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Abstract
In this paper, a novel meta-heuristic algorithm called Fireworks Optimization Algorithm
(FOA) is introduced with few control parameters for discrete and continuous optimization
problems. This algorithm is inspired from explosion pyrotechnic devices producing
colorful spikes like red, blue and silver. By modelling the explosion behavior of the
Fireworks in the sky, the search space can be swept efficiently to find the global optima.
To improve the balance between the exploration and exploitation of individuals, three
categories are defined to avoid local optimal traps and applied to the search agents. Each
category has a different task and predefined updating position rules. A grouping strategy
is considered to prevent the algorithm from premature convergence. The performance of
FOA is demonstrated over 15 standard benchmarks in the continuous version and 30
images thresholding problems in the discrete version. The obtained results reveal the
superiority of the proposed algorithm with fewer input parameters over other state-of-the-
art optimization methods in most cases.

Keywords Fireworks optimization algorithm .Bio-inspired algorithm .Benchmarked functions .

meta-heuristic technique . Image segmentation . Engineering applications

1 Introduction

In real-life, there are many complicated problems which cannot be solved easily. Exact
optimization algorithms may be chosen to solve these complex problems; However, high
dimensionality and non-differentiability properties of hard-computing problems, make exact
optimization algorithms unsuitable tools to achieve a good result. Hence, approximate
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algorithms have been introduced to solve complex problems, faster and more reliable.
Generally, searching algorithms are classified into two main categories: individual-based and
population-based algorithms. There are some advantages and disadvantages for these two
categories. For example, individual-based algorithms are fast in process and reliable for simple
models. However, they depend on gradient information and cannot find global optimums in
complex problems. Second group can fly from local optima better than first group and
overcome complex environments with information sharing between individuals. However,
they suffer from high computational cost compared to individual-based algorithms.

In literature, various meta-heuristic algorithms like physics-based [2, 19, 39, 46, 47],
nature-based [6, 26, 34, 40, 48], animal-based [7, 22, 25, 42, 43], mathematics-based [31,
36, 41], evolutionary-based [13, 44] and virus-based [23, 32] algorithms have been reported.
Physical laws of nature are basic ideas of physics-based algorithms which try to model
physical relations to solve the problem. Nature-based algorithms are inspired by natural
phenomena like lightning, ocean ecosystem, plant growth etc. The inspiration of animal-
based algorithms is the behavior of animals in the co-operative foraging, mating fight etc.
Mathematics-based algorithms are another group of meta-heuristic algorithms which consider
the mathematic relations like gradient theorem, sine and cosine functions, … to find the
solution. Evolutionary-based algorithms use natural selection or Darwinian theory to converge
the global optimum. However, the implementation of Darwinian theory is different in this
group of meta-heuristic algorithms. Virus-based algorithms are inspired by attacking, trans-
mission and activity of virus in human bodies.

The mechanism of population-based algorithms is generally similar. The algorithm starts
with initial candidate solutions. Usually, they are generated randomly with uniform distribu-
tion to cover the space. Then, the algorithm tries to find better locations in the searching
process from generation to generation according to updating rules. Finally, the algorithm
converges to the reasonable optimum by the end of run. However, there are some drawbacks to
achieve the goal. Maintaining diversity is one of the major challenges of the meta-heuristic
algorithms in solving complex problems. Also, premature convergence and becoming trapped
in the local optima are other concerns of the optimization algorithms. To overcome these
shortages, several algorithms have been developed in recent decades [24, 29].

Dhiman and Kaur introduced Sooty Tern Optimization Algorithm (STOA) to compromise
between exploration and exploitation terms in the searching strategy [9]. To continue with the
survey of articles, a new searching algorithm based on spiral movement of emperor penguins
in the colony was proposed to solve different optimization problems [17]. Bouchekara
developed a novel approach based on interaction between electric charged particles to design
a circular antenna array [4]. Fathollahi-Fard et al. considered the mating behavior of the male
red deer and suggested a new algorithm in this issue [12]. Black Widow Optimization (BWO)
is another meta-heuristic approach which was reported for continuous nonlinear problems
[21]. In literature, various algorithms are introduced in different issues by researchers. For
example, Khare et al. proposed a hybrid classifier model for intrusion detection [30]. Recently,
a novel optimizer inspired by barnacles mating behavior was introduced to solve reactive
power dispatch problems [45].

