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Abstract
Video-text cross-modal retrieval is significant to computer vision. Most of existing works
focus on exploring the global similarity between modalities, but ignore the influence of
details on retrieval results. How to explore the correlation between different forms of data
from multiple angles is a key issue. In this paper, we propose a Multi-grained Encoding and
Joint Embedding Spaces Fusion (MEJESF) for video-text cross-modal retrieval. Specifi-
cally, we propose a novel dual encoding network to explore not only coarse-grained feature
but also fine-grained feature of modals. At the same time, giving considerations to multiple
encoding and hard sample mining, a modified pairwise ranking loss function is introduced.
After that, we build two joint embedding spaces and adopt them when retrieving by fusing
their scores. Experiments on two public benchmark datasets (MSR-VTT,MSVD) demon-
strate that our method can obtain promising performance compared to the state-of-the-art
methods in video-text cross-modal retrieval. Furthermore, our network model achieves
outstanding performance in zero-example video retrieval.

Keywords Multi-grained encoding · Joint embedding space fusion ·
Cross-modal retrieval · Zero-example video retrieval

1 Introduction

The relationship between video and text is vital to computer vision research and many
practical applications including video retrieval [22], video object segmentation [40], video
caption [35] and video question answering [34]. This paper focuses on cross-modal retrieval
of video and text. The goal of this work is to retrieve the correlated videos given a text sen-
tence, and vice versa, given a random video query to find the matched sentence descriptions
(Fig. 1). Because a huge gap between video data and natural language descriptions, it is
challenging to explore a well visual-semantic alignment to measure the similarity of video
and text in cross-modal retrieval.
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Fig. 1 Illustration of Video-Text cross-modal retrieval task: the upper box shows text-to-video retrieval and
the bottom box shows video-to-text retrieval

Some of the earlier methods were related to concepts. For example, Yu et al. [37]
designed a word detector to generate a list of high-level concept words for per video as
a semantic prior for task. However, these methods ignored the rich sequential information
within both video and text.

Recently, some works have attempted to use deep neural networks to encode videos and
texts in a common space. Pan et al. [23] used a deep convolution neural networks (CNN)
to produce a representation of each clip from video and utilized an RNN-based network to
produce sentences representation. Dong et al. [6] encoded captions into a textual embedding
based on multi-scale sentence vectorization and used 3-D convolutional neural network to
embed video features. Although these methods compared the similarities between video
feature vectors and text feature vectors in a common space as well as image-text retrieval,
they failed to take advantage of the various rich cues on videos, such as sound, actions,
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scenes and faces. Synthesizing all kinds of cues can make the representation more complete
and plentiful.

We argue that it is necessary to consider the various information and available cues of
video. To address this issue, Mithun et al. [20] tried to incorporate multiple video cues
into the model to enhance the robustness of the retrieval system. However, these models
usually used pre-trained neural networks to extract features from video frames and encoded
by one encoding strategy, where the information was not adequately encoded. They may
fail to extract some higher level semantic information, and did not use more powerful and
finer-grained representations.

In this paper, we propose a cross-modal retrieval method based on multi-grained encod-
ing and common space fusion. The coarse-grained and fine-grained features are used to
comprehensively explore the global similarity of events between modals and the local
slight of objects. Multiple joint embedding spaces can complement each other and improve
the accuracy of retrieval and resolve ambiguities in retrieval. In detail, we design a new
encoding method firstly, and apply it to videos and sentences to obtain their respective
coarse-grained features and fine-grained features. We expect to use a gated embedding block
to capture the dependencies among features after mean-pooling layer as coarse-grained
feature representation of the modal. In terms of fine-grained, we use bidirectional Gated
Recurrent Unit(biGRU) network, a CNN layer in top to encode its features. Fine-grained
feature encoding can learn the context, temporal and spatial information, local details of the
modal. Considering that the coarse and fine-grained features are mapped into a joint embed-
ding space simultaneously, the loss function is modified based on the hard triple loss, so that
the loss function can comprehensively judge the semantic difference between cross modals
and effectively optimize the model. Furthermore, to make better use of the multiple video
cues, we construct two joint embedding spaces. The static-text space emphasizes on salient
object, and the dynamic-text space concentrates on actions and events.

In summary, this paper makes the following contributions:

(1) We propose a multi-granularity encoding network that encodes video and text input
in a similar manner. Coarse-grained feature captures the global characteristics of the
modal, while the fine-grained feature focuses on subtle local differences and both
features are learned in the same common space. We also improve the pairwise loss
function so that it can better deal with joint embedding space construction while
mining hard sample.

(2) The appearance cues and activity cues of the video and the features of text are used to
construct the joint embedding spaces respectively while encoding methods of different
spaces are consistent. We adopt score-based fusion for effective integration to improve
retrieval accuracy.

