noticed in Fig. 4(c) and (g).

The distribution characteristics are always related to the scene content, especially due
to object shape and camera motion. For example, the Bosphorus sequence is composed of
a boat moving from left to right, which justifies a higher concentration at the right side
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of the heat map than at the left, especially for a SR 256, as shown in Fig. 4(g). However,
due to the horizontal orientation of videos and also due to the usual horizontal motion of
both cameras and objects within a scene, in every case the vast majority of MVs occurrence
are at the center and around the central axes of the SA. Other diagonal motion also occurs
less frequently and in a more limited range, which justifies the average pattern presented in
Fig. 4(d) and (h).

This analysis shows that most of the computational effort of the most complex TZS step
is usually wasted by testing candidate blocks located at regions rarely chosen. Thus, it is
noticeable that a strategy that prioritizes the most likely regions to find the best MVs would
reduce the overall ME complexity, with minor penalties in coding efficiency.

5 Bypass zone search algorithm

The first analysis presented in the previous section has shown that the TZS algorithm dis-
penses a significant computational effort in complex steps, even when the best MV has
already been found in earlier stages. Also, the second analysis has shown that Raster Search,
the most time-consuming step of TZS, searches for candidate blocks in areas rarely chosen
in the end. The distribution analysis revealed a very strong concentration of best matching
in the central region and around the central axes of the SA.
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Thus, this section proposes the Bypass Zone Search (BZS) algorithm, which is a novel
hybrid solution for fast Integer Motion Estimation (IME) based on two strategies. Just as
TZS, the BZS algorithm is divided into four steps, as shown in Fig. 5: Motion Vector Pre-
diction, Initial Search, Astroid Raster Search and Refinement. However, differently from
TZS, BZS employs a three-way Learning-based Bypass Motion Estimation (LBME) strat-
egy that allows bypassing all the remaining steps if the best MV is predicted to be found
in the current step. Three decision tree models, trained from an extensive data mining and
machine learning process, allow the BZS execution to be halted if the best predicted MV
has already been found. The second BZS strategy is a novel search pattern employed in the
Astroid Raster Search step, named Astroid Raster Pattern (ARP). Through ARP, Astroid
Raster Search is able to prioritize the most likely zones to find the best MV, according to
the distribution analysis presented in Section 4.2. The following subsections detail the two
strategies.

5.1 Learning-based bypass motion estimation

Section 4.1 showed that most of the best MVs are actually found in the least complex step of
TZS, the Motion Vector Prediction. On the other hand, the most complex step is responsible
for finding less than 1% of the best MVs. Thus, a three-way bypass strategy, named as
Learning-based Bypass Motion Estimation (LBME), is proposed to predict whether the best
MV has already been found and thus halt the search. Three decision tree models (DT1, DT2,
DT3) were employed in the scheme, each one executed after the Motion Vector Prediction,
the Initial Search and the Astroid Raster Search steps, as shown in the flowchart of Fig. 5.
If any decision tree decides that the best MV has already been found, BZS is halted and no
other later steps is executed; otherwise, the execution of the algorithm continues normally.

Fig. 5 Bypass Zone Search
(BZS) algorithm flow. DT1, DT2
and DT3 represent the decision
tree models applied after MV
Prediction, Initial Search and
Astroid Raster Search,
respectively

start

end

DT1

con�nue

DT2

con�nue

DT3

con�nue

halt

halt

halt
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Decision trees are a class of machine learning techniques for general-purpose systems
that address very low complexity classification solutions. Basically, after training a model
using previously classified items (i.e., cases for which the classification is already known),
the model can predict the category of any new target item which category is unknown based
on a set of input variables [29]. Nowadays, decision trees are commonly used because they
(i) are easily understood and simple to implement, (ii) usually achieve high prediction accu-
racy after appropriate training, (iii) can deal with categorical and numerical values, (iv) can
be built according to several efficient algorithms, (v) require a very low computational effort
and (vi) are hardware friendly. The fifth characteristic is extremely important for this work,
since it aims at reducing the IME complexity without harming coding efficiency.