In this paper, a novel meta-heuristic algorithm inspired by the explosion of fireworks in the
sky, is introduced. We found out categorizing of the population helps the algorithm avoid
trapping in local optima points and leads to faster convergence. Hence, three different
categories are defined to cover most volunteer solutions of the global optimum and better
sweep the search space. The proposed method is set by local optimum knowledge which has
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been obtained before and tries to find better locations according to distance between sub-
optimal points. A strict selection is considered to optimize the elitism strategy and vast random
search is applied to reinforce the exploration. The innovations of our work are summarized as
follows: 1) simplicity: FOA is as easy as well as robust searching algorithm. 2) efficient update
rules: the location of light particles is updated with new rules which have not been reported
before. 3) few control parameters: FOA has only two tuning parameters to explore searching
space. Also, adapting formulas are suggested for these two parameters. 4) selection: new
selection mechanism is employed in FOA algorithm.

The remainder of the paper is arranged as follows: The Fireworks Optimization Algorithm
(FOA) is described in details and basic steps of the implementation are given in Section 2. The
proposed algorithm is tested using famous continuous benchmarks and well-known test
images and comparative results are presented in Section 3. Finally, Section 4 concludes this
work.

2 Fireworks optimization algorithm

FOA is inspired by the explosion of pyrotechnic devices in the sky with production of
noise, light and smoke. In some cases, explosion repeats several times from the beginning
point like a branch (Fig. 1a). It means that a spike can blast and produce new spikes around
itself and this exhibition continues to illuminate the sky. We model a population-based
searching algorithm, named Fireworks Optimization Algorithm (FOA) from the behavior
of fireworks explosion.

The step-wise implementation of FOA is described as follows:

Step 1: similar to other heuristic algorithms, initialization of the problem is the first step.
Input range values (Lmin and Lmax), number of groups (G) and population size (N) are
defined at this stage. The position of light particles is initialized as follows

X if g ¼ Lmin þ Lmax−Lminð Þ � R
i ¼ 1;…;G
R ¼ rij

� �
N
G�K ; rij∈ 0; 1½ �

ð1Þ

Fig. 1 a Fireworks display in the night sky, b population framework in FOA
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Where X{i} denotes the group number i which has N
G members. R is random matrix with

uniform distribution arrays which has N
G rows and K columns. K is the dimension of the

problem. The whole population X is aggregation of all groups.

X ¼ ⋃
G

i¼1
X if g ¼

x11 ⋯ x1K
⋮ ⋱ ⋮
xN1 … xNK

2
4

3
5 ð2Þ

Step 2: evaluate fitness of all individuals. The best position of a group named GroupBest and
the best position of all members is known as GBest.

Step 3: every group has three categories: a, b and c as shown in Fig. 1b. Members belong to
category a search the distance between GBest and GroupBest. The position update
mechanism of category a is different from discrete and continuous versions; because,
in the discrete problem, the search space is countable and the exploitation is more
reliable than exploration. Instead, in the continuous problem, more exploration is
needed to reach a feasible solution. The second category is category b which tries to
find valuable solutions between GroupBests. Category c is the last category of the
population which searches the area around GBest. The category c is considered in the
algorithm to maintain the diversity of the population.

In two categories a and b, positions are updated by GroupBest and GBest, which reduces the
diversity of the whole population. The update rule of individuals is defined as

For discrete space

xi t þ 1ð Þ ¼

GBest tð Þ þ p1 � r1 � GBest tð Þ−GroupBest i tð Þ½ � if xi∈cat a

GroupBest i tð Þ þ r2 � GroupBest m−GroupBest n½ � if xi∈cat b

GBest tð Þ þ p2 � r3 � Lmax−Lmin½ � if xi∈cat c

8>>>><
>>>>:

ð3� aÞ

For continuous space

xi t þ 1ð Þ ¼

p1 r1 � Lmax−Lminð Þ þ r2 � GBest tð Þ−GroupBest i tð Þð Þ½ � if xi∈cat a

GroupBest i tð Þ þ r3 � GroupBest m−GroupBest n½ � if xi∈cat b

r4 � GBest tð Þ if xi∈cat c

8>>>><
>>>>:

ð3� bÞ

The convergence of the algorithm is guaranteed. When the algorithm finds a good solution, all
light particles begin to approach GBest and three so-called categories stop searching. To clarify
the matter, we trace the population in two sequence iterations in Fig. 2. Three groups are
considered in this figure. Every group has initial members and after the fitness calculation,
GBest and GroupBests are assigned. Then, the only GroupBests remains and generates new group
population according to the distance between neighbor GroupBest and GBest. Figure 2b shows
population generation of group 1 in the next iteration.
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According to above description, the pseudocode of FOA is shown in Fig. 3.
Similar to other natural-inspired algorithms, initialization is done by the random process.

We used a grouping strategy to avoid premature convergence of the proposed algorithm. This
technique was considered in various algorithms such as GGSA [10]. In FOA, the best
individual is noted as GBest and produces a new generation which acts as GBest in PSO or
leader in SSA [38]. However, update rules are different in concept. Elitism is employed in our
algorithm to prune the offspring generation which some methods such as ADS [18] and ALO
[35] have used this technique before. Also, in FOA control parameters (i.e., p1 and p2) have
been adapted to the iteration number like WOA [37].