(3) Detailed ablation experiments and results prove the effectiveness of different compo-
nents in our framework. The state-of-the-art performance for video-text cross-modal
retrieval can be achieved on MSR-VTT andMSVD. The proposed network works well
in zero-example video retrieval.

The remainder of this paper is organized as follows: in Section 2, we briefly review the
most recent and related work. The proposed framework is explained in Section 3. Retrieval
results have been analyzed and compared in Section 4. Finally, in Section 5, we conclude
the paper and propose the directions for the future work.
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2 Related work

2.1 The process of cross-modal retrieval

Text, image, video, audio and other modal data can be used as retrieval objects in the process
of cross-modal retrieval. The retrieval process is divided into five steps:

Step 1: Extracting the features for different modal data.
Step 2: Constructing a shared representation of different modal through cross-modal

retrieval models.
Step 3: Calculating the distance between the shared representations of different modal

data through
the similarity measurement function in the public space.

Step 4: Sorting all results from smallest to largest, the higher the correlation, the smaller
the distance.

Step 5: Returning the sorted results as the final cross-modal retrieval result.

In addition, the cross-modal retrieval model proposed in this paper also follows the above
procedure.

2.2 Image-text retrieval

The usual methods used in image-text retrieval can be roughly divided into traditional sta-
tistical correlation analysis methods and Deep Neural Networks (DNN)-based methods.
Hodosh et al. [10] firstly took the Canonical correlation analysis (CCA) to cross-modal
retrieval, finding a joint embedding by maximizing the correlation between two sets of
heterogeneous data. The method named Deep Canonical Correlation Analysis (DCCA) pro-
posed by Andrew et al. [1] and other similar methods were all promoted based on CCA.
Peng et al. [24] used a deep neural network with hierarchical architecture to learn the cross-
modal shared representation. VSE++ proposed by Faghri et al. [8] has been used in many
previous works for cross-modal retrieval which modified the pairwise ranking loss based
on violations caused by the hard negatives (i.e., non-matching query closest to each training
query). In recent years, some scholars have proposed some novel methods. Peng [25] con-
sidered that attention mechanism can fully explore modality-specific characteristics, and
proposed MCSM. Zhang et al. [39] leveraged GANs and attention mechanisms to improve
the accuracy of the retrieval. Shen et al. [26] believed that hashing technology can sig-
nificantly reduce computational cost and storage. Zhang et al. [38] leveraged GANs and
hashing. Xu et al. [31] proposed graph convolutional hashing (GCH) to realize fast and
flexible cross-modal retrieval.

2.3 Video-text retrieval

Similar to the image-text cross-modal retrieval methods, most video-text cross-modal
retrieval approaches also use semantic space. The work of Xu et al. [30] advocated leverag-
ing the subject, verb, object component of the sentence, vectorization by word2vec model
and used the Recursive Neural Network (RNN) to aggregate them into sentence vectors.
Otani et al. [22] focused on disambiguating semantics of a sentence by web image search
result. Yu et al. [37] proposed to incorporate concept words as semantic priors and used
Long Short Term Memory (LSTM) to encode the video. Dong et al. [5] proposed a deep
neural network named Word2VisualVec (W2VV) to predict matching based on sentence
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vectorization strategy and a multi-layer perceptron. Mithun et al. [20] improved the effect
of video-text-retrieval by focusing on the different cues in the video and modified the loss
function. Liu et al. [15] introduced a collaborative expert model which can combine cues in
video by a gating mechanism.

2.4 Zero-example retrieval

Recently, Zero-example retrieval has attracted wide attention in the computer vision field.
In image domain, Xu et al. [33] and Chi et al. [4] used the word vectors of labels in the
trained NLP models as external knowledge, and performed correlation learning, subspace
learning for zero sample retrieval jointly. Xu et al. [32] proposed a model named TANSS,
including two semantic feature learning subnetworks and a self-supervised semantic sub-
network, which ensured to learn more effective common semantic space. In video domain,
in order to extract relevant concepts, Markatopoulou et al. [16] designed relatively com-
plex linguistic rules and exploited pre-trained Convolution Neural Network (CNN) model
to select objects and scenes appeared in video. The work of Ueki et al. [28] utilized a larger
concept bank with more than 50,000 concepts. While majority of existing methods for zero-
sample retrieval were based on concept, Dong et al. [7] proposed the method that employed
the dual network before the common space learning and used multi-level encoding for each
network.

Different from the existing approaches, our work focuses on the multi-grained features
for various modals, the modification of the loss function, and the construction of two joint
embedding spaces to achieve more abundant and complementary retrieval results.

