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Abstract
Recently, the advent of Wireless Multimedia Sensor Networks (WMSNs) has given birth
to different applications. Some of the applications those required the deployment of low
cost multimedia sensors include traffic monitoring, visual surveillance, habitat monitor-
ing, environment monitoring etc. Unlike the traditional Wireless Sensor Networks
(WSNs) which aims at the maximization of network lifetime, the main objective of
WMSNs is an optimized multimedia data delivery along with the minimization of energy
consumption. The major aspect in the WMSNs is the removal of redundant data before its
transmission to sink. Even though several standard image compression techniques (ex.
JPEG and MPEG) are there in the existence, they are not suitable for resource constrained
WMSNs. To solve these problems, in this paper, we propose a new and simple image
coding and transmission method. In this method, the histogram based representation is
employed to encode the image while entropy based assessment is employed for data
redundancy. Initially the network is clustered into several clusters and the nodes with rich
resources are chosen as Cluster Heads (CH). After receiving the image data from sensor
nodes, the CH performs joint entropy evaluation and discovers the uncorrelated data and
then forwards to sink. Furthermore, the CH also determines the uncorrelated camera
sensor nodes and allows only those nodes to report. An extensive simulation experiments
are conducted over the developed approach and the performance is measured through
several performance metrics like Energy Consumption, Peak Signal to Noise Ratio
(PSNR), Structural Similarity Index Measure (SSIM).
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1 Introduction

In recent years, the advancements in wireless communication and imaging hardware have
predicted the utilization of multimedia sensors in Wireless Sensor Networks (WSNs) and
introduced a new paradigm called as Wireless Multimedia Sensor Networks (WMSNs).
WMSNs are composed of interconnected multimedia sensing devices that allow retrieving
Audio, Video, still images and also the scalar information from the environment [1]. With the
capability of providing the enriched information of the environment, the WMSNs have gained
a widespread applicability in several real time applications like Industrial process control,
environmental monitoring, video surveillance, remote health care, traffic enforcement etc.
Moreover, they can be deployed in difficult, inadequate and unattended areas. However, there
are particular limitations that need to be addressed during the development of algorithms for
processing the sensed data in WMSNs. They are mainly limited battery power, limited
memory, limited processing capabilities and narrow bandwidth [3].

In WMSN, there exists a large number of camera sensor nodes deployed to monitor the area
of interest with one or more data sinks located at the center of the network or at the outside of
the network. The camera sensor nodes monitor the area, capture the observations and send
their observations to the sink. Compared to the traditional WSNs, the design of data processing
in WMSNs is a very challenging task, because the data acquired through camera sensor nodes
in WMSN is in the form of images, audio and videos. Moreover, the camera sensor nodes are
resource constrained while the visual information requires more sophisticated processing
techniques and also require much larger bandwidth to deliver. Hence we focused on the data
processing and communication aspects in WMSN.

The processing and transmission of raw images or videos seeks more bandwidth which is
not supported by camera sensor nodes in WMSNs. In general, to make the network support-
able to the multimedia data processing, it can be subjected to redundancy. In other words, the
unnecessary data present in the acquired images or videos needs to be removed. Multimedia
Source Coding [26] is one of standard image compression method which has great compres-
sion efficiency. The better examples for multimedia source coding are JPEG or JPEG 2000 [9],
MPEGx [27] and H.26x [34]. These coding method uses motion estimation and motion
compensation methods to utilize the spatiotemporal correlation properties of video sequences
for predictive coding. This kind of methodology occupies a large number of resources.
Moreover, the coding complexity is observed to be 5 to 10 times the decoding complexity.
In the current advanced real time applications, these traditional video coding methods are not
applicable for resource constrained WMSNs. Moreover, they have extensive mathematical
computations which place a huge computational burden over the camera sensor nodes.

On the other hand, Distributed Source Coding (DSC) [12, 30, 37] has emerged as an
alternate method which allows a simple encoder and complex decoder. In DSC the source
camera sensor nodes performs simple encoding and leaves the computationally intensive
decoding task for sink. In recent years, DSC has emerged as a promising solution for WMSNs.
Recently, NingMa et al. [23] applied DSC based on Gradient Domain Region of Interest (ROI)
which tried to enhance the coding efficiency of the severe motion region and improve the
decode image while reducing the coding rate and consequently energy consumption of camera
sensor nodes. In this method, the lower bound of coding rate is derived with the help of Slepain-
Wolf theorem [31] which is dependent on the side information obtained through channel
information. However, the DSC based on channel coding for the exploitation of correlation
among adjacent frames is not easy which results in limited coding efficiency of DSC.
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In this paper, we propose a simple and effective DSC in which the camera sensor nodes
experience a less computational burden as well as less energy consumption. Here we em-
ployed a new clustering strategy initially to group the camera sensor nodes into several groups.
Once the nodes are clustered, the CH selection is done based on the availability of resources.
Next, the cluster nodes encode the sensed image and transmit them to the respective cluster
head. Due to the transmission of encode images, the cluster nodes experience less resource
consumption. Then the cluster head finds the correlation between the encoded images obtained
through clustered nodes and extracts only uncorrelated data to transmit to sink node. At this
phase, the cluster head applies the joint entropy to find the information gained from multiple
camera sensor nodes. The major novelty and contributions are described as follows;

& To preserve the energy of sensor nodes, this work proposes to apply histogram coding in
which each image is represented with histogram features instead of raw pixels. The entire
image requires more number of bits to represent while the histogram requires only few
bits. This phase preserves the energy of sensor nodes thereby their network lifetime
increases.

& To remove the redundant information in images received from sensor nodes, the CH
applies joint entropy coding which determines the joint mutual information between them.
The proposed coding is much simple and effective than the traditional JPEG and MPEG
compression standards.