A data mining process prior to the decision trees training was performed by collecting
22 features from the TZS algorithm execution in the HM reference software [14]. In order
to maintain the computational overhead of the decision process as low as possible, only
low-complexity features and values already computed during the encoding process were
considered as features. Image descriptors and motion activity indexes were not included
because they incur in extra computational cost.

The same video sequences and setup mentioned in Section 4 were considered. Due to
the large volume of data, only the first 16 frames of each video sequence were encoded for
the data collection. For each of the three models, 1,000,000 instances were gathered and
randomly selected to compose a set consisting of 31,250 instances per combination of the
eight video sequences and the four QP values, totaling 32 different executions. Thus, all QP
values recommended in the CTC and all training sequences are equally represented in the
dataset. This process is performed to ensure that the trained model is generic enough to be
used in future encodings, with varied types of video content.

The data mining was performed for each of the models separately, which is necessary
because not all features are available in all steps. For example, the RD cost feature, calcu-
lated in the Initial Search step, is available only after this step. Thus, it cannot be included in
the dataset for the first model. On the other hand, this feature can be included in the training
dataset of all models following Initial Search.

From the 22 features considered in the data mining, 14 of them achieved a Gain Ratio
(GR) larger than 0.01 and were selected for the training step. This GR threshold was defined
to limit the number of levels of the trained decision trees, in order to maintain their com-
plexity low. The GR metric [19] was used to select the attributes according to their relevance
regarding the final decision (i.e., whether the current MV is the best MV). In other words,
only features with a minimally enough contribution to the final decision were maintained
to avoid unnecessary attribute computations. GR [19] is a normalized version of the Infor-
mation Gain (IG) [19] provided by most machine learning toolkits, which represents the
difference between the number of bits per data item necessary to convey its class identity
before and after classification of the dataset based on an attribute [29]. Due to this suit-
ability, the GR measure is more reliable in video applications since the training instances
present high variation due to the plurality of the content.

Table 2 lists the 14 selected attributes and their respective GR. Resolution, QP, PU
Height and PU Width are parameters obtained before the execution of the IME and corre-
spond to the number of pixels in each slice, the QP used in the current Coding Unit and the
vertical and horizontal dimensions of the current Prediction Unit. The remaining attributes
are collected after the execution of each step, represented by the PMV, IS and RS prefixes
for Prediction, Initial Search and Raster Search, respectively.
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Table 2 Selected features and Gain Ratio for each model

Attribute Gain Ratio

1st Model 2nd Model 3rd Model

Resolution 0.0351 - -

QP 0.0514 0.1081 -

PU Height 0.0162 - -

PU Width 0.0161 - -

PMV-Mode 0.0891 - -

PMV-SAD 0.0337 - -

PMV-RDcost 0.0327 - -

PMV-VerMV 0.0211 - -

PMV-CityBlock 0.0156 - 0.1367

IS-FirstLevel - 0.5902 -

IS-SAD - 0.0245 -

IS-RDcost - 0.0568 -

IS-BestDistance - - 0.9589

RS-CityBlock - - 0.5282

PMV-Mode corresponds to the mode chosen by the Prediction step to define the center
of the SA. PMV-SAD, PMV-RDcost and PMV-VerMV correspond to the SAD value, the RD
cost and the vertical component of the MV for the best candidate block found at the end of
Prediction step, respectively. PMV-CityBlock indicates the City Block distance [2] between
the center of the SA and the best candidate block found at the end of Prediction step.

The IS-FirstLevel attribute indicates the number of expansions performed by the Initial
Search step. IS-SAD and IS-RDcost are the SAD and RD cost values for the best candidate
block found at the end of Initial Search, respectively. IS-BestDistance is the same parameter
used by the original TZS algorithm to decide whether the Raster Search is performed, and it
corresponds to the distance between the best candidate block obtained by the Initial Search
step and the best block obtained by the Prediction step. Finally, ARS-CityBlock is the City
Block distance between the center of the SA and the best candidate block found at the end
of Raster Search.