(a) iteratiion t (b) iterration t+1 for grooup 1 

Fig. 2 Population generation in two sequence iterations

Start
Set parameters:

Maximum iteration Maxiter, population size N, 

number of groups G, control parameters ,

Initial generation:
Generate initial population randomly

Divide population to G groups

Calculate fitness of all members and specify and 

While iteration<Maxiter

For current group=1 to G
Generate light particle positions according to Eq 3 

Correct infeasible solution

Calculate fitness of all individuals and reassign and 

Delete other members and retain and 

end
end
extract 
Stop

Fig. 3 Pseudo code of FOA
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3 Results and discussions

To evaluate the robustness of the introduced searching algorithm and compare it with other state-
of-art natural-inspired methods, two experiments are done in this section. In the first experiment,
image thresholding is considered. Multilevel thresholding is a segmentation method which
partitions the image I into two or more subsets based on t threshold values. It is considered that
a gray-scale image has L intensity levels. Multilevel thresholding can be defined as

R0 ¼
n
g x; yð Þ∈I 0≤g x; yð Þ≤ t1−1j

⋮
RK ¼

n
g x; yð Þ∈I tK ≤g x; yð Þ≤L−1j

ð4Þ

Where g(x, y) is an image pixel, ti (i = 1, …, k) indicates threshold value and K is the total
threshold number. A criterion which is used in the multilevel thresholding is the energy
function. To define the energy function of an image, a neighbourhood system of pixels must
be introduced first. The neighbourhood mask N of order d for a pixel located at (i, j) is
configured as Nd

pq ¼ iþ u; jþ vÞ; u; vð Þ∈Nd
� �� �

[15]. We only study the second order of

neighbourhood (i.e d = 2). The second order neighbourhood mask N 2
ij is shown in Fig. 4.

Energy function is calculated for each gray level. For a given gray level l, a binary matrix Bl

with the size of m × n (the same size as the original image) is built as Bl = {bij, 1 ≤ i ≤ m, 1
≤ j ≤ n} where bij = 1 if g(x, y) > l; else bij = − 1. In other words, Bl indicates which pixel
of the original image has lower or upper intensity than level l. Similarly, another matrix C is
defined as C = {cij, 1 ≤ i ≤ m, 1 ≤ j ≤ n} with elements of ones. i.e. cij = 1, ∀ (i, j). Energy
function at gray level l is formulated as

El ¼ ∑
m

i¼1
∑
n

j¼1
∑

pq∈N2
ij

cijcpq−bijbpq
� � ð5Þ

We define the matrix C to satisfy the positive energy condition El ≥ 0. Kapur method is an
entropy-based criterion which tries to make a centralized PDF distribution for each class on the
segmented histogram [27]. The early algorithm is proposed for bi-level thresholding which
tries to obtain an optimal threshold to extract the object from the background. Then this
concept is applied to multilevel thresholding and utilized in many research studies. The
thresholding problem can be mentioned as follows.

Maximize f t0;…; tKð Þ ¼ ∑K
i¼0Hi

( − 1, − 1) ( − 1, ) ( − 1, + 1)

( , − 1) ( , ) ( , + 1)

( + 1, − 1) ( + 1, ) ( + 1, + 1)

Fig. 4 Neighbourhood of central
pixel (i, j)
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Where

H0 ¼ − ∑
t1−1

i¼0

pi
ω0

ln
pi
ω0

⋮
HK ¼ − ∑

L−1

i¼tK

pi
ωK

ln
pi
ωK

ð6Þ

Eight famous methods, differential evolution (DE) [3], particle swarm optimization
(PSO) [11], bat algorithm search (BAT) [5], flower pollination algorithm (FPA) [1],
artificial bee colony (ABC) [28], harmony search (HS) [33], grey wolf optimizer (GWO)
[20] and whale optimization algorithm (WOA) [14] with FOA are implemented to solve
the image thresholding on the test images shown in Fig. 5 to prove the superiority of our
proposed method. These methods are selected because of their good performance in
previous works of image segmentation. These test images are well-known classical
benchmarks used in the image processing literature. Figure 6 shows the related energy
curve of images.