3 Themethod

3.1 Overview of the proposed approach

To learn the potential information and relation between videos and texts, we propose a multi-
grained encoding and joint embedding space fusion network. The architecture is shown in
Fig. 2. Specifically, we first describe the multi-grained encoding network of videos and
sentences in Sections 3.2 and 3.3, including modal feature extraction, the methods of coarse-
grained encoding and fine-grained encoding. Finally, we present our modification on the
loss function and introduce the fusion step for two joint embedding spaces in Section 3.4.
The main notations are described in Table 1.

3.2 Video-sidemulti-granularity encoding

A large number of frames are contained in a video. For each input video, we sample
n frames according to the fixed frame interval, and extract deep features of each frame
with a pre-trained model. Consequently, a video is described by a sequence of frame
vectors{v1, v2, ..., vn}, where vt represents the feature of the t-th frame, and the dimension
is determined by different video extraction methods.

For each video, we use various networks to extract different video cues.

Appearance feature ResNet152 [9] is known to be effective for extracting image features.
Firstly, we extract each frame of the video and scale them to 224×224 and use them as the

34371



Multimedia Tools and Applications (2022) 81:34367 34386–

Fig. 2 Overview of the proposed model: we multi-grained encode the extracted features with mean-pooling,
gated embedding block, biGRU, and parallel 1D convolutional network on top. After that the coarse-grained
and fine-grained features are projected into a common space for similarity computation. Then we form two
joint embedding spaces, i.e. the static-text joint embedding space and the dynamic-text joint embedding
space. Finally, the sum of similarity scores is used for ranking

input to CNN. We use ResNet152 to extract 2048 dimensional appearance features of video.
ResNet152 are pre-trained using ImageNet dataset.

Action feature I3D [2] is good at extracting spatial and temporal features from video.
Taking the continuous 16 frames of a video as input, we extract 1024 dimensional action
features using I3D.

Table 1 Main notations

Notation Description

vt the feature of the t-th frame in the video

w1 the word embedding vector of the t-th word in the description

f (vc) the coarse-grained encoding for video

f
(
vf

)
the fine-grained encoding for video

f (sc) the coarse-grained encoding for text

f
(
sf

)
the fine-grained encoding for text

S∗ (, ) the similarity score between a video and a text

Ss−t the similarity score in static-text space

Sd−t the similarity score in dynamic-text space

Sv−t (v, t) the sum similarity score between video and text in two spaces
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3.2.1 Coarse-grained encoding

Coarse-grained encoding pays close attention to distinguishing different categories of
videos and focuses on the main objects and events described by the modal.

Mean-pooling is widely used in video encoding and it can achieve excellent results by
literature review. Since mean-pooling is good at capturing visual patterns repeatedly in
video, we encode the extracted feature vectors by mean-pooling layer firstly, represented as
f (v),where v ∈ R

n×dv , and the size of dv depends on the video cues:

f (v) = 1

n

n∑

t=1

vt (1)

A video contains a lot of things; some are core, but some are irrelevant. In order to
enhance the relationship between the most relevant objects and events and suppress the
impact of irrelevant objects on retrieval, we further encode the video feature vector f (v)

with a gated embedding block, which is proved to be effective to capture dependencies
among features in [18]. Taking a video that a puppy and a little girl are playing frisbee in
the garden as an example, the flowers in the garden is running through the entire video. The
network activity for flowers feature may be high. However, in this video, the puppy and
the little girl are the main characters, and playing frisbee is the main activity. The flowers
feature is not so important when retrieving. The gated embedding block can learn how to
reduce the visual activation of flowers and focus on puppy, little girl, and playing frisbee
well. The gated embedding block is shown in Fig. 3.

The gated embedding block is composed of two fully connected layers and a sigmoid
activation layer. The first fully connected layer assembles the convolution pooled features
into a complete graph through the weight matrix. The second fully connected layer and the
activation function sigmoid form a context gating function to adjust the output of the linear
layer. Finally, the output of the first fully connected layer and the context gating function
are element-wise multiplied to obtain the final video encoding vector f (vc). More formally
we express the above process as:

f (vc) = (W1f (v) + b1) ◦ σ(W2(W1f (v) + b1) + b2) (2)

where W1 ∈ R
d×dv , W2 ∈ R

d×d , b1,b2 ∈ R
d are learnable parameters; σ is a sigmoid

activation and ◦ is the element-wise multiplication (Hadamard product), and d=1024.

Fig. 3 The structure of gated
embedding block: consisting of
two fully connected layers and a
sigmoid activation layer
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3.2.2 Fine-grained encoding

Unlike the coarse-grained features that emphasize the overall situation, the fine-grained
features are more concerned with the temporal aware, the development sequence of events
and the connection between objects.

