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Abstract
Skin cancer is the most prevalent genre of all cancers. Melanoma, being the deadliest of
all skin cancers, calls for the requirement of an automated Artificial Intelligence-based skin
diagnosis system to assist physicians with early diagnosis. We propose a fusion of conven-
tional therapeutic approaches and deep learning frameworks to identify skin lesions. The
work explores the scope of employing image data, handcrafted lesion features, and patient-
centric metadata together to diagnose skin cancers effectively. We combined the image
features transfer-learned from EfficientNets, colour and texture information extracted from
the images, and patients’ preprocessed metadata to produce the final hybrid model. They
were fed to a multi-input single-output (MISO) model to fine-tune an artificial neural net-
work classifier. Multiple MISO models were trained with their backbones substituted with
EfficientNets B4 through B7. The predicted labels from these, along with a separate set of
models trained with only image data and metadata were ensembled using majority soft vot-
ing. We experimented with weighing the models based on their contribution to ensemble
accuracy and ensemble sensitivity. Each model was trained and evaluated using the well-
known ISIC2018 and ISIC2019 datasets. The extreme imbalance in the datasets necessitates
the use of appropriate evaluation metrics. ISIC2018 tested 90.49% sensitive and 97.76%
specific, whereas the larger and more divergent dataset ISIC2019 rated 85.58% sensitive
and 98.29% specific. The network is by far the finest compared to most other research in
the field.
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1 Introduction

Skin lesions are abnormal skin cells that occur due to increased exposure to the sun’s harm-
ful ultraviolet rays. WHO reports that, on a global scale, one in every three cases of cancer
diagnosed currently is skin cancer. Melanoma infections are the most malignant of all forms
of skin cancers. However, skin lesions have an interesting 5-year melanoma survival rate of
95% on early detection that falls to 20% if left untreated. The importance of early detection
of Melanoma has been highlighted due to the rising number of cases and the ever-increasing
mortality rate. Skin lesions are detectable only through an expert visual inspection. Using
Machine learning and Deep learning concepts, skin lesion diagnosis could be automated
efficiently with the availability of high-resolution dermoscopic images. The International
Skin Imaging Collaboration (ISIC) initiated the ISIC grand challenge happening every year
since 2016, aiming the researchers’ community all around the world to contribute towards
the cause of efficient skin cancer detection and analysis [16].

There are over 2,000 kinds of skin cancers identified. The general hierarchy of lesions is
shown in the supplementary material (Figure S1). Broadly categorized as benign and malig-
nant, the former lesions are non-cancerous skin growths that are mere birthmarks or rashes
uniformly formed on human skin. In contrast, malignant lesions are the fast-growing and
irregular-shaped cancerous category. Physicians perform clinical tests based on certain stan-
dard procedural rules such as the ABCDE rule (asymmetry, border, shape, colour, diameter,
and evolution of lesion), the CASH rule (colour, architecture, symmetry, and homogenous
nature of the lesion), or the Glasgow’s 7-point checklist which includes seven yes/ no ques-
tions related to changes in size, shape irregularities, and infection scales. The past decade
saw the importance of automating skin cancer detection for early and accurate diagnosis
with the availability of high resolution dermoscopic images [6]. Table 1 briefs the various
state-of-the-art models published in reputed journals over the years.

1.1 Machine learning tools for diagnosis

The conventional therapeutic approaches based on dermoscopy and lesion verification rules
have influenced diagnosis automation using digital dermoscopic images. Zghal et al. [28],
and Monika et al. [20] extracted features similar to ABCDE and CASH from affected
regions of skin lesion images. These were then used to train different machine learning clas-
sifiers for effective automated diagnosis. A limited supply of look-alike data explains the
appreciable performance of these models. In Ghalejoogh et al., patterns were captured using
texture descriptors from grey converted dermoscopic images that were fed into an ensem-
ble classifier [9]. Hameed et al. concluded that as the complexity of classifiers increased,
so does the capability of a model in recognizing classes [13]. Most models were evalu-
ated using the accuracy metric that should never be chosen as the evaluation metric for
imbalanced datasets. Furthermore, the abundance of skin lesion images with high inter-class
similarity makes it difficult to identify unique and distinguishable custom characteristics.

1.2 Deep learning tools for automation

Deep neural architectures are known to project high efficiency with the increase in the
number of layers to capture the latent dynamics of input data [3]. Moreover, The incon-
veniences of tweaking the hyperparameters of a freshly created network are reduced by
transferring the knowledge of pre-trained models. Kassem et al. [18] explore the impact of
GoogLeNet in the ISIC2019 dataset by fine-tuning all architecture layers of the network
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[18]. Nahata et al. performed a comparative analysis of skin lesion classification using sev-
eral pre-trained networks [21]. The lack of sufficient data was observed to underfit these
over-constrained pre-trained models. Researchers also use metadata included in the dataset
to enhance detection rates. They are often processed in DenseNets.