Kapur entropy is selected to compare the efficiency of different methods and the accuracy
of the obtained solutions. To have an identical condition, the initial members of the searching
methods are selected from the uniform distribution between [0, 255]. The goal is to find the
best threshold values of four levels. To obtain a fair comparison between the searching
algorithms, the number of iterations is set to 30, and the population size is assigned 150 for
all methods. The control parameters of meta-heuristic algorithms are listed in Table 1. These
parameters are chosen from original papers and best achieved by a trial-error procedure. The
results are shown in Tables 2 and 3. The shown fitness is the average score of running each
algorithm over 30 times and four threshold levels relate to the best optimal solution found by
the algorithm over these runs. The peak signal to noise ratio (PSNR) is defined as

PSNR ¼ 20 log 255=RMSEð Þ ð7� aÞ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
M

i¼1
∑
N

j¼1
I i; jð Þ−I 0 i; jð Þð Þ2=MN

s
ð7� bÞ

(a) Test 1      (c) Test 3        (d) Test 4        (e) Test 5   (b) Test 2

(f) Test 6 (g) Test 7      (h) Test 8         (i) Test 9        (j) Test 10 

Fig. 5 Classical test images used to evaluate the proposed algorithm
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Where, N are the size of the test image, I(i, j) and I ′ (i, j) denote original and segmented
images respectively and RMSE is the root mean-squared error between original and segmented
images. SSIM describes the similarity of original and output images, which is defined as

SSIM ¼ 2μIμI
0 þ c1

� �
2σI I

0 þ c2
� �

μ2
I þ μ2

I
0 þ c1

	 

σ2
I þ σ2

I
0 þ c2

	 
 ð8Þ

Where μ and σ are the mean and variance of I and I’ images respectively. σI I
0 is the covariance

between I and I’. c1 and c2 are the constants related to the pixel-values. Apparently, higher
PSNR or SSIM indicates better image segmentation. These measurements increase with higher
threshold values because the segmentation process is done resulting in higher precision.

                    (h)                        (i)                         (j)  (f)  (g)

(a)  (b)                    (c)                        (d)                         (e) 

Fig. 6 Energy curve of test images. a energy curve of Test 1, b energy curve of Test 2, c energy curve of Test 3,
d energy curve of Test 4, e energy curve of Test 5, f energy curve of Test 6, g energy curve of Test 7, h energy
curve of Test 8, i energy curve of Test 9, j energy curve of Test 10

Table 1 Control parameters for searching algorithms

Method Parameters

ABC limit=0.1×population
BAT loudness=0.5

pulse rate=0.9
frequency range: [0,1]

DE crossover probability=0.9
scaling factor=0.8

FPA probability switch=0.7
GWO α ¼ 2− 1

max generation

HS Consideration Rate=0.75
Pitch adjusting rate=0.5
new harmonies=0.1×population

PSO velocity range: [−2,2]
Cognitive constant=1.5
Social constant=1.5

WOA logarithmic spiral=1
FOA p1 ¼ current iteration

2�max iteration
p2 ¼ 1

max iteration
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Tables 4 and 5 present PSNR and SSIM values of different algorithms respectively. We can
observe from these tables that FOA gives better results than other algorithms; because, these
algorithms converge in local sub-regions and cannot give satisfying threshold values. How-
ever, FOA achieves higher values in terms of objective function over 30 runs and outperforms
other methods in exploring and exploiting the search space. Therefore, FOA is an efficient
method for image multi-level thresholding as it does not waste time to search invaluable areas
and manages the diversity of searching agents properly.

The segmented images based on Kapur method are shown in Figs. 7 and 8. The conver-
gence curves of test images based on Kapur method are shown in Fig. 9 with 30 iterations.

Table 3 Obtained fitness results of different algorithms based on Kapur method (level = 4)

Image Exhaustive search ABC BAT WOA FPA GWO HS PSO DE FOA

test 1 19.21 19.17 18.89 19.18 19.11 19.21 19.09 19.05 19.17 19.21
test 2 19.4 19.31 19.28 19.35 19.28 19.39 19.15 19.40 19.37 19.40
test 3 19.42 19.38 19.41 19.40 19.35 19.42 19.34 19.42 19.41 19.42
test 4 19.04 18.99 18.77 18.93 18.96 19.03 19.00 18.83 19.02 19.04
test 5 19.28 19.26 19.02 19.26 19.21 19.28 19.23 19.15 19.26 19.28
test 6 19.03 18.95 18.86 18.95 18.92 19.02 18.95 18.99 18.97 19.02
test 7 18.79 18.74 18.70 18.76 18.73 18.74 18.73 18.74 18.74 18.76
test 8 19.17 19.13 19.05 19.07 19.11 19.16 19.13 19.02 19.14 19.17
test 9 19.43 19.40 19.40 19.37 19.34 19.43 19.35 19.43 19.42 19.43
test 10 19.1 19.08 19.03 19.08 19.05 19.10 19.07 19.10 19.08 19.10