& To preserve the energy of CH, we propose a new selection node strategy based on the joint
mutual information between the images forwarded by them. The selection is done at first
instant based on the initial set of images. Further, only the selected nodes continue to
forward the images to CH.

& To analyze the performance of proposed method quantitatively, we propose a new
distortion function that is derived based on the entropies of original and compressed
images.

Rest of the paper is organized as follows; section II explores the detail of literature survey.
Section III explores the complete details of developed mechanism for WMSNs. Section IV
explores the details of simulation experiments conducted on the developed mechanism and
finally the concluding remarks are shown in section V.

2 Literature survey

With an objective of multimedia data coding, different authors proposed different methods to
obtain a better Quality of Service (QoS) in WMSNs [13, 24, 29]. Shikang Kong et al. [20]
proposed an image compression and transmission method based on “Non-negative Matrix
Factorization” (NMF). In this approach, the camera sensor nodes capture the image and send
them to normal nodes for NMF based compression. Then the compressed images are trans-
mitted to the cluster head followed by sink node. Even though the camera sensor nodes are
taken the responsibility of image compression, they suffer from communication burden due to
the transmission of entire images to normal nodes.

Z. Y. Xiong et al. [38] proposed a low complex JPEG based image compression scheme
based on change detection. Change detection is employed to localize the region of interest and
remove the data for transmission. Further, to reduce the computational complexity, Fast
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Discrete Cosine Transform (DCT) is employed. This method provides a tradeoff between
lifetime of camera sensor nodes and the quality of reconstructed images. However, the DCT
introduces huge computational burden at node level thereby the lifetime of network will get
effected. R. Banerjee and S. D. Bit [4] proposed an energy saving image compression method
based on curve fitting. After acquiring the images through camera sensor nodes, the curve
fitting coefficients are generated and then transmitted to the sink node. Here the total data size
is reduced due to the transmission of only curve fitting coefficients.

Hong Yang et al. [40] proposed a Robust Distributed Video Coding (RDVC) method for
the optimization of video quality in WMSNs. An error-resilient key frame coding scheme is
introduced here based on the protection of Wyner-Ziv coding (WZC) [14] in which the extra
WZ bits helps in the provision of error resilience and also improved rate/distortion perfor-
mance. Following the concept of Distributed Joint Source Channel Coding (DJSCC) [39], a
new distributed source channel codec based on Group Puncture Rate Adaptive IRA code
(GPRAIRA) is proposed. However, the estimation of channel state information consequences
to inaccurate information which leads to distorted video at sink.

Next Han C et al. [16] proposed a new distributed image compression and transmission
model based on “singular value decomposition” (SVD). In this study, the entire network is
divided into camera nodes and common nodes. The complete image compression task is done
by common nodes and hence the energy consumption pressure of camera sensor nodes is
greatly reduced. However, the quality of image retrieved at sink node is not more effective due
to the simple SVD.

Considering the co-operation of multiple nodes and “principal component analysis” (PCA),
a “Noise-Tolerant Distributed Image Compression (NDIC)” is proposed by Z. Wei et al. [33]
for image compression in WMSNs. In this study, the camera nodes gather the images and the
normal nodes compress the divided images adaptively through NDIC-PCA and send the
compressed image to CH followed by sink. This approach has gained an effective energy
balance with less image quality. The PCA extracts only the principal components from an
image irrespective of the objects.

Chun-Ming Wu et al. [35] proposed an image compression method by combining the
JPEG-XR based compression process with in network processing. This approach proposed for
multi-node cooperation. Initially, the cluster head dynamically partitions the entire network
into dynamic partition non-uniform (DPNU) structure to attain the load balance. Then the
image sensed is divided into several segments and each segment is transmitted to different
cooperating neighbor clusters for compression. However, the image compression with the help
of JPEG-XR with multimode cooperation introduces a huge resource depletion problem due to
its complex compression methodology.

P. Jiang et al. [19] proposed an improved image compression algorithm based on in-cluster
distributed processing (ICDP) which was oriented to the distributed incremental image
processing algorithm (DICA). Based on the principle of energy priority selection rule, some
auxiliary nodes are chosen in every cluster to accomplish the task of multi-level wavelet
transform [2, 8] of JPEG2000. Since the major task of image compression is accomplished
with the help of auxiliary nodes, the resources of main nodes not get affected and results in a
better network lifetime. However, the computational burden is observed to be very high due to
the accomplishment of multi-level wavelet transform in the network.

S. Heng et al. [18] proposed a new distributed architecture for multi-hop image compres-
sion to enhance the network lifetime for resource constrained WMSNs. This approach utilizes
the combination of Fuzzy Logic System (FLS) [6] and distribution based computation for load
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balancing. Major this approach is accomplished in three phase; in the first phase the FLS
determines the optimal size of camera cluster, in the second phase, a distributed image
compression method is applied that partitions in the compression task among several sensors
nodes (not camera nodes) and finally a hierarchical multi-hop routing is employed to divide the
network into layers and simultaneously the FLS is employed for the selection of optimum
relay node.

He Li et al. [17] proposed an image compression model for mobile WMSNs based on
dynamic alliance and task collaboration algorithm. Initially the task of dynamic alliance is
established with the help of camera sensor nodes based on their location, computational
capabilities and resource utilization of normal nodes. Then the location and average moving
velocity of the camera nodes and normal nodes are considered to measure the task stable
execution time. Further the task of image compression is partitioned into subtasks and the sub
tasks are accomplished on the tasks stable execution time.