Notice that in Table 2, the first model uses nine features, whereas the second and third
models only use four and three features, respectively. This is explainable because, at the
Prediction step (where the first model is applied), the available features do not carry much
information related to the stop/continue decision. Consequently, each attribute gain ratio is
lower, which requires a more significant number of features to be employed in the model. As
the motion estimation algorithm evolves to the next steps, the number of necessary features
decreases since the model can achieve higher confidence in its decisions with more relevant
features (i.e., features with higher GR values).

After data collection and data mining, the training process was performed with the fea-
tures selected as described. The training algorithm chosen was the C5.0 [27], which is an
evolution of the well-known C4.5 algorithm [28] that includes several tools to improve
the model building process. Initially, C5.0 calculates the information gain (IG) for each
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Table 3 Performance measures
for LBME strategy Model Performance Measures (%)

Accuracy Precision Recall F1 score

1st Model 78.82 76.36 83.49 79.77

2nd Model 97.85 96.82 98.95 97.87

3rd Model 99.52 99.99 99.05 99.52

Average 92.06 91.06 93.83 92.39

attribute, indicating how relevant it is for the classification. Once calculated, the attribute
with highest IG is chosen and used to divide the training dataset into two subsets, and then
the same process is recursively applied. After training, the model accuracy was observed
through a cross-validation process and reported by the C5.0 [27] reference software.

Accuracy is the most intuitive performance measure, and it is simply a ratio of correctly
predicted observations to the total observations. However, in datasets where the false-
positive and false-negative values are very different, the accuracy may present a false hit
ratio. In addition to accuracy, other performance measures were calculated to evaluate each
model. Precision is the ratio of correctly predicted positive observations to the total pre-
dicted positive observations. In this sense, high precision is related to a low false-positive
rate. Recall is the ratio of correctly predicted positive observations to all observations in
actual class. In other words, in our context, it considers all cases with a decision to termi-
nate the ME, whether they are true or not. F1 score is the weighted average of Precision and
Recall. Therefore, this score takes both false positives and false negatives into account. Intu-
itively it is not as easy to understand as accuracy, but F1 score is usually more useful than
accuracy, especially in an uneven class distribution [26]. Table 3 presents the performance
metrics for each of the trained models, in addition to the average of the three models. In this
sense, considering the average results, it is possible to observe that the LBME strategy is
able to reach an accuracy, precision, recall, and F1 score of 92.06%, 91.06%, 93.83%, and
92.39%, respectively.

However, it is important to notice that false-positive decisions correspond to cases in
which the models decide to continue the search when the best candidate block has already
been found in previous steps. This type of error leads to unnecessary computations but does
not incur in compression efficiency loss. On the other hand, false-negative decisions corre-
spond to cases in which the algorithm should continue the search, but the model decides for
halting. In this case, the decision error leads to compression efficiency loss, since the best
candidate block is not chosen. This way, if false-positive cases are disregarded as decision
errors, the first model achieves an actual accuracy of 70.3%. In comparison, the second and
third models achieve 99.5% and 99.8%, respectively, as shown in Table 2.

Figure 6 shows the second decision tree model, implemented after the Initial Search step.
Once trained offline, the models are implemented in the HM reference software as an IF-
ELSE chain, where the halt and continue leaves indicate the two possible outcomes. The
Depth in Fig. 6 indicates the number of decision levels executed by the model. Notice that
the models are all composed of a few decision levels (maximum of 11 in the first model),
which leads to a negligible computational overhead. Due to the number of decision levels,
the other decision trees are not presented in Fig. 6, but can be accessed in [35].
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Fig. 6 Proposed decision tree model applied after Initial Search step

5.2 Astroid raster pattern

The MV distribution analysis presented in Section 4.2 revealed that the computational effort
required to compare most of the available candidate blocks in the Raster Search step is
wasted, since most of the best MVs are found in the central region of the SA and nearby the
vertical and horizontal axes, composing an Astroid-shaped area. Thus, the proposed BZS
algorithm employs a new search pattern in the Raster Search step, named Astroid Raster
Pattern (ARP).