Table 4 PSNR values using Kapur method for 4 levels thresholding

Image Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10

Exhaustive search 16.95 19.84 18.69 17.83 17.81 16.68 18.85 16.97 19.63 19.12
ABC 16.81 20.58 18.49 17.60 17.67 17.14 18.66 18.34 19.35 18.99
BAT 16.82 19.24 18.69 16.77 17.74 16.87 17.51 16.21 19.43 19.12
WOA 16.95 19.24 18.69 17.54 17.86 16.75 18.82 17.59 19.70 18.73
FPA 16.74 18.94 18.65 17.73 17.61 16.38 18.87 16.47 19.70 19.48
GWO 16.95 19.82 18.69 17.69 17.81 16.58 18.83 16.98 19.59 19.02
HS 17.53 21.07 18.37 17.72 17.39 16.38 18.63 16.25 19.66 19.09
PSO 16.99 19.84 18.69 17.79 17.81 16.68 18.86 17.11 19.63 19.06
DE 16.77 19.79 18.66 17.75 17.67 17.13 18.64 15.93 19.29 18.97
FOA 16.95 19.84 18.69 17.83 17.81 16.68 18.83 16.97 19.63 19.12

Table 5 SSIM values using Kapur method for 4 levels thresholding

Image Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10

Exhaustive search 0.64 0.87 0.49 0.73 0.63 0.63 0.72 0.8 0.7 0.7
ABC 0.63 0.87 0.49 0.74 0.62 0.63 0.71 0.80 0.70 0.71
BAT 0.62 0.87 0.49 0.72 0.63 0.60 0.60 0.79 0.69 0.70
WOA 0.64 0.87 0.49 0.73 0.63 0.63 0.72 0.80 0.69 0.69
FPA 0.63 0.88 0.50 0.73 0.63 0.64 0.73 0.79 0.70 0.72
GWO 0.64 0.87 0.49 0.73 0.63 0.63 0.72 0.80 0.70 0.70
HS 0.66 0.87 0.50 0.75 0.62 0.61 0.72 0.79 0.67 0.70
PSO 0.64 0.87 0.49 0.73 0.63 0.63 0.72 0.80 0.70 0.70
DE 0.64 0.88 0.49 0.73 0.63 0.64 0.71 0.79 0.69 0.70
FOA 0.64 0.87 0.49 0.73 0.63 0.63 0.72 0.80 0.70 0.70
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Fitness plots reveals that in most cases, FOA converges to the global optima in fewer iterations
uniformly in comparison with other methods. Moreover, the proposed algorithm achieves
higher Kapur fitness values in all test images. For example, for test 1 the sequence is FPA <
HS < WOA < PSO < ABC < BAT< DE < GWO < FOA according the increasing order of
fitness.

Also, to prove the competency of the proposed algorithm, performance of FOA based
multilevel thresholding method is tested by 20 images which have been selected from two
MRI (Magnetic Resonance Imaging) and SAR (Synthetic-Aperture Radar) datasets and results
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Fig. 7 Segmented images based on Otsu method (level = 4)
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are compared with other methods. Two metrics, Kapur fitness and RMSE (Root Mean Square
Error) are considered in this experiment. Figure 10 depicts these MRI and SAR test images.

For all the algorithms the population size is kept at 150 and number of iterations is set to
30 for K = 4. Table 6 reports mean fitness of Kapur entropy over 30 independent runs. The
best results are marked in boldface. As seen in this table, FOA clearly outperforms its
competitors except for test 21 and test 24. RMSE measurements are computed through
threshold value K = 4 and results are shown in Table 7. According to this table, FOA
produces better results in 7 cases of 20 cases which achieves first rank while the second
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Fig. 8 Segmented images based on Otsu method (level = 4)
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rank goes to ABC. This means that FOA exhibits more detailed and accurate image
information at threshold level 4.

In the next experiment, natural-inspired algorithms are examined by multimodal continuous
problems and a number of optimization benchmarks are tested to evaluate the robustness of
algorithms. Table 8 shows these benchmark functions with their global minimum. Similar to
the first experiment, the population is set to 150 and 30 runs is considered. The results are
shown in Table 9. According to this table, we concluded that FOA has an excellent perfor-
mance in low dimensional problems and provides good solutions in most cases of high

a) test 1 b) test 2 c) test 3 d) test 4 e) test 5 

f) test 6 g) test 7 h) test 8 
i) test 9 j) test 10 

Fig. 9 Convergence curves based on Kapur method (level = 4)

      (c) Test 13      (d) Test 14     (e) Test 15   

     (h) Test 18       (i) Test 19       (j) Test 20 

    (m) Test 23       (n) Test 24      (o) Test 25   

(a) Test 11 (b) Test 12

(f) Test 16 (g) Test 17

(k) Test 21   (l) Test 22

(p) Test 26  (q) Test 27     (r) Test 28       (s) Test 29       (t) Test 30 

Fig. 10 Original test images, MRI images: test 11 to test 20, SAR images: test 21 to test 30
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dimensional problems. It can be seen that FOA obtains the best results in 21 cases as first rank
and WOA in 11 cases as the second rank. Other methods have not significant superiority over
FOA and WOA. It means that FOA searches the space with a better sensitivity compared to
other classical algorithms and converges to the global optimum faster than others; because, the
mechanism of exploring is better organized and fewer individuals get stuck in the local
optimums.