3 Proposed approach

3.1 Overview

In this section, we discuss the details of our proposed approach. In this method, we
develop a novel image compression method based on the entropy and correlation
properties of images sensed by camera sensor nodes in WMSNs. Under the developed
model, initially we cluster the camera sensor nodes in to different clusters. The clustering
is done based on the Euclidean distances between sensor nodes. After clustering the
nodes the node which has huge amount of energy resources is selected in cluster head
(CH). After clustering the nodes then we apply an image compression method. In the
image compression process, keeping the resource constraints, we have modeled a simple
strategy to represent an image. Since an entire image transmission from each cluster node
to CH consequences to a huge communication burden in the network, we have suggested
a simple image representation method based on histograms. Before subjecting the images
to Histogram computation, they were processed through median filtering [5] for noise
removal. Since the median filter is most appropriate and simple filter for noise removal,
we considered here for the purpose of noise removal. Once the histograms of each image
sensed by each camera sensor node are reached to CH, it computes joint entropy to
compress the image data thereby it sends only significant information to sink node.
Under this section initially we discuss the details of clustering; next we discuss the
details of histogram computation and then the calculation of joint entropy between two
cameras followed by joint entropy between multiple cameras. Finally we discuss the
details of a new function called as distortion function that explores the details of
distortion in the received data at sink node due to resource constraints. The working
flow of proposed approach is shown in Fig. 1. According to this diagram, the videos of
CSNs are totally independent for each node. But, once they reached to CH, the mutual
information between them is measured. Even though they are independent, due to the
chance of overlapping regions, the videos acquired by CSNs have common information
and that information needs to be reduced. The sample illustration of overlapping regions
is shown in Fig. 2. Even through the videos acquired at CSNs are independent, there
exist some common information which needs to removed.
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3.2 Clustering

In WMSNs the camera sensor nodes have limited energy, bandwidth, memory and processing
capabilities. Hence if the entire camera sensor nodes are engaged to execute the tasks, then they
will show a huge impact on the network lifetime. Moreover the multimedia sensor node captures
images and videos which are of larger in size, the additional processing tasks make the nodes to
die quickly. Hence to reduce this additional burden, the camera sensors nodes are clustered into
groups and themajor processing task is assigned to the CH. To execute the major processing task,
the CH must have greater resources. Among the nodes present in cluster, the node with larger
energy is selected as CH. Here the sensor nodes (cluster nodes) execute the simple task of
histogram computation and the data redundancy task is executed by CH. The camera sensor node
is only responsible to send their images after representing them in the histogram format. Once the
histograms of all images are received at CH, then CH finds correlation between then to determine

Fig. 1 Overall block diagram

Fig. 2 CSNs installed on an area with overlapping regions and the corresponding acquired images
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the non-redundant data. The CH only sends the uncorrelated information to sink node or base
station. Consider the WMSN with N number of camera sensor nodes and let it be n1, n2, n3,…. ,
nN, the clustering is done based on the following expression.

d ni; n j
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x j−xi
� �2 þ y j−yi

� �2
r

ð1Þ

Where d(ni, nj) is Euclidean distance between node ni and nj. (xi, yi) is the location coordinates of
ni, (xj, yj) is the location of coordinates of node nj. In this manner the Euclidian distance is
measured from every node to every node and we construct a distance matrix as follows

d ¼
d11 d12 … d1N
d21 d22 … d1N
⋮
dN1

⋮
dN2

…
…

⋮
dNN

2
64

3
75 ð2Þ

Where dij is the Euclidian distance between two nodes ni and nj, where i and j varies as 1 to N.
After the construction of distance matrix then we compute the neighbor nodes for every node
based on the following expression;

Nei ¼ find dij≤Ri nið Þ� � ð3Þ
Where Ri(ni) is the Communication range of node ni and Nei is the node ni’s neighbor node set.
Once the neighbor nodes are measured for every node, one node is selected as CHwhich has huge
resources availability. At this situation we concentrate on the selection of non-common nodes as
CH’s. Since there is a chance of a single nodemay get selected as CH formultiple clusters, we have
to mitigate this problem. If we observe a common CH for two groups then they are merged and
formulated into a single cluster with only one CH is selectedwhich has higher resource availability.

3.3 Histogram computation

Here the main intension to compute the histogram of an image is to reduce the computation
burden of camera sensor node. If a camera sensor node transmits the image directly to CH,
then it suffers from a huge computation burden followed by resource consumption. For
example, consider an image sensed by a camera sensory node is at size 256 × 256, each
pixel is represented by 8-bits, then the total number of bits to be transmitted to CH is 256 ×
256 × 8 = 5,24,288 bits. This is very larger in number and camera sensor node need to
transmit such kind of images continuously to CH which results in a heavy communication
burden followed by huge energy consumption. Hence, to solve this problem the image need to
be represented in such a manner it has to consume fewer resources. At the same time, we also
here concentrates on the computation burden of the sensor node. To represent an image with
better representation, a huge no of mathematical operations are needed to employ. For example
the most popular and effective image/video compression techniques such as JPEG/MPEGX
give a better representation with less number bits with less information loss. However, these
methods introduce a huge computational burden at the resource constrained camera sensor
nodes. Hence they are not suggestible techniques for image representation in WMSNs.

To represent an image with less computational burden, here we suggest a histogram based
representation. In this representation we need just counters which have very much less
hardware complexity. Hence we apply histogram based representation to represent the sensed
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image at the camera sensor node. For histogram computation, initially the image is divided into
4 blocks of equal size [28]. Then it forms a set S by using Eq. (4)

S ¼ Bn∈I ; n≤4f g ð4Þ
Where Bn is the nth block of image I sensed by camera sensor node. Then the histogram
computation is applied for every block according to the following expression

P I ;Bn∈Sð Þ kLð Þ ¼ NL ð5Þ
Where P I ;Bn∈Sð Þ kLð Þ is the histogram of kth intensity pixel having intensity kLoccurs in the nth

block of image I, and NL is the number of occurrences of kL intensity pixel. In the above Eq. 5,
we have considered the bin size as 1 which totally gives 256 values for a gray image. To
further reduce the burden we can increase the bin size and the pixel those having pixel intensity
in the range of bin are accumulated with the help of counter. An example demonstration for
histogram computation is depicted in the Fig. 2.