Figure 4(h) showed that the internal square of the SA (dashed in red) corresponds to a
region with 25% the size of the original area and contains most of the positions with the
highest MV occurrence. Considering the default Search Range (SR) of 256 (i.e., a 512×512
SA), the internal square corresponds to an area of 256×256 pixels. According to (3), this
leads to a comparison of 10,609 blocks in each Raster Search execution. On the other hand,
if only the inner square is considered (i.e., a SR of 128), a total of 2,704 candidate blocks
are tested.

However, Fig. 4 also shows that there are still some sparse cases of medium or high
occurrence outside the inner square, especially nearby the horizontal and vertical central
axes. Therefore, the idea of ARP is to perform the search in an Astroid-shaped area. Simi-
larly to the Diamond Search [39], the Astroid-shaped comprises the center of the SA, but it
also performs the search in both horizontal and vertical axes.

An Astroid, presented in Fig. 7, is a mathematical hypocycloid curve with four cusps
traced out by a point P on the circumference of one circle C1 (of radius a/4) as this circle
rolls without slipping on the inside of a second fixed circle C2 of radius a. As the small
circle rolls on the inside of the larger circle, the point P draws the hypocycloid curve called
Astroid. The parametric equations for the integer (x, y) coordinates belonging to the Astroid
boundary points are given by (4) and (5), where a is the radius of the fixed circle C2 and θ
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Fig. 7 Proposed Astroid Raster Pattern (ARP)

is the angle between the x&#x02011;axis and the line joining the origin to the center of the
rolling circle C1.

x = a cos3 θ = a

4
(3 cos θ + cos 3θ) (4)

y = a sin3 θ = a

4
(3 sin θ − sin 3θ) (5)

The SA is defined as the region within the borders of the Astroid, which is limited accord-
ing to (4) and (5). The point P(x,y) presented in Fig. 7 draws the Astroid boundary while C1
rolls over C2. The figure represents the moment at which θ is 22◦, which results in a point
at the Astroid boundary defined as P(x = 204, y = 13) for a SR of 256. Once C1 revolves
around the full C2 circumference, the Astroid limits and the SA are defined.

Notice in Fig. 7 that the Astroid is a format very similar to the pattern observed in the
average heat maps presented in Fig. 4(d) and (h). To limit the number of candidate blocks
compared by ARP to 25% of the Raster SA, a correction in the extension of the search at
the axes is needed. This is also required to allow for a perfect Astroid shape, which states
that the larger circle radius is four times the smaller circle radius. Thus, the number of
candidate blocks compared in each axis direction (upper, down, left and right) was reduced
to the largest multiple of 4 close to the SR value. For example, considering a SR of 256, the
original Raster Search compares 51 candidate blocks in each axis direction (see (3)), while
ARP compares 48 of them (largest multiple of 4 close to 51).

By applying such changes, the ARP format tests the same number of candidate blocks as
the internal square of the original Raster Pattern (i.e., 2,704 blocks). However, as these tested
blocks are all located within the limits of the Astroid format, the probability of finding the
best MV is much higher. Figure 7 shows the ARP search area in blue and illustrates how the
same SA is defined by the original Raster Search (red-dashed square). Notice that even by
comparing only 25% of the original area (i.e. 2,704 points), ARP covers most of the region
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with highest occurrence of best MVs. In fact, when compared to the average distribution
presented in Fig. 4(h), 72.4% of all best MV occurrences are covered by ARP.

Unlike other fast strategies for IME, ARP does not require information from neighbor-
ing blocks to direct its search. Also, it is important to notice that ARP is not an algorithm;
instead, it is an access pattern that indicates the coordinates of the blocks to be evaluated
in the search for the best candidate block. This means that once the block coordinates are
within the evaluated search window, ARP will perform the search algorithms at the indicated
points without any restriction. In the BZS strategy, ARP is implemented as a simple binary
mask that indicates which positions are valid and which positions are not valid according to
the astroid format. Using this mask, the ARP search will always present the same behavior.
Also, since it always tests a fixed number of candidate blocks, ARP allows for regular exe-
cution, which is an important factor for fast ME algorithms, and allows ARP to be employed
as an alternative algorithm to FS in solutions that require regularity, as dedicated hardware
implementation.