Table 6 Comparison of Kapur fitness values computed by various algorithms (level = 4)

Method ABC BAT WOA FPA GWO HS PSO DE FOA

test 11 19.56 19.54 19.57 19.56 19.59 19.56 19.58 19.57 19.59
test 12 19.36 19.30 19.37 19.34 19.38 19.33 19.38 19.37 19.39
test 13 19.18 19.18 19.21 19.18 19.21 19.18 19.21 19.20 19.21
test 14 19.39 19.39 19.42 19.40 19.42 19.40 19.41 19.42 19.43
test 15 19.52 19.49 19.54 19.48 19.55 19.51 19.54 19.53 19.55
test 16 19.29 19.30 19.29 19.25 19.30 19.28 19.30 19.30 19.31
test 17 19.47 19.46 19.49 19.45 19.48 19.46 19.49 19.48 19.49
test 18 19.56 19.56 19.54 19.54 19.57 19.54 19.56 19.56 19.57
test 19 19.59 19.58 19.58 19.57 19.59 19.56 19.58 19.59 19.60
test 20 19.52 19.54 19.54 19.51 19.54 19.53 19.53 19.54 19.55
test 21 19.41 19.36 19.41 19.39 19.42 19.40 19.43 19.41 19.42
test 22 19.17 19.12 19.18 19.13 19.18 19.16 19.17 19.17 19.19
test 23 18.95 18.94 18.95 18.94 18.94 18.94 18.96 18.96 18.97
test 24 18.73 18.66 18.76 18.71 18.77 18.72 18.76 18.76 18.76
test 25 19.04 19.03 19.04 19.00 19.03 19.01 19.03 19.04 19.05
test 26 19.23 19.14 19.20 19.17 19.25 19.19 19.25 19.24 19.25
test 27 19.16 19.15 19.18 19.14 19.16 19.15 19.17 19.16 19.18
test 28 19.17 19.12 19.19 19.12 19.20 19.15 19.20 19.20 19.21
test 29 19.27 19.25 19.28 19.26 19.27 19.26 19.28 19.28 19.29
test 30 18.89 18.88 18.91 18.90 18.92 18.89 18.92 18.91 18.92

Table 7 Comparison of RMSE values computed by various algorithms (level = 4)

Method ABC BAT WOA FPA GWO HS PSO DE FOA

test 11 17.84 18.15 18.15 18.11 18.30 18.57 18.15 18.07 18.67
test 12 23.50 22.82 24.08 23.89 23.56 23.34 23.67 24.28 23.67
test 13 27.00 27.40 27.55 27.48 27.42 27.10 27.40 27.44 27.40
test 14 19.08 19.38 19.66 19.52 19.67 19.89 19.89 20.39 20.93
test 15 20.39 20.60 20.69 21.01 20.61 20.71 20.60 20.72 20.60
test 16 21.92 21.88 22.31 21.93 21.92 22.38 22.11 21.99 22.95
test 17 23.97 23.55 23.53 23.43 23.61 23.42 23.51 23.62 23.59
test 18 22.48 21.77 21.88 22.08 21.89 21.28 21.89 22.06 21.89
test 19 20.02 20.13 19.96 20.44 20.16 20.29 20.40 20.01 20.46
test 20 21.32 21.23 21.30 21.29 21.23 21.58 21.23 21.19 21.23
test 21 29.38 29.18 29.35 29.33 29.32 29.18 29.18 28.14 29.68
test 22 31.84 31.84 31.54 31.20 31.47 30.24 31.84 31.64 31.92
test 23 29.88 29.94 30.12 31.58 29.95 30.29 29.95 31.39 29.95
test 24 38.57 36.66 36.85 36.27 36.34 34.57 36.66 36.05 36.66
test 25 33.96 35.70 35.14 36.93 35.69 36.16 35.70 33.34 37.43
test 26 24.67 24.82 24.83 26.10 25.05 27.11 25.24 24.20 25.24
test 27 29.21 28.38 29.51 26.92 29.31 28.70 29.31 28.87 29.31
test 28 26.59 26.80 25.91 28.41 26.18 25.67 26.39 26.22 26.39
test 29 32.58 30.55 30.22 30.50 30.58 32.15 30.58 31.61 30.58
test 30 29.03 28.92 28.55 28.45 28.92 29.95 28.81 29.42 28.81
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A processing time comparison of various methods based on above benchmarks is consid-
ered to evaluate the convergence speed. Figure 11 shows the average running time of
executing different algorithms over test functions. Based on obtained data, we conclude that