3.4 Joint entropy at CH

After obtaining the histogram of images from every camera sensor node, the CH finds the joint
entropy to find the correlation between camera sensor nodes. The joint entropy is used to study
the amount of visual information from multiple cameras in the WMSN. The joint entropy
provides the correlated information between the images received from multiple camera sensor
nodes. If the images obtained by the camera sensor nodes are less correlated then they will
provide more information to the sink. Hence we employ to compute the joint entropy at CH to
measure the amount of visual information (Fig. 3).

3.4.1 Entropy calculation

The entropy calculation gives the details of information perceived from the source of infor-
mation generation. In real time data oriented applications, the entropy has widespread signif-
icance in the prediction of information availability. In information theory [10], the entropy
concept is employed to measure the amount of information from a random source. If the image
sensed by camera sensor node is interpreted as a Gray level source” the probabilities of source
symbol are modeled by the gray level histogram of the sensed image. For a sensed image at
any camera sensor node, the entropy is calculated as [15].

bH ¼ − ∑
L

i¼1
P rið Þlog2P rið Þ ð6Þ

Where L is the number of possible gray levels, and P(ri) is the probability of occurrence of the
gray level. Generally the entropy denotes an average amount of information per pixel in the
image. After capturing the image, the camera sensor node represents it in the histogram format.
Let the camera sensor node is Ci and the image sensed by it is Ii and after transformation into
histogram and let it be Pi. The camera sensor node transmits Pi to the CH and then the amount
of information gained at CH is H(Pi). Here we did not consider the information loss caused by
compression scheme or the loss incurred due to its packet transmission in the channel. For a
given cluster with Q camera sensor nodes as C = {C1, C2, C3, …, CQ}, transmitted
their images after transformation into histograms as {P1, P2, P3, …, PQ} to the CH,
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the amount of information gained at the CH is measured with the help of joint
Entropy H(P1, P2, P3, …, PQ ). Hence our main objective is to find out the joint
Entropy of multiple cameras.

3.4.2 Joint entropy of two images

Consider two camera sensors nodes C1 and C2, these are deployed in a region to sense the
Region Of Interest (ROI). Consider each camera has captured one image and let they are
denoted as I1 and I2 Where I1 is acquired with camera C1 and I2 is acquired with camera C2.
The joint Entropy of I1 and I2 is calculated as [11, 32].

H I1; I2ð Þ ¼ H I1ð Þ þ H I2ð Þ−I I1; I2ð Þ ð7Þ
Where H(I1) is the entropy of I1, H(I2)is the Entropy of Image I2 and I(I1; I2) is the mutual
information of the two images. In other words, we can say that the mutual Information can be

Fig. 3 Histogram computation
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represented as the uncertainty reduction of one source due to the awareness of another source.
Based on this interpretation the mutual information can be defined as

I I1; I2ð Þ ¼ H I1ð Þ−H I1=I2ð Þ
or

I I1; I2ð Þ ¼ H I2ð Þ−H I2=I1ð Þ
ð8Þ

Where H(I1/I2) or H(I2/I1) denotes the conditional Entropies which need the awareness of one
source to measure the Entropy of another source. With respect to the probability computation,
the standard definition for mutual information is given as [32];

I I1; I2ð Þ ¼ ∑
i
∑
j
p i; jð Þlog p i; jð Þ

p ið Þp jð Þ
� �

ð9Þ

Where p(i) and p(j) are the probability distribution of histograms of Image I1 and I2 respec-
tively, and p(i, j) is the Joint probability distribution of two sources. Generally the Mutual
Information measures the mutual dependency between two sources. For a larger value of
Mutual Information between I1 and I2, the images I1 and I2 are more correlated while for lesser
value of Mutual Information between I1 and I2 the images I1 and I2 are less correlated. As the
images are less correlated they can contribute more information to the CH and as the images
are more correlated they can contribute less information to the sink node of base station. For
images with high correlation means the sensed portion of their images are almost same. In such
conditions one image is enough to reveal the information about region of interest.

According to the normalized form of mutual information, [25] defined a new coefficient
called as Entropy Correlation Coefficient (ECC). The mathematical expression for ECC is
obtained as

ECC ¼ 2� I I1; I2ð Þ
H I1ð Þ þ H I2ð Þ ð10Þ

Here the range of ECC of defined from 0 to 1 where 0 value indicates that the source cameras
C1 and C2 are not dependent or independent while the ECC value 1 denotes that the sources are
mutually strongly dependent. In case of ECC value zero, we can also interpret that the two
camera sensor nodes are equal means C1 is equal to C2. In such conditions the CH can gain
more information about the region of interest and can forward to sink. From the Eq. (10) the
I(I1; I2) is segregated as

I I1; I2ð Þ ¼ 1

2
� ECC � H I1ð Þ þ H I2ð Þð Þ ð11Þ

Substitute Eq. (11) in Eq. (7), then the joint entropy is reformulated as

H I1; I2ð Þ ¼ H I1ð Þ þ H I2ð Þ− 1

2
� ECC � H I1ð Þ þ H I2ð Þð Þ ð12Þ

H I1; I2ð Þ ¼ H I1ð Þ þ H I2ð Þ− 1

2
� ECC � H I1ð Þ− 1

2
� ECC � H I2ð Þ ð13Þ
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H I1; I2ð Þ ¼ H I1ð Þ þ H I2ð Þ � 1−
1

2
� ECC

� �
ð14Þ

In the above Eq. (14) the individual Entropies such as H(I1) and H(I2) can be measured at
individual camera sensor nodes. However it keeps an additional computational burden. Hence
this responsibility is also assigned to CH only. The main responsibility of camera sensor node
is the transformation of sensed image into Histograms. Since we choose the CHs those have
huge amount of resources, computationally intensive tasks are assigned to CH only. Moreover
a raw image transformation from camera sensor nodes consumes heavy resources, we sug-
gested to transformation of the raw image into simple Histogram representation which need
very less resources for computation as well for forwarding to CH. Once the Histograms or
every sensed image are received at CH, then it can compute the ECC very easily followed by
joint entropy through Eq. (14). Due to this consideration we can observe reduced resource
consumption at camera sensor node level which enhances the network lifetime.