Recurrent Neural Network (RNN) is effective to deal with the temporal information
between video frames. We primarily use a bidirectional GRU (biGRU) for video sequence,
which considers both future and past contexts for a given sequence. The biGRU consists
of a forward GRU and a backward GRU, where the forward GRU is in charge of encoding
video sequence in normal order and the backward GRU is responsible for encoding video

sequence in reverse order.
−→
h and

←−
h are the forward and backward hidden states of the

biGRU, respectively:

−→
h t = −−−→

GRU
(
vt ,

−−→
ht−1

)

←−
h t = ←−−−

GRU
(
vm+1−t ,

←−−
ht−1

) (3)

where
−−−→
GRU and

←−−−
GRU represent the forward and backward GRUs, and

−→
h t ,

←−
h t ∈ R

512.
After that, by concatenating the forward and backward hidden states, we obtain the repre-

sentation of biGRU output ht =
[−→

h t ,
←−
h t

]
where ht ∈ R

1024. A video can be mapped as

H = {h1, h2, ..., hn}, with a size of n × 1024.
To capture deeper hidden features and enhance the capabilities of the network, we build

convolutional networks (CNN) on the top of biGRU, because CNN can distinguish the slight
disparities between videos. In this paper, 1-d CNN [11] is used.

The feature map H generated by the biGRU is used as the input of an 1-d convolutional
block Conv1dk,r , where r = 512 filters of size k, with k ≥ 2. After that, an m × r feature
map is generated. We further apply ReLU activation function on the feature map and employ
max-pooling layer which can compress the feature map to vector ck of fixed length r . The
representation that focuses on local features f

(
vf

)
is concatenated by two ck where k = 2

and k = 3. The encoding process can be expressed as:

H2 = ReLU
(
Conv1dk,t (H ))

ck = max − pooling (H2)

f
(
vf

) = [c2, c3] . (4)

3.3 Text-sidemulti-granularity encoding

The encoding process of the text is consistent with the video as a whole.
For word representation, we use a 300-dimensional pre-trained word2vec word

embedding model. A sentence of length m, can be represented by a word sequence
{w1, w2, ..., wm} where wt represents the word embedding vector of the t-th word in the
description.

Similar to coarse-grained encoding of video (as Section 3.2.1), the word sequence passes
through a mean-pooling layer and a gate embedding block to obtain the coarse-grained
feature f (sc).
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The fine-grained encoding module of text is similar to video encoding in Section 3.2.2.
The formation process of f

(
sf

)
is as follows:

The sentence vector embedding by word2vec is fed to biGRU network to acquire context-
related encoding, and two one-dimensional convolution blocks with k=2,3 are used to
enhance local patterns of text.

Videos and sentences are essentially series of items (frames or words), which allows us
to design a dual encoding network to handle two modalities. Such design is more concise
and more symmetrical. However, in order to maintain the uniqueness of each modal, the
parameters of video and text encoding network are not shared.

3.4 Joint embedding learning

3.4.1 Loss function

The pairwise ranking model is employed to learn the joint embedding space. Specifically,
we utilize the hard triplet loss as the fundamental loss function, which is widely used in
face recognition field. Given a positive video-text pair (s, v), the loss function of individual
features is defined as follows:

L =
∑

s-

[α − S(s, v) + S(s-, v)]+

+
∑

v−

[
α − S(s, v) + S

(
s, v−)]

+
(5)

where [x]+ = max (0, x) and α is a margin constant. S(s, v) denotes the similarity score of
matched video v and text s; S

(
s, v’

)
denotes the similarity score between the query text and

video, where the video does not match the query text but is most similar to it in the batch.
And vice versa with S

(
s’, v

)
. The cosine similarity is used to calculate the similarity score.

In our method, we do not fuse the features from different granularity, which results in
two kinds of cross-modal features: the coarse-grained features (sc, vc) and the fine-grained
features (sf , vf ); the loss is modified as:

L =
∑

s−

[
α − S∗ (

sc,f , vc,f

) + S∗ (
s−
c,f , vc,f

)]

+ +
∑

v−

[
α − S∗ (

sc,f , vc,f

) + S∗ (
sc,f , v−

c,f

)]

+

(6)

where S∗(sc,f , vc,f

) = λS(f (sc), f (vc)) + (1 − λ)S
(
f

(
sf

)
, f

(
vf

))
and λ is the tradeoff

weight.
Calculating the similarity of (f (sc), f (vc)) can help compare the global consistency

between query object and matching sample. The purpose of calculating the similarity of
(f

(
sf

)
, f

(
vf

)
) is to distinguish the slight difference between positive sample and non-

matching sample. The weighted combination of the two similarities makes the hardest
negative sample most similar to the positive sample, thus better measuring the optimization
model.