Table 8 Benchmark functions with formula and global minimum for x*¼ x1;…; xK½ �

Function Formula

BUKIN f x*
	 


¼ 100
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2−0:01x21
�� ��q

þ 0:01 x1 þ 10j j
f([−10,1])=0

Cross in tray
f x*
	 


¼ −0:0001 sin x1ð Þsin x2ð Þexp 100−
ffiffiffiffiffiffiffiffiffi
x21þx22

p
π

����
����

� 
����
����

�
þ1Þ 0:1

f([±1.3491,±1.3491])= −2.06261
Drop wave

f x*
	 


¼ − 1þcos 12
ffiffiffiffiffiffiffiffiffi
x21þx22

pð Þ
0:5 x21þx22ð Þ þ2

f([0,0])= −1
Bird f x*

	 

¼ sin x1ð Þe 1−cos x2ð Þð Þ 2 þ cos x2ð Þe 1−sin x2ð Þð Þ 2 þ x1−x2ð Þ 2

f x*
	 


¼ −106:764537
x=[4.7,3.1], [−1.5,−3.1]

Schaffer N2 f x*
	 


¼ 0:5þ sin2 x2−y2ð Þ −0:5
1þ0:001 x2þy2ð Þ½ �

2

f([0,0])=0
Akley

f x*
	 


¼ −aexp −b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
d ∑

d

i¼1
x2i

s !
−exp 1

d ∑
d
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cos cxið Þ

� 

þaþ exp 1ð Þ

f([0 0…0])=0
GRIEWANK

f x*
	 


¼ ∑
d

i¼1

x2i
4000− ∏

d

i¼1
cos xiffi

i
p
	 


þ 1

f([0 0…0])=0
Levy

f x*
	 


¼ sin2 πω1ð Þ þ ∑
d−1

i¼1
ωi−1ð Þ 2 1þ 10sin2 πω1 þ 1ð Þ½ � þ ωd−1ð Þ 2 1þ sin2 2πωdð Þ½ �
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d
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d
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xij jp� �

f([420.9687 420.9687…])=0
Alpine N. 1 f x*

	 

¼ ∑

n
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f x*
	 


¼ xk k2−n
	 
h

2�α þ 1
n

1
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n
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i¼1
sin2 xið Þ−0:1exp ∑
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FOA has an accepting computation time in solving continuous problems. Taking into account
of the computational time, we can line up them as BAT < PSO < HS < DE < WOA <
GWO < FOA < FPA < ABC according to the increasing order of execution time. Although
BAT ranks to be the first among them, it suffers the problem of converging to local optimum
points.

Moreover, a statistical pair-wise test named Wilcoxon signed rank test is examined to
determine the accuracy of the null hypothesis (same distribution of populations) [8]. Wilcoxon
signed rank test returns p-values which should be less than 0.05 to reject the null hypothesis
with 95% confidence. This test is done for various methods over 30 runs and results are
registered in Table 10 for benchmark functions. The values more than 0.05 are boldfaced.
From the overall comparison of obtained data, it can be stated that FOA performs significantly
better than other meta-heuristic algorithms.

As seen in results, FOA is a powerful algorithm to find solutions in discrete and continuous
problems. However, it has a drawback. To produce next generation, GBest and GroupBest
remain and other individuals are deleted. Hence, a strict selection mechanism is applied to

Table 9 Obtained results of executing different algorithms over 30 runs

Function d ABC BAT DE FPA GWO HS PSO WOA FOA

Bukin 2 0.13 0.27 1.46 0.93 0.38 0.17 5.43 0.72 0.10
cross in tray 2 −2.06 −2.03 −2.06 −2.06 −2.06 −2.00 −2.06 −2.06 −2.06
drop wave 2 −0.97 −0.90 −0.98 −0.96 −0.97 −1.00 −0.91 −0.98 −1.00
Bird Function 2 −106.7 −102.2 −106.7 −106.7 −106.0 −95.44 −97.37 −103.5 −106.0
Schaffer N2 2 0.06 0.15 0.03 0.12 0.00 0.00 0.47 0.00 0.00
Akley 20 12.21 11.54 19.69 16.41 0.12 0.00 20.14 0.00 0.00