3.4.3 Joint entropy of multiple images

In earlier sub section, we measured the joint entropy only between two cameras. However in
WMSN, according to a clustering model explained at section 3.2, there exist more than two
camera sensor nodes in each cluster. Here CH needs to measure the joint entropy of multiple
camera sensor nodes. This computation is done simply by extending the theory discussed in
section 3.4.2. Consider a cluster have Q camera sensor nodes, C = {C1, C2, C3, …, CQ}, and
the respective sensed images are ={I1, I2, I3, …, IQ}, the joint entropy of all these images is
represented as H(I1, I2, I3, …, IQ). For the evaluation of joint entropy of multiple cameras,
with the help of standard definition, then the probability distribution of all the Q images needs
to be estimated, but it is a very difficult task particularly when the Q value is large.

Here to accomplish this task, we have extended the concept of joint entropy calculation of
two cameras are discussed in earlier section 3.4.2. Since there exists and Q number of
individual images in the Q cluster {I1, I2, I3, …, IQ}, we merge two of them together so that
the joint entropy of these two images can be measured with the help of Eq. (14). If two images
are merged at a time then the total number of images left in the cluster becomes Q-1. Upon the
repetition of this merging process, the Q individual images will be merged and will get single
joint entropy H(I1, I2, I3, …, IQ). After the completion of merging process the calculation of
joint entropy for multiple cameras is demonstrated through the following Table 1 and Fig. 4.

3.5 Distortion computation

To monitor the area of interest in WMSNs, a set of camera sensor node are deployed.
Let there are N number of camera sensor are deployed and each node has sensed an

Table 1 Joint entropy of multiple cameras

Nodes to be clustered Joint entropy

{n2}, {n4}, {n7} H(n2,n4,n7)=v1
{n1}, {n3}, {n8} H(n1,n3,n8)=v2
{n5}, {n6} H(n5,n6)=v3
{n1n3n8}, {n5n6} H(n1,n3,n8,n5,n6)=v4
{n2n4n7}, {n1n3n8n5n6} H(n1,n2,n3,n4,n5,n6,n7,n8)=v5
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image and let it be I1, I2, I3, …, IN. The joint Entropy of all these images is measured
and Let it be H(I1, I2, I3, …, IN) which denotes the maximum amount of information
gained at the CH regarding the Region of interest. In the earlier subsections, we have
computed the joint Entropies and based on the obtained values, the CH choose only
few set of camera sensor nodes to transmit the information. The selection is done
based the joint Entropy and if the obtained joint entropy between two camera sensor
nodes is lesser in value then they are said to be more correlated. In such conditions
only one camera sensor node is allowed to transmit the Histogram of sensed image to
the respective CH. That is to infer, if two camera sensor nodes transmit their
histograms to the CH, the amount of information gained at the sink will be larger
if the two camera sensor nodes are less correlated.

Consider that among the N available camera sensor nodes in the cluster only a subset of
camera sensor nodes as {Ci1,Ci2,Ci3,…,CiM, is chosen to report to the CH, the joint Entropy at
CH isH(Ii1, Ii2, Ii3, …, IiM). Based on the values, we define a new distortion function as a ratio
of amount of information gained at CH to themaximum amount of information possible to gain.
The mathematical expression for newly defined distortion function is expressed as [11].

D ¼ H I1; I2; I3;…; INð Þ−H Ii1; I i2; I i3;…; I iMð Þ
H I1; I2; I3;…; INð Þ ð15Þ

As per Eq. (15) the value of D lies in between 0 and 1. Here D interprets the
percentage of information loss incurred due to the resource constraints of network.
This newly defined distortion function is very much helpful for different applications
which have different constraints over the information loss. For instance, one applica-
tion may ask the network to transmit the information within 5% to 10% of informa-
tion loss. In such conditions, the developed approach is much helpful which signifies
the resources constrained information loss. Based on the distortion value the number
of cameras need to report can be chosen.

Fig. 4 Joint entropy calculation

38264 Multimedia Tools and Applications (2022) 81:38253–38276



4 Simulation experiments

4.1 Simulation setup

In this section, we discuss about the details of simulation experiments conducted over the
developed method. To check the performance of proposed mechanism, we have implemented
the detailed methodology using MATLAB 2015 simulator. For the purpose of simulation,
initially a random network is created with P Number of nodes and the area of network is
considered as X × Y, where X is the length and Y is the width. Under this simulation, we have
varied the node count from 20 nodes to 50 nodes. For every set of nodes, we have maintained a
constant network size and it is of 1000 × 1000 m2. After the deployment of nodes in the
network, to realize the concept of resources availability, we have assigned random energies
and memories for every node. Next, we formulated clusters according to the developed
clustering mechanism and the nodes which are of having larger memory and larger energy
are chosen as CHs. After that, we have tried to transmit different sized images from different
sensor nodes to sink node according to the developed methodology. For entire simulation, we
have considered the Simulation time as 200 s. The source and sink nodes are chosen in such
manner they are kept far from each other and the source node send data to destination node
within the specified simulation time. The simulation parameters considered for simulation are
depicted in Table 2.