6 Experimental results

This section presents experimental results for the two complexity reduction strategies that
compose the BZS algorithm proposed in this work. The results are presented for the strate-
gies implemented separately and combined. Besides, comparisons between TZS and related
works are also drawn.

To evaluate the efficiency of the proposed scheme, BZS was implemented in the HEVC
Test Model (HM-16.14) reference software [14]. The modified HM encoder was compared
to the original HM encoder. Each strategy was evaluated for 29 video sequences, recom-
mended in the CTC document [30], which belong to classes A1, A2, A, B, C, D, and F.
The selected sequences differ from one another in frame rate, bit depth, spatial resolution
and motion/texture content. It is important to highlight that the sequences used to evalu-
ate the algorithm are different from the sequences used to train the LBME. Except for the
video sequences, the same encoding setup described for the analyses of Section 4 was used
in these experiments, as recommended in [30], including the Random Access and the Low
Delay temporal configurations.

Table 4 presents the obtained results for LBME and ARP separately and jointly imple-
mented in BZS. In all these experiments, the SR value of 256 was selected. Each experiment
was evaluated in terms of IME time savings (IME TS), overall encoding time savings (Over-
all TS) and Bjontegaard Delta-rate (BD-rate) [4]. TS is calculated according to (6), where
TO represents the processing time required by the original HM encoder, and TM represents
the processing time required by the HM modified according to the scheme proposed. All
obtained results were calculated by taking the HM encoder with the TZS algorithm imple-
mented as anchor for comparison. Due to the highly variable nature of the video encoding
process, relating the objective quality and bitrate of a video with complexity reduction is the
most direct way to compare distinct techniques in terms of performance. This methodology
is described and recommended in CTC [30] and is used by the vast majority of authors that
propose strategies for complexity reduction in video coders. The next sections will discuss
the results obtained following this methodology.

T S = TO − TM

TO

(6)
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6.1 LBME results

The complete original TZS was used as anchor to evaluate the LBME solution. This means
that the ARP was not used in this evaluation and the Raster Search was unchanged.

From Table 4 one can perceive that the IME and overall time savings are consistent for
all video sequences. On average, the LBME strategy achieves an IME TS of 26.98% and
an overall TS of 6.13%. UHD sequences with low motion activity, such as TrafficFlow and
CatRobot, are those that achieved the highest IME TS, since the LBME strategy can halt the
IME in earlier steps. On the other hand, the search in sequences with very complex motion
activity, such as ToddlerFountain, is less frequently halted by LBME, which needs to run
complex steps like Raster Search to find the best MV. In terms of compression efficiency,
LBME presents an average BD-rate increase of only 0.0384%. Altogether, the test video
sequences have presented BD-rate values close to zero, with both negative and positive
variations. This means that the proposed LBME strategy leads to a negligible impact in
compression efficiency.

6.2 ARP results

The ARP evaluation considered the TZS with the original Raster Search as anchor and
the Raster Search is substituted by the Astroid Raster Search. The LBME solution is not
enabled to allow an isolated evaluation of ARP. Table 4 shows that ARP reduces the IME
processing time by 41.12%, on average, in comparison to the square Raster Search pattern
employed by TZS. When considering the whole encoding process, the use of ARP leads
to an overall TS of 10.56%, with an average BD-rate of -0.2741%. Notice that a negative
BD-rate means that ARP is able to improve compression efficiency in comparison to the
usual original TZS Raster Search pattern. However, unlike LBME, the IME and overall TS
results for ARP are not regular throughout all the analyzed sequences. This is due to the
content characteristics of each video, which can restrict (or not) the application of the Raster
Search or ARP step through the BestDistance parameter test (see Fig. 1). For example,
the BQTerrace sequence is characterized by a scenario with a terrace and a bridge, with
few and slow camera movements. Consequently, the MVs found in the initial steps of the
TZS are close to the central region of the SA and therefore the Raster Search and the ARP
step are rarely executed, since the distance between the best MV after the Initial Search
(BestDistance) is smaller than iRaster. Oppositely, sequences with high motion activity,
such as ToddlerFountain and Tango, benefit more from this search strategy, since the Raster
Search and ARP are executed more often and there is higher potential for time reduction.