The training process of the MEJESF is shown in the Algorithm 1:
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9:

3.4.2 Score-based fusion of joint embedding spaces

”Who does what” is the basic content of a video. To make full use of multiple cues of the
video, and pay attention to the object (who) and events (what) of the video during retrieval,
we form two joint embedding spaces.

The coarse and fine grained features of videos extracted by ResNet152 and the coarse
and fine grained features of text extracted by word2vec are mapped to the static-text joint
embedding space where emphasizes the salient object. Another common space is named
dynamic-text space. The video multi-granularity features in this space are obtained from
features extracted by I3D. The dynamic-text space centers on actions and events of video.
The same loss function is used to train both embedding models.

The use of multiple cues and combining or fusing retrieval flow in some way has been
proved to be effective in traditional retrieval methods. At the time of retrieval, the early
fusion method merges each cue before matching, while the late fusion method firstly per-
forms matching on the different cues and then fuses the matching results. Late fusion can
potentially support an adaptive fusion approach. Late fusion in retrieval can be roughly
divided into score-based fusion and ranking-based fusion. Score-based fusion sums the sim-
ilarity scores of query and results in joint spaces, and ranking-based fusion sums the ranking
positions of retrieval resulting in different joint embedding spaces. Donald et al. [17] proved
that the score-based fusion performed better in multiple features by experiments. Therefore,
we utilize the score-based late fusion method for retrieval, as shown in Fig. 4.

In video-to-text retrieval, given a query video, we calculate similarity score with all sen-
tences in the test dataset in both embedding spaces, and use the sum of the similarity scores
for final ranking. Vice versa for text-to-video retrieval. This process can be expressed as:

Sv−t (v, t) = a1Ss−t + a2Sd−t (7)

where Ss−t denotes the similarity score between video and text in static-text space,
Sd−tdenotes the similarity score between video and text in dynamic-text space. And
Sv−t (v, t)represents the similarity sum score. It is worth noting that the similarity scores of
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Fig. 4 Score fusion of joint embedding spaces. Ss−t and Sd−t represent the similarity scores of modal
samples in static-text and dynamic text spaces respectively. Sv−t is the score for final ranking

the multiple joint embedding spaces have the same weight in our paper. a1 and a2 are both
0.5.

The retrieval process of the MEJESF is shown in the Algorithm 2:

4 Experimental evaluation

4.1 Datasets

MSR-VTT [29] is the largest public dataset originally developed for video description gener-
ation tasks. It contains of 10k video clips and each clip is described by 20 natural language
sentences. There are two ways to split the data for MSR-VTT in retrieval. Following the
official data split, 6,513 videos are used for training and 2,990 videos for full testing. The
rest of them (497 videos) are used for validation. The other split way is following [36]. The
test set uses 1,000 randomly sampled text-videos pairs. Because the test data is randomly
selected in this 1k division method, the cross-validation experiment is conducted as the final
result. To evaluate the model more fairly, our experiments consist of these two data splits.

MSVD [3] is collected from YouTube videos, which have been used in several previous
works on video captioning and action recognition. MSVD contains of 80K English descrip-
tions for 1970 videos. For fair comparison, we follow the prior work [22], with 1,200,
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100 and 670 video clips for training, validation, and test respectively. We randomly pick 5
sentences per test video.

4.2 Evaluationmetrics

We report rank-based performance metrics including recall at rank (R@K-higher is better),
Median rank (MedR-lower is better) and mean rank (MeanR-lower is better). Take video-
to-text retrieval as an example, R@K (K=1,5,10) reports the correct text ranks in the Top-K
retrieved results of the video query. MedR calculates the median rank of the first relevant
sentence in the query results. In the same way, MeanR is the mean rank of all correct
descriptions.

4.3 Implementation details

Our experiments are implemented based on PyTorch. We use a GTX 1080Ti GPU to train
our model. We adopt Stochastic Gradient Descent (SGD) to optimize model’s parameters
with a mini-batch size of 128. The base learning rate is set as 2e-3. The margin α in the loss
is 0.2. The tradeoff weight λ of the loss function is 0.5. We choose the best sum of recalls
on the validation set as the final model.