4.2 Performance metrics

To evaluate the performance of the proposed approach, several performance metrics are used
and their mathematical formulae are as shown below;

1. Average Energy Consumption (AEC): AEC is defined as the ratio of total energy
consumed by total number of nodes. In order to calculate the AEC metric, let n be total
number of nodes obtained on the way to sink node, and the total energy is Etotal(i) for each
node i, be evaluated as;

AEC ¼ 1

n
∑
n

i¼1
Etotal ið Þ ð16Þ

Table. 2 Simulation parameters

Parameter Value

Number of nodes 20–50
Network Area 1000×1000 m2

Data Traffic type Image and video data
Bits per pixel 0.2, 0.4, 0.6, 0.8, and 1
Packet Size 1024 bytes
Data Rate 20 packets per sec
Simulation Time 200 s
Node Transmission Range (r) 1/4th of Network area
Node placement Random deployment
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2. Peak Signal to Noise Ratio (PSNR): PSNR measures the quality of visual information
transmitted from source node to sink node. It is given by Eq. (17).

PSNR ¼ 10*log10
Max2

MSE

� �
ð17Þ

Where MAX is the maximum gray pixel intensity (generally Max = 255) and MSE is the
mean Square error between original and received image. Mathematically, MSE is expressed
as;

MSE ¼ 1

mn
∑n

i¼1 O i; jð Þ−R i; jð Þð Þ2 ð18Þ

Where O(i, j) is original pixel of a frame at source node and R(i, j) is retrieved pixel of a frame
at sink node. In this work, the average PSNR is considered by averaging the PSNRs of
individual frames of a video sequence. Higher PSNR defines a higher quality and vice versa.
Generally, PSNR is expressed in decibels (dB).

3. Structural Similarity Index Metric (SSIM): SSIM measures the structural similarity
between original frame sent from source node and the received image at sink node. Unlike
PSNR which evaluates the observed errors, SSIM measures the structural information
degradation from original frame to received frame. The SSIM is mathematically expressed
as;

SSIM ¼
2*x*yþ C1

� �
2*σxy þ C2

� �
σ2
x þ σ2

y þ C1

� �
x
2
þ y

2
þ C2

� � ð19Þ

Where C1 = (k1L)2 and C2 = (k2L)2 avoid the fraction from infinity. L is the dynamic range of
the pixel values (typically this is 2# bits per pixel −1). k1 = 0.01 and k2 = 0.03 by default. The
general range of SSIM lies between −1 and 1.

4.3 Results

Under this section, we explore the effectiveness of proposed approach through different
performance metrics. Initially we check the performance through the computation of joint
entropy and distortion for varying number of selected cameras. Next, we measure the visual
quality through PSNR and SSIM for varying number of selected cameras. Finally we had
shown a detailed comparison between proposed and several existing methods through PSNR,
SSIM and Average energy consumption.

Figure 5 shows that the joint entropy increases with an increase in the number of selected
cameras. Here we considered the random camera selection for the purpose of comparison.
Under the random selection, the number of camera nodes to be selected for the data transmis-
sion to sink is chosen in a random fashion without considering any reference parameters like
entropy or correlation. However, in our method, the camera selection strictly follows the
entropy process. As the information sensed by camera sensor nodes is largely correlated, the
joint entropy is less means they contribute very less information to the sink. Unlike, as the
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correlation is less, the joint entropy is high means the sink node will gain more information.
The random selection process neglects the properties of sensed images, it has less joint
entropy. It can be observed to be less even with an increase in the number of selected camera
sensor nodes. From the joint entropy results shown in Table 3, on an average, the joint entropy
of random selection is observed as 2.53 while for proposed entropy based selection, it is
observed as 3.12.

Figure 6 shows that as the number of camera nodes selected increases, the distortion
decreases. In our methodology, the distortion is measured as the deviation between current
and maximum entropies of multiple cameras; the distortion will be less for more number of
cameras. For less number of selected camera nodes, the information gained at sink node is less
and hence the distortion present in the received multimedia data is more. Unlike, as the count
of selected cameras increases, they send their complete information to the sink and the
information gained at sink will increase. Due to this reason, the distortion will get reduced
with an increase in number of camera nodes selected. At this phase, the selection process
employed for clear selection also have significant role. The camera node selection must be like
that the joint entropy between camera nodes must be high, indirectly denotes a less correlation.
This is not possible if the camera nodes are selected randomly. In out method, the CH finds the
joint entropy and based on the obtained results, it decides which and how many nodes are to be
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Fig. 5 Joint entropy for random camera selection and proposed entropy based selection

Table 3 Comparison of joint entropy at different CSNs

Number of CNs selected Random selection Entropy based selection

1 0.7512 1.2596
2 1.1032 1.7024
3 1.5023 2.2547
4 2.0034 2.7539
5 2.5223 3.2069
6 3.1985 3.6989
7 3.7548 4.1669
8 3.9969 4.6637
9 4.1559 4.7586
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selected. Hence the proposed entropy based method has less distortion compared to the
random selection. From the distortion results shown in Table 4, on an average, the distortion
of random selection is observed as 46% while for proposed entropy based selection, it is
observed as 34%.

PSNR is a qualitative performance metric which reveals the quality of received data at the
sink or base station. The PSNR have an inverse relation with Mean Square Error or distortion
function. Means as the MSE increase, the PSNR decreases and vice versa. Similarly for a
video received at sink node has high distortion; its PSNR will be less and vice versa. Here we
did two case simulation studies to measure the PSNR, one is with respect to number of camera
nodes selected through different selection methods and another is with respect to bits per pixel
(bpp). The plot shown in Fig. 7 demonstrates the effect of camera selection over the PSNR.
From this figure, we can observe that the PSNR is less for random selection method while it is
high for proposed entropy-based selection method. Since the proposed entropy-based selection
method choses the camera nodes which have minimum correlation properties, the image data
received at sink node will have less distortion and higher PSNR. From the PSNR results shown
in Table 5, on an average, the PSNR of random selection is observed as 29 dB while for
proposed entropy-based selection, it is observed as 35 dB.
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Fig. 6 Distortion for random camera selection and proposed entropy-based selection