50 14.11 12.95 20.74 17.86 3.45 0.05 20.70 0.00 0.00
100 15.47 13.23 20.98 18.00 6.17 4.17 20.88 0.00 0.00

Griewank 20 25.93 15.06 26.03 71.24 0.29 0.00 339.54 0.00 0.00
50 99.45 55.98 411.69 265.35 1.55 0.00 1079.32 0.07 0.00
100 237.3 140.2 1566.2 568.43 13.29 18.09 2388.5 0.00 0.00

Levy 20 7.62 58.28 20.04 41.02 1.01 11.61 57.88 1.81 0.51
50 48.32 172.0 185.98 166.53 12.54 31.57 235.79 1.00 2.61
100 135.7 411.1 540.88 364.17 44.79 68.49 551.26 2.77 6.31

Rastrigin 20 79.57 126.5 142.77 185.66 26.04 0.00 242.50 0.00 0.00
50 322.9 453.9 586.14 544.38 140.9 0.00 720.13 7.54 0.00
100 791.4 947.5 1403.23 113,330 433.1 22.30 1577.7 1.10 0.00

Schwefel 20 4930 5820 4568 5143 4399 6455 6315 1067 5018
50 14,684 17,200 14,811 15,769 12,719 17,754 17,756 2407 15,443
100 33,165 36,656 33,223 34,526 30,132 37,304 37,094 4778 32,474

Alpine N. 1 20 7.97 19.66 15.55 21.84 0.40 0.00 30.26 1.19 0.00
50 36.38 71.15 78.16 67.30 7.32 0.00 99.71 0.02 0.00
100 85.47 150.0 206.30 143.60 37.29 2.08 219.93 0.00 0.00

Happy Cat 20 0.76 1.23 0.62 0.81 0.61 2.23 2.25 0.42 0.73
50 1.19 1.26 0.93 1.13 0.99 5.35 5.44 0.53 0.92
100 1.34 1.27 1.24 1.30 1.13 8.16 8.42 0.61 1.02

Periodic 20 3.32 3.69 3.92 3.66 3.10 0.90 5.90 1.46 0.90
50 13.11 13.75 12.87 11.21 8.90 0.90 16.72 1.93 0.90
100 33.46 32.22 29.96 23.00 22.64 1.26 36.80 2.53 0.90

Salomon 20 6.32 5.01 6.77 9.37 0.60 0.00 18.73 0.14 0.07
50 11.90 9.20 22.94 18.13 2.32 0.02 33.63 0.15 0.08
100 17.21 13.98 43.61 26.44 6.24 4.18 49.38 0.20 0.09

Styblinski-Tank 20 −549.0 −460.9 −525.1 −470.2 −650.7 −279.4 −321.6 −738.2 −479.0
50 −1119 −1027 −881 −939 −1285 −284 −440 −1774 −889.3
100 −1932 −1857 −979 −1705 −2134 −298 −374 −3690 −1577
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the population and valuable potential solutions maybe eliminated in high dimensional prob-
lems. In these cases, increasing population size or keeping some random individuals helps the
population diversity. Also, changing update rules according to first and second rank of GBest

and GroupBest may mitigate this limitation.

4 Conclusion

A simple and robust meta-heuristic algorithm inspired by the explosion of fireworks in the sky,
was suggested in this paper. With taking advantage of grouping the population, fewer individ-
uals were fallen in local optimums and premature convergence was mitigated. Another
technique used in FOA is categorizing members. Three categories were considered which help
the algorithm sweeping the search space very well and saving the time to explore invaluable
areas. FOA was presented in two continuous and discrete versions which have similar mech-
anism of finding the global optimum and are different a little in the updating location of sparks.

The experiments are conducted on 30 images for subjective as well as objective assess-
ments on 4-levels image thresholding segmentations in the discrete space. Also, the objective
analysis is done on 15 state-of-the-art continuous benchmarks and compared with eight
methods namely; ABC, BAT, WOA, FPA, GWO, HS, PSO and DE. The effectiveness of
the new method has been studied in terms of convergence behavior which uses Kapur entropy
as an objective function for extracting optimal thresholds. The experimental analysis revealed
that the proposed method outperforms the existing compared methods for multi-levels image
thresholding segmentation as well as objective functions in the continuous version. Compared
to other algorithms, we can conclude that the computational complexity of FOA is better than
WOA, ABC and GWO.

Three main research directions are foreseen for future work. First, the possibility of
extending the proposed optimization algorithm to other image processing domains like image

Fig. 11 Average running time of executing different algorithms
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enhancement and classification can be worked out. Second, improving this algorithm in
attaining its global optima using Minimum Cross entropy and Renyis entropy can be inves-
tigated for different image datasets. Another research direction is applying FOA to deep
learning training and parameter optimization in the smoke detection application [16].
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