4.4 Descriptions of the comparedmethods

Several state-of-art methods are compared in the experiments. Among these methods, CCA
is a traditional method; VES, VES++ are based on ranking loss; W2VV, LJEMC, Dual-
encoding, JSFusion, JMDV, ST, LJRV are DNN-based methods, and MoEE, HowTo100M
are expert collaboration algorithms.These compared methods are briefly introduced as
follows:

• VES [12]:unifies joint embedding models with multimodal neural language models.
• VES++ [8]:uses hard negative mining to learn visual-semantic embedding for cross-

modal retrieval.
• W2VV [6]:learns to predict a visual feature representation from multi-scale sentence

vectorization and multi-layer perceptron.
• LJEMC [20]:uses more video features in the retrieval framework including object,

action, sound.
• Dual-encoding [7]:proposes a dual deep encoding network that encodes videos and

queries into powerful dense representations of their own.
• JSFusion [36]:leverages hierarchical attention mechanisms that learn to promote well-

matched representation patterns while prune out misaligned ones in a bottom-up
manner.

• MoEE [18]:proposes a model with ability to handle missing input modalities during
training.

• HowTo100M [19]:uses the collaborative expert model to collect different trained expert
information, such as semantic embedding, ASR of video and OCR features.

• CCA [10]:learns a common space for different media types, which is able to maximize
the correlation of them.

• JMDV [30]:proposes a unified framework consists of a compositional semantics lan-
guage model, a deep video model and a joint embedding model to joint video and the
corresponding text sentences.
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• ST [13]:proposes a training sentence representation method skip though, which uses an
encoder to model the current sentence and two independent autoregressive decoders to
model the previous sentence and the next sentence respectively.

• LJRV [22]:proposes a high-level concept word detector that can be integrated with any
video-to-language models.

4.5 Comparisons with state-of-the-art methods

MSR-VTT Table 2 shows the experiment results and the performance comparison between
our approach and the state-of-the-art methods on MSR-VTT dataset. We can observe that
no matter of which data split method is using, our method outperforms the other approaches
in terms of all metrics for both video-to-text retrieval and text-to-video retrieval. Compared
with LJEMC, our algorithm has improved. It may be because that MEJESF emphasizes the
fine-grained encoding of the same cue feature, which not only focuses on the global simi-
larity, but also focuses on the influence of details on the retrieval. Dual-Encoding enriches
the feature expression through multi-level encoding, but ignores the impact of multiple joint
embedding spaces on the overall results and our algorithm takes both into account. Figure 5
shows the top-5 retrieved results for some exemplar queries. Figure 6 shows the qualitative
results of text-to-video retrieval.

MSVD Table 3 shows the results of video-to-text retrieval on MSVD dataset and Table 4
shows the results of text-to-video retrieval task. It is clearly observed that our approach
achieves the best performance with the R@1 of 23.1 and 18.9 in text retrieval and video
retrieval, which is about 12.2% and 7.4% higher than Dual-Encoding. However, our result
of R@5 is a little worse than Dual-Encoding. The possible reason is that we selected the
best sum of recalls on the validation set as the optimal model for retrieval. The optimal
model is the best overall, but does not mean the best locally. In general, MEJESF achieves
competitive performance on all the evaluation metrics.

Zero example retrieval To verify the performance of the proposed model in zero exam-
ple retrieval, we use the MSVD test set to assess the models trained on MSR-VTT.
Table 5 shows the performance comparison. Our best result at R@1 is 21.3 in video-to-text

Table 2 Video-to-text and text-to-video retrieval results on MSR-VTT dataset

Method Test-set Video-to-text retrieval Text-to-video retrieval

R@1 R@5 R@10 MedR Meand R@1 R@5 R@10 MedR Meand

VSE [12] full 7.7 20.3 31.2 28.0 185.8 5.0 16.4 24.6 47.0 215.1

VSE++ [8] full 10.2 25.4 35.1 25.0 228.1 5.7 17.1 24.8 65.0 300.8

W2VV [6] full 11.8 28.9 39.1 21.0 - 6.1 18.7 27.5 45.0 -

LJEMC [20] full 12.5 32.1 42.4 16.0 134.0 7.0 20.9 29.7 38.0 213.8

Dual-Encoding [7] full 13.0 30.8 43.3 15.0 - 7.7 22.0 31.8 32.0 -

MEJESF(ours) full 13.8 33.8 46.5 13.0 103.2 7.7 22.2 32.1 30.0 152.9

JSFusion [36] 1k - - - - - 10.2 31.2 43.2 13.0 -

MoEE [18] 1k - - - - - 12.9 36.4 51.8 10.0 -

HowTo100M [19] 1k - - - - - 14.9 40.2 52.8 9.0 -

MEJESF(ours) 1k 31.2 58.1 69.8 4.0 26.6 17.7 42.4 54.1 8.0 44.3
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Fig. 5 Text retrieval examples on MSR-VTT. For each query video, it shows top five retrieved sentences
using our model. In the figure, the top-5 sentences retrieved from the 1th and 2nd videos are their ground-
truth captions, and the top-5 sentences retrieved from the 3rd and 4th videos have wrong captions. Take
the fourth retrieval result as an example, the second-ranked caption identifies “gift” as “stroller”; the fifth-
ranked caption understands the little girl’s “happily talking” and “pleasant bouncing” movement as “angry
performance”