Table 4 Comparison of distortion at different CSNs

Number of CNs selected Random selection Entropy based selection

1 0.8978 0.7014
2 0.7596 0.5385
3 0.6987 0.4096
4 0.5547 0.3523
5 0.4886 0.3336
6 0.4028 0.2845
7 0.3749 0.2541
8 0.2997 0.1222
9 0.2856 0.1085

38268 Multimedia Tools and Applications (2022) 81:38253–38276



SSIM is a one more qualitative performance metric which measures the structural similarity
between original image at source node and received image at sink. For SSIM calculation, we
have done two case studies; one is with respect to camera selection method, and another is with
respect to varying bpp. With an appropriate selection of camera nodes, the CH and the sink
receives an appropriate and qualitative image which consequences to less distortion between
original and received images. As the distortion is less, the SSIM is high and vice versa. Hence,
we can see from Fig. 8, the SSIM of proposed entropy-based selection method is high (0.8780)
while for random selection method, it is less (0.8140). Further, from the results shown in
Table 6, the Entropy based selection is proved to provide more quality with respect to the
structure of images.

4.4 Comparison

To alleviate the effectiveness of proposed approach, the results are compared with the
conventional approaches such as NDIC-PCA [33] and DVC-SW [23].

The results shown in Fig. 9 demonstrate the comparison details between proposed and
several existing methods through PSNR with varying bpp. As the number of bits used to
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Fig. 7 PSNR (dB) for random camera selection and proposed entropy-based selection

Table 5 Comparison of PSNRs at different CSNs

Number of CNs selected Random selection Entropy based selection

1 25.3142 31.4598
2 26.1348 32.0396
3 26.9965 33.3396
4 27.5412 34.8654
5 28.4128 35.9678
6 29.9978 36.8974
7 31.4856 37.8965
8 33.4441 38.5563
9 35.4798 39.3369
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represent an image increase, the quality of image also increases, as observed in Fig. 8. In the
proposed approach, the camera sensor nodes transmit the entire sensed image information to
the CH and the CH finds only the uncorrelated data and forwards it to the sink. Further the
selected camera nodes of less correlated and contribute more information to the sink. Due to
this reason, the proposed methods have experienced a higher PNSR compared to the existing
method such as DVC-SW and NDIC-PCA. Even though these both methods employed
distributed coding, they didn’t consider the correlation properties of images. In the earlier
NDIC-PCA, the PCA is applied over the images to extract only principal components which
are not sufficient to reconstruct the images at sink. Hence the received image has much
deviation with original transmitted image which raises a larger MSE and lesser PSNR. From
the results shown in Table 7, we can see that the proposed approach has an average PSNR of
33 dB while for existing methods; it is observed as 30 dB and 29 dB for DVC-SW and NDIC-
PCA respectively.

Next, the pixel rate also has significant impact on the structural quality of image, as it can
be observed in Fig. 10. From this figure, we can observe that the SSIM followed increasing
characteristics with an increase in the pixel rate or bpp. To represent the edge features
(structures or boundaries) of an image, sufficient numbers of bits are required and then only
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Fig. 8 SSIM for random camera selection and proposed entropy-based selection

Table 6 Comparison of SSIM at different CSNs

Number of CNs selected Random selection Entropy based selection

1 0.7012 0.8123
2 0.7314 0.8239
3 0.7541 0.8369
4 0.7856 0.8565
5 0.8023 0.8696
6 0.8441 0.8993
7 0.8856 0.9235
8 0.9158 0.9555
9 0.9456 0.9847
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its structural property will get preserved. Hence for a larger value of bpp, the SSIM will be
high. As the number of similar pixels those represent the edge features of two images are more,
then we can say that they have more SSIM, and it is possible only with higher bpp. Since the
proposed approach employed a joint entropy-based data modeling, the parts of images
received from different clusters form a complete image with more uncorrelated data. However,
the conventional methods like PCA and SF theorem can’t support for the extraction of
uncorrelated data between sensed images from multiple cameras. Hence the SSIM of proposed
approach is observed to be high compared to the existing methods. From the SSIM results
shown in Table 8, on an average, the SSIM of proposed approach is observed as 0.8756 while
for existing methods, it is observed as 0.8540 and 0.8352 for DVC-SW and NDIC-PCA
respectively.

Figure 11 explores the details of energy consumption at node level with varying distance
between CH and sink. In general, as the distance between CH and sink increases, the CH needs
more energy to forward the data to sink. At this phase, the requirement of extra energy arises if
the CH is doing data redundancy or data compression task. Hence, we have measured the
energy consumed each node by applying different methods for image compression. Compared
to all the remaining methods, the proposed method has less energy consumption since we have
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Fig. 9 PSNR (dB) comparison at different pixel rates