These experimental results show that both LBME and ARP strategies reduce the IME
complexity significantly with negligible or no penalties at all in compression efficiency.
Thus, the next subsection presents results for the combined strategies as the BZS algorithm
implemented in the HM reference encoder.

6.3 BZS results

Regarding compression efficiency, Table 4 shows that the average BD-rate considering all
tested sequences was 0.0837%, which is considered a negligible loss for most applications.
The table also shows average results for the three tested video resolutions and reveals that
the BZS algorithm leads to negative BD-rate results for FHD and WQXGA resolutions,
which indicates improvement in compression efficiency in comparison to TZS. Only UHD
sequences presented higher BD-rate results, especially for RollerCoaster and TrafficFlow
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sequences, with BD-rate 0.8566% and 0.9144%, respectively. This is mainly due to the very
intense motion in both UHD videos, which leads to many cases where the best candidate
block is not within the limits of the original SA. Thus, in such cases the Astroid search is
not able to find the best candidate block, since it is located outside the considered region.
Seven other video sequences also presented positive BD-rate, but with values much lower
than these two mentioned cases.

The best results in terms of coding efficiency are for the PeopleOnStreet and NebutaFes-
tival sequences, with BD-rate values of -0.2107% and -0.1007%, respectively. Compression
efficiency improvements can be explained by the local and sub-optimal decisions of the HM
encoder, which does not implement a full RDO algorithm. If the selected suboptimal MV
leads to a high RD cost, the encoder could decide to go further in the block partitioning
structure, performing the IME again with smaller blocks, which may also improve com-
pression efficiency. By evaluating smaller blocks, the prediction steps could provide better
prediction results and lower residues. This leads to better reference frames, conducting to
MV decisions in future frames that are better than the performed by TZS.

The observed TS in the overall encoding process was 14.32%, on average. The highest
overall TS was achieved for UHD resolution sequences, with an average result of 20.18%.
This is explained by the fact that UHD sequences require the execution of Raster Search
much more often than lower resolutions, since even a small motion between neighboring
frames directs the best block matching to regions far from the center of the original SA (i.e.,
BestDistance is usually larger than iRaster, which enables Raster Search). Thus, as Raster
Search is required more frequently, there is higher potential for time savings in UHD. Oppo-
sitely, sequences with very little motion between neighboring frames, such as BQTerrace
and Traffic presented small overall TS results. In such cases, the generated MVs are in the
great majority smaller than iRaster, which causes the Raster Search step to be disabled even
in the original TZS algorithm.

The time savings for IME only, considering all encoded sequences, was 60.98%, on
average. Notice that, in general, those sequences that presented high IME TS results also
achieved high overall TS results, as expected. However, it is important to observe the case
of the TrafficFlow sequence, which also presented the worst results in BD-rate. In this case,
even though the obtained IME TS results are high (62.09%), the overall TS for this sequence
(9.10%) is about half the average obtained for other UHD sequences (20.18%). This corrob-
orates the hypothesis that if the BZS impact in compression efficiency is too negative, the
encoder is required to perform more computations in other steps. For example, if the best
block matching is halted at the Prediction step with a sub-optimal MV, the IME complexity
is thoroughly reduced, but the encoder will generate more residue to be transformed, quan-
tized and entropy encoded, increasing the computational effort in other encoder modules.
Thus, it is essential to observe both IME TS and overall TS to assess the efficiency of the
proposed algorithm.