Fig. 6 Video retrieval examples on MSR-VTT. The left shows top five videos retrieved using our method.
Video in red bounding box is the ground truth video. Examples of retrieval errors are shown on the right.
Taking the search in the upper right corner as an example, the top four retrieval results put the focus on “girl”,
“game”, “talking”, and “show” respectively. There is lack of comprehensive consideration of these factors in
the retrieval
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Table 3 Video-to-text retrieval results on MSVD dataset

Method R@1 R@5 R@10 MedR Meand

CCA [27] 245.3

JMDV [30] 224.1

ST [13] 2.99 10.9 17.5 77.0 241.0

LJRV [22] 9.85 27.1 38.4 19.0 75.2

VSE [12] 15.8 30.2 41.4 12.0 84.8

VSE++ [8] 21.2 43.4 52.2 9.0 79.2

W2VV [6] 17.9 - 49.4 11.0 57.6

Dual-Encoding [7] 20.6 42.8 58.8 8.0 38.9

MEJESF(ours) 23.1 48.1 60.3 6.0 36.0

retrieval and 15.3 in text-to-video retrieval for the cross-dataset scenario, which makes the
improvement over the most recent report [7] by 13.9% and 20.5%.

Observing the experiment results, it is found that the result of video-to-text are always
better than the result of text-to-video. It is because in the retrieval, the same video corre-
sponds to multiple correct text descriptions, and each text description only corresponds to
one correct video.

4.6 Ablation studies

We conduct several ablation experiments on MSR-VTT to investigate the effectiveness of
each component of our model.

Influence of multi-grained encoding Table 6 shows the result of investigating contribu-
tion of each module in coarse-grained and fine-grained manners. The 1st row methods are
encoded by mean-pooling layer in both video feature and text feature. And the results of
adding the gate embedding block to encode modal’s coarse-grained feature are displayed
in the second row. Then the results with encoding fine-grained feature just with biGRU are
shown in the 3rd row. Furthermore, Li et al. [14] fused the features from different angles
in image-text retrieval. We follow Li et al.’s approach, and fuse the coarse and fine-grained
features of the same modal in joint embedding space, and the 5th row shows the result.

Table 4 Text-to-video retrieval results on MSVD dataset

Method R@1 R@5 R@10 MedR Meand

CCA [27] 251.3

JMDV [30] 236.3

ST [13] 2.6 11.6 19.3 51.0 106.0

LJRV [22] 7.7 23.4 35.0 21.0 49.7

VSE [12] 12.3 30.1 42.3 14.0 57.7

VSE++ [8] 15.4 39.6 53.0 9.0 43.8

Dual-Encoding [7] 17.6 47.1 59.5 7.0 34.8

MEJESF(ours) 18.9 46.1 60.5 7.0 25.3
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Table 5 Performance of zero-example video retrieval, trained on MSR-VTT, tested on MSVD

Encoding Strategies Video-to-text retrieval Text-to-video retrieval

R@1 R@5 R@10 MedR Meand R@1 R@5 R@10 MedR Meand

VSE [12] 15.4 31 42.4 19.0 128 11.0 28.6 39.9 18.0 48.7

VSE++ [8] 20.8 37.6 47.8 12.0 108.3 13.8 34.6 46.1 13.0 48.4

Dual-Encoding [7] 18.7 37.2 45.7 15.0 142.6 12.7 32.0 43.8 15.0 52.7

MEJESF(ours) 21.3 41.9 55.8 8.0 36.4 15.3 37.6 51.9 10.0 28.4

Through comparison experiments, it can be observed that our method (shown in the 4th
row) which considers both global information and subtle details has better effect.

Influence of different joint embedding spaces The results of different joint embedding
spaces are assessed in Table 7. The 1st , 2nd rows show the results using different video fea-
tures. Each video feature is multi-grained encoded, and then mapped into a joint embedding
space with text features using the modified loss. The 1st row and 2ed row also represent
the retrieval accuracy of a single embedding space. Miechet al. [18] proposed a method that
connected multiple features of the media firstly and employed a single embedding space
for retrieval. To test the effectiveness of multiple joint embedding spaces, we also perform
similar experiments. Comparing the 1st row (static-text space), the 2th row (dynamic-text
space) and 3th row (con(appearance - action)-text space), our proposed method achieves
17.9% improvement in R@1 for text retrieval and 2.6% improvement for video retrieval
compared to the best model among the single embedding space. Therefore, the score-based
fusion strategy for joint embedding spaces is effective.