Table 7 Comparison of PSNRs at different bpp

bpp NDIC-PCA DVC-SW Proposed

0.2 25.1230 25.1328 26.3333
0.3 27.4215 27.8896 28.0384
0.4 28.02345 28.5585 30.0145
0.5 29.0023 29.7784 31.8564
0.6 30.1025 31.0025 33.0396
0.7 31.9645 31.9645 34.0021
0.8 31.0385 32.5501 35.3217
0.9 31.2348 32.9038 35.6639
1 31.5896 33.3287 36.0964
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used just a counter to count the pixels at node level and entropy calculator at CH level. Next,
even though NIDC-PCA [33] employed the distributed coding of images, they have employed
PCA for data redundancy which has greater computational tasks compared to proposed
approach. In the case of Dynamic Alliance Collaborative Compression (DACC) [17], the
nodes will collaborate to each other to execute two tasks such as image transmission and image
compression. Hence, they have gained less energy consumption than NDIC-PCA. Initially, it
is observed the larger energy consumption and it decreases with the increase distance between
CH to sink. Because, as the distance increase, there is a possibility of more number of neighbor
ode availability and each node contributes to either image compression or transmission.
Further, the JPEG oriented methods such as JPEG [38], JPEG 2000 [19] and JPEG-XR [35]
are observed to have more energy consumption due to their computationally intensive tasks.
From this figure, we can see that the distributed coding methods (proposed and NIDC-PCA)
are much deviated from JPEG oriented methods in the prospect energy consumption for image
compression followed by transmission. From the average energy consumption results shown
in Table 9, on an average, the energy consumption per node of developed method is observed
as 0.9 J while for existing methods, it is observed as 1.1023 J, 1.2532 J 1.9414 J, 2.4232 J and
3.6221 J for DACA, NIDC-PCA, JPEG-XR, JPEG 2000 and JPEG respectively.
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Fig. 10 SSIM comparison at different pixel rates

Table 8 Comparison of SSIM at different bpp

bpp NDIC-PCA DVC-SW Proposed

0.2 0.8000 0.8012 0.8045
0.3 0.8078 0.8174 0.8239
0.4 0.8125 0.8228 0.8339
0.5 0.8186 0.8365 0.8449
0.6 0.8203 0.8456 0.8697
0.7 0.8352 0.8674 0.8939
0.8 0.8412 0.8893 0.9289
0.9 0.8663 0.9147 0.9545
1 0.8836 0.9341 0.9885
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For subjective assessment of proposed method, we evaluate Mean Opinion Score (MOS)
by subjecting the output images to visual quality analysis. Under this concept, different
viewers are chosen, and they are asked to see the original input image and output image.
After seeing, they were asked to score a value in between 0 and 5, where 0 is for worst and 1
for excellent. MOS is a subjective test which referrers the real time experience of people such
that we may know whether the developed method is able to fulfill the requirements of real time
people or not. The obtained MOS results are demonstrated in Table 10. From the results, we
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Fig. 11 Energy consumption per node comparison at distances

Table 9 Comparison of average energy consumption at different distances

Distance from CH to
sink

JPEG
[38]

JPEG2000
[19]

JPEG-XR
[35]

NDIC-PCA
[33]

DACC
[17]

Proposed

100 3.0023 2.0569 1.5555 0.5235 0.7023 0.5124
150 3.0895 2.0978 1.6058 0.6345 0.7222 0.6003
200 3.1039 2.1478 1.6596 0.7256 0.7639 0.6038
250 3.2541 2.2140 1.7741 0.8545 0.8623 0.7441
300 3.328 2.3029 1.8785 1.0036 0.9551 0.8396
350 3.4795 2.4986 1.9638 1.2345 1.1045 0.9258
400 3.6563 2.6325 2.1235 1.4485 1.2865 1.1144
450 3.9964 2.7963 2.3358 1.7798 1.5001 1.3896
500 4.0128 3.0236 2.5693 1.9358 1.7542 1.5689

Table 10 Mean opinion score comparison

Input samples NDIC-PCA Proposed

Sample 1 2.9964 3.5012
Sample 2 3.0214 3.2564
Sample 3 3.3368 3.6978
Sample 4 3.5648 4.0025
Sample 5 3.0144 3.4498
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can see that the proposed method has gained a larger MOS value compared to NDIC-PCA.
Since PCA removes more information, the quality of images will get lost.

5 Conclusion

In WMSNs, due to the nature of larger sized data and resource constrained camera sensor
nodes, the routing design is a challenging task. To achieve an optimal performance in
WMSNs, the prime focus is needs to be kept in the removal of redundant data that was sensed
by multiple camera sensor nodes. Even though there is several standard image or video
compression algorithms are there in the existence, they are not suitable for resource limited
WMSNs. Hence, we have developed a new and simple image compression and transmission
method based on Histograms and correlation properties. For an efficient image representation
at node level, we have employed the histogram method. For data redundancy, we proposed a
joint entropy-based camera node selection and the only the nodes those have less correlation
are selected to report. Moreover, to lessen the computational burden and energy consumption,
we proposed a new clustering mechanism, and the entropy calculation tasks are assigned to
resource rich CH. Simulation experiments are done with several cases studies and the
performance is measured through Distortion, PSNR, SSIM, and energy consumption. On an
average, the PSNR obtained through the proposed approach is observed as 33 dB while for
existing methods; it is observed as 30 dB and 29 dB for DVC-SW and NDIC-PCA respec-
tively. Thus, the average improvement is observed as 3 dB and 4 dB from conventional
methods. Next, the average SSIM of proposed approach, DVC-SW, and NDIC-PCA are
observed as 0.8756, 0.8540 and 0.8352 respectively. Thus, the average improvement is
observed as 0.0216 and 0.0404 from conventional methods. Furthermore, the proposed
approach also had shown effectiveness at the reduction of energy consumption. From the
results we observed that the average energy consumption of proposed approach is observed as
0.9 J while for existing methods, it is observed as 1.1 J, 1.9 J, 2.4 J and 3.6 J for NIDC-PCA,
JPEG-XR, JPEG 2000 and JPEG respectively. Based on these results we can conclude that
that the developed method is much effective in both Quality Preservation and energy con-
sumption reduction.

Even though the proposed approach is able to reduce the energy consumption at node level,
it can be further reduced through the selection of an appropriate intermediate node selection.
Since multimedia is of larger size, a single path won’t support a quick delivery at sink. Thus,
the main limitation of our method is more end-to-end delay due to single path between source
and sink. Hence in future, we focus towards the development a new multipath routing
mechanism which makes the delay less and helps in the quick data delivery at sink. A one
more possibility to extend this work is to apply on 3D multimedia data. In the future, we will
also extend our delivery approach and computing skill to 3D collaborative multimedia
application [7, 21, 22, 36].
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