Finally, Table 5 presents average results for the BZS algorithm with the Low Delay tem-
poral configuration. The same encoding setup presented before was used, except for the
temporal configuration. Results are averaged by video class group, as defined in the CTC
[30]. It is possible to notice that the BZS efficiency does not change in the Low Delay
case, even though the all analyses and trained models used data collected from the Random
Access scenario. In fact, the Low Delay configuration achieves even greater coding time
reductions than the Random Access configuration. In the Low Delay configuration, aver-
age IME time savings are 63.05%, while for Random Access it is 60.98%. Also, overall
time savings increase to 17.64% (against 14.32% for Random Access). In terms of coding
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Table 5 Obtained results for BZS (TZS as anchor, Low Delay configuration)

Class F D C B A A2 A1 Average

(Resolution)

IME TS (%) 67.42 44.55 60.47 63.69 66.01 70.10 69.1 63.05

Overall TS (%) 16.84 8.19 15.50 16.90 18.08 22.74 25.24 17.64

BD-rate (%) +0.24 -0.03 +0.01 +0.05 -0.02 +0.01 +0.06 +0.04

efficiency, the Low Delay scenario also presents better results, with an average decrease of
approximately 0.04% in BD-rate.

The lowest overall time savings were obtained for class D in the Low Delay configuration
(8.19%). However, a BD-rate of -0.03% was noticed, indicating better coding efficiency
than the anchor. The most significant reduction in coding time was for class A1 (25.24%),
with a negligible coding efficiency loss of only 0.06%. These experimental results show
that BZS offers a great tradeoff between time reduction and coding efficiency regardless of
the temporal configuration chosen.

6.4 Comparison with related works

Table 6 shows a comparison between three configurations of this work and three of the
main related works found in the literature [9, 13, 24], which are those that excel in terms of
complexity reduction and compression efficiency in comparison to the original TZS algo-
rithm. To allow a fair comparison with these works, only the sequences tested in all works
are considered for comparison, and the same encoding setup described for the analyses of
Section 4 was employed (Random Access configuration). As most related works present
only TS results for the overall encoding process, these values are compared in Table 6,
besides compression efficiency in terms of BD-rate.

To assess the efficiency of the proposed model, BZS was executed with three different
configurations, varying the range of the SR for the IME, and for the ARP search. The SR
and the ARP range do not present any direct relationship since the SR is defined for the
whole IME, and the ARP range is defined specifically to limit the Raster Search step only.
As the SR exists in related works with value 64, the first configuration is the same used in
related works, with a SR set to 64 for IME and the ARP range set to 128 (i.e., which leads
to the same number of candidates blocks compared by a square Raster Search with SR 64).
This configuration reached an overall TS of 19.63%, with a BD-rate increase of 0.68%. In
the second configuration, the same SR of 64 was maintained for IME, but the ARP size
was increased to 256. In this configuration, the overall TS was reduced to 17.10%, and the
BD-rate also reduced to 0.18%. This indicates that increasing the ARP range improves the
compression efficiency, while still maintaining a high TS. Finally, in the last experiment the
IME SR was set to 256 and the ARP range was set to 256. As expected, this version led to
the lowest TS (15.41%), but resulted in negative BD-rate, which means that compression
efficiency improved.

It is possible to notice in Table 6 that all related works achieve higher overall TS numbers,
surpassing the 15.41% achieved by BZS for these sequences. However, the achieved TS
results come at the cost of a large increase in BD-rate, which is above 1% in all related
works. Notice that BZS reduces the overall encoding time in at least 15.41% and at 19.63%
with an average BD-rate between -0.01% and 0.68%, on average, for these sequences.
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The ratio between BD-rate and TS (BD/TS) is employed as a measure of compression
efficiency variation per each percentage point in the TS. This allows for a fairer compar-
ison between related works that achieve different TS and compression efficiency levels.
For better visualization, the BD/TS ratio was multiplied by 100 in Table 6. High BD/TS
values represent poor tradeoff between compression efficiency and complexity reduction,
whereas values close to zero represent a good tradeoff. Negative values represent compres-
sion efficiency improvement. Notice that a ratio of 8.00, 6.30 and 4.62 was achieved with
the solutions proposed by [13], [24] and [9], respectively. On the other hand, BZS achieved
a ratio of 3.48, 1.03 and -0.05 for the three compared configurations.

In the recent work, the authors in [25] present interesting results in terms of overall
encoding time reduction and BD-rate. As the authors only present the average results by
video sequence class, it is impossible to perform a comparison by individual video sequence,
as the one in Table 6. However, it is possible to consider the average results presented
in both works. In the most refined configuration, [25] achieves an overall encoding time
reduction of 6.84%, on average, with an increase in BD-rate of 0.08%. In the less refined
configuration, the overall encoding time reduction obtained was 16.21%, with an increase
of 1.73% in BD-rate. In both cases, the results obtained by [25] are surpassed by BZS when
considering the tradeoff between complexity reduction and coding efficiency.