4.7 Further analyses

4.7.1 The tradeoff parameter

To clarify the effect of the tradeoff parameter λ in the loss function in Equation (6), we
illustrate the performance curves with different values of λ in Fig. 7. From the figures, we
can see that the performance of R@1, R@5, R@10 all increase with the increase of λ, when
λ varies in a range from 0.2 to 0.5. The value of R@1, R@5, R@10 gradually decrease
when λ is greater than 0.5. Therefore the best performance is achieved when λ is about 0.5.

Table 6 Ablation study: impact of different encoding strategies on MSR-VTT

Encoding Strategies Video-to-text retrieval Text-to-video retrieval

R@1 R@5 R@10 MedR Meand R@1 R@5 R@10 MedR Meand

coarse grained-mean pooling 10.6 26.4 37.8 21.0 145.1 5.7 18.6 27.5 43.0 218.0

+gate embedding block 11.9 31.4 43.0 16.0 125.2 6.6 20.8 30.2 35.0 193.2

+fine grained

+biGRU 11.7 30.2 40.9 16.0 126.2 6.8 20.9 30.4 34.0 196.9

+CNN(ALL) 13.8 33.8 46.5 13.0 103.2 7.7 22.2 32.1 30.0 152.9

CON(coarse and fine grianed) 12.6 31.3 44.2 15.0 107.2 6.9 21.1 30.5 34.0 174.8
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Table 7 Ablation study: influence of different joint embedding spaces on MSR-VTT

Joint embedding spaces Video-to-text retrieval Text-to-video retrieval

R@1 R@5 R@10 MedR Meand R@1 R@5 R@10 MedR Meand

Static-Text Space 11.0 27.6 37.7 21.0 164.8 6.6 19.5 28.1 41.0 191.6

Dynamic-Text Space 9.4 25.0 35.0 26.0 176.9 5.4 17.7 26.2 48.0 215.6

CON(appearance-action)-Text 11.7 30.1 41.8 16.0 116.2 7.5 22.1 32.0 31.0 157.0

Space

All 13.8 33.8 46.5 13.0 103.2 7.7 22.2 32.1 30.0 152.9

4.7.2 Convergence in practice

We visualize the loss function of MEJESF in (6) with increasing the number of epochs in
Fig. 8. It can be seen from the figure that the loss function of MEJESF converges on both
static-text space and dynamic-text space.

4.8 FLOPs

In the stage of training and learning feature representation of different modals, MEJESF
mainly includes coarse-grained encoding module and fine-grained encoding module. In
deep learning model, floating-point operations (FLOPs) [21] are often used to measure the
complexity of the model.

Coarse-grained encoding: coarse-grained encoding is mainly composed of a mean pool-
ing layer, two fully connected layers and a sigmoid activation function. A full connection
layer FLOPs is O (2 × Ni × No), the two full connection layers are O (2 × 2 × Ni × No),
where Ni and No is the number of input neurons and output neurons respectively.

Fine-grained encoding: in the process of fine-grained encoding, the model first passes
through a biGRU network, and the biGRU network is composed of two GRU net-
works. Then the obtained matrix is passed through the convolution network to obtain
the final feature representation. Therefore, the FLOPs of fine-grained encoding is
O

(
2 × (

2 × Ci × k2
) × Co × H × W

)
.

where Ci is the number of input channels, k is the length of convolution kernel, Co is the
number of output channels,H ×W is the length and width of the output characteristic graph.

Fig. 7 Experiments on influence of the λ in formula (7) on MSR-VTT. Similar results for other datasets
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Fig. 8 Convergence of MEJESF in practice

MEJESF includes the processing of video and text. Therefore, the FLOPs is the sum of
fine-grained encoding of video, coarse-grained encoding of video, fine-grained encoding of
text and coarse-grained encoding of text. The FLOPs of MEJESF as:

O
(
2

(
2 × 2 × Ni × No + 2 ×

(
2 × Ci × k2

)
× Co × H × W

))

5 Conclusion

In this paper, an end-to-end model for video-text cross-modal retrieval is presented. It con-
sists of multi-grained feature encoding, joint embedding space fusing to reduce the semantic
gap between diverse modals. In particular, we propose a novel dual encoding method which
encodes the coarse-grained feature and fine-grained feature of modals. Considering interac-
tion of features and hard sample mining, the loss function is modified. Furthermore, we build
two joint embedding spaces and fuse them when retrieving. Extensive experiments demon-
strate that the proposed model achieves promising performance improvements in both
video-text cross-modal retrieval and zero-example video retrieval. We will work to improve
the model to better complete the task of zero-example video retrieval in the future work.
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