Therefore, it is possible to conclude that the proposed BZS algorithm achieves the best
tradeoff between compression efficiency and time savings when compared to related works.

7 Conclusion

This paper presented BZS, a hybrid algorithm for fast block matching motion estimation.
The BZS algorithm is based on the TZS algorithm and introduces two novel strategies for
IME complexity reduction: the Learning-based Bypass Motion Estimation (LBME) strategy
and the Astroid Raster Pattern (ARP). While LBME is capable of predicting cases in which
the best MV has already been found and thus bypass the remaining IME steps, ARP prior-
itizes the most likely areas to find the best candidate blocks during Raster Search, ignoring
regions with lower chance of finding best MVs.

BZS was implemented in the HEVC reference encoder and the experimental results have
shown that the IME complexity is reduced by 60.98% (Random Access) and 63.05% (Low
Delay), on average, in comparison to the TZS algorithm. Besides, BZS reduces the overall
HEVC encoding time by 14.32% (Random Access) and 17.64% (Low Delay) in comparison
to the case in which TZS is used for IME. In terms of coding efficiency, a negligible loss of
+0.0837% (Random Access) and +0.04% (Low Delay) was observed in terms of BD-rate, on
average. For certain scenarios, such as FHD and WQXGA resolutions, experimental results
have shown that BZS in fact improves compression efficiency by &#x02011;0.0097% and
-0.0325% in BD-rate values, on average. Finally, when compared to the best related works
found in the literature, BZS presented the best tradeoff between compression efficiency and
complexity reduction.
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34. Vanne J, Viitanen M, Hämäläinen TD (2014) Efficient mode decision schemes for HEVC inter predic-

tion. IEEE Trans Circuits Syst Video Technol 24(9):1579. https://doi.org/10.1109/TCSVT.2014.2308453
35. Video Technology Research Group (ViTech) GitHub Repository. https://github.com/vitech-ufpel/LBME
36. Wang Y, Fan X, Xiong R, Zhao D, Gao W (2021) Neural network-based enhancement to inter prediction

for video coding. IEEE Trans Circuits Syst Video Technol 1–1
37. Zhang Y, Zhang C, Fan R, Ma S, Chen Z, Kuo CJ (2019) Recent advances on hevc inter-frame coding:

from optimization to implementation and beyond. IEEE Trans Circuits Syst Video Technol 1–1
38. Zhu C, Lin X, Chau L-P (2002) Hexagon-based search pattern for fast block motion estimation. IEEE

Trans Circuits Syst Video Technol 12(5):349. https://doi.org/10.1109/TCSVT.2002.1003474
39. Zhu S, Ma K-K (2000) A new diamond search algorithm for fast block-matching motion estimation.

IEEE Trans Image Process 9(2):287. https://doi.org/10.1109/83.821744

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

3560 Multimedia Tools and Applications (2023) 82:3535–3560

https://doi.org/10.1007/s11042-019-08593-y
https://doi.org/10.1007/s11042-019-08593-y
http://www.rulequest.com/see5-info.html
http://www.R-project.org/
https://doi.org/10.1109/TCSVT.2012.2221191
http://ultravideo.cs.tut.fi/
https://doi.org/10.1109/TCSVT.2014.2308453
https://github.com/vitech-ufpel/LBME
https://doi.org/10.1109/TCSVT.2002.1003474
https://doi.org/10.1109/83.821744

	Learning-based bypass zone search algorithm for fast motion estimation
	Abstract
	Introduction
	Test zone search algorithm
	Related work
	Time and statistical analysis
	Best matching and runtime analysis
	Best matching distribution in raster search

	Bypass zone search algorithm
	Learning-based bypass motion estimation
	Astroid raster pattern

	Experimental results
	LBME results
	ARP results
	BZS results
	Comparison with related works

	Conclusion
	References