The current research trend curve appears to be biased toward aggregating predictions
from numerous pre-trained models to improve performance and decrease outcome uncer-
tainties. This strategy named ensemble technique has also been explored widely in the latest
ISIC skin lesion detection challenges. Ha et al. present their winning approach to the ISIC
Melanoma detection challenge 2020. The image datasets were augmented and trained using
an ensemble of networks in a 5-fold validation strategy [12]. However, the task here is to
categorize lesions as benign or malignant, while real-life situations demand the diagnosis
of more specific lesion types. Gessert et al. describe the winning solution to the ISIC 2019
skin lesion classification challenge. The authors explored an ensemble of multiresolution
networks trained over extensive data augmentation, and loss balancing of data [7]. Gessert
et al. also project their runner-up solution to the ISIC 2018 challenge that combines multi-
ple networks in a 5-fold cross-validation scheme [8]. The usage of unscaled images during
training ensured detailed feature extraction at the cost of computation. The method adopted
by Harangi et al. had the disadvantage of the limited supply of data [15]. It is common prac-
tice to combine several publicly available datasets to train complex pre-trained networks
[7, 12, 24]. Gong et al. addressed the data imbalance by generating fake sample images
of classes with fewer samples using General Adversarial Networks (GAN)s to produce a
highly accurate but insensitive model [10]. The model’s poor true positive rate (sensitivity)
explains how the model is biased towards the greater class.

Melanoma diagnosis poses several obstacles and opportunities. High interclass character-
istic resemblances only make it a more challenging task. We noted that pre-trained models
outperformed machine learning techniques showcasing promising results. Rather than using
a conventional single neural network, combining the individual performances of several
networks seeks to value the goodness of each network outcome and generates remarkable
predictions. Furthermore, choosing an optimal evaluation metric suitable for imbalanced
data seems to influence research in the area. They are often misleading if chosen wrong.

We merged machine learning and deep learning concepts to create the best repre-
sentations of skin lesions to perform their categorization. The classification task was
accomplished by combining several multi-input models using the weighted ensemble strat-
egy. The architecture was trained and tested on public standard datasets to authenticate
the model’s novelty. It has also been compared with the state-of-the-art models from the
literature. This model overcame the challenges and delivered a strong performance.

The main contributions of the work could be summarized as:

• The fusion of neural network features, extracted features, and patient metadata to
classify skin lesion dermoscopic images.

• A weighted majority voting strategy based on ensembled accuracy and ensembled
sensitivity of the participating models is explored.

• The method is proven by performance comparison with benchmarked datasets and
state-of-the-art models.

• Overall, we have developed an automated skin lesion analysis approach that is reliable,
and time-efficient capable of identifying even the rarest cases of skin cancers.
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2 Datasets

This research aims to combine image data, lesion-specific handcrafted features, and patient-
specific metadata in an ensemble of networks to diagnose skin lesions. We used the well-
known ISIC2018, and ISIC2019 datasets of the International Skin Imaging Collaboration
(ISIC) challenge [17]. Both datasets have patient-specific metadata associated with each of
the skin lesion images contained in the dataset. They were validated separately to compare
the model’s performance on entirely different datasets.

2.1 Data statistics

Specifications of both repositories are given in supplementary material (Table S1). The
ISIC2018 dataset has 7 skin lesion classes of which 5 are benign, and 2 belong to the cancer-
ous category, namely Melanoma and Basal Cell Carcinoma [26]. Besides the class divisions
from ISIC2018, ISIC2019 has an additional cancerous category, the Squamous Cell Carci-
noma [4, 5, 26]. We split the two datasets into the ratio 8:1:1, 8 parts assigned to training,
and the rest split among validation and test sets. Table 2 sets down the number of lesion
images belonging to each class under the train, validation, and test sets. A huge imbalance in
the two datasets was observed, with more than half of the data belonging to the Melanocytic
Nevus category. Approximately 66% of data in ISIC2018 belong to the nevi benign class,
whereas it is around 50% in ISIC2019. This means that even if the entire dataset is catego-
rized as the most frequent class, the model would be as accurate as the ratio of the largest
occurring class.

The distribution of skin cancer patients under different categories of metadata values
from ISIC2018 and ISIC2019 are illustrated in the supplementary material (Figure S2).
Networks reduce entire images into their most abstract representations, and handcrafted
features assume the human way of looking at problems, whereas metadata corresponds to
an entirely different dimension, ’patient’. Metadata also prevents over-fitting caused due to
the intense training of image data alone. Moreover, a physician’s diagnosis would always
include patient data, and it is only intuitive that metadata adds to the performance of an
artificially intelligent model.

3 Methodology

We propose a hybrid approach involving deep learning and machine learning techniques.
Handcrafted features from skin lesion images and the clinical metadata included in the
dataset are trained alongside their corresponding images.

Figure 1 schematically depicts the colour-coded outline of our skin lesion diagnosis
model. The blocks in blue represent the image training network. The images were passed
through EfficientNets and compressed into abstract representations named feature maps.
The pooling layer followed by batch normalization and dropout layers avoids the overfit-
ting of the network to the training data. The feature maps were then flattened and passed
onto the classification layers. The orange blocks illustrate the extraction of handcrafted fea-
tures. The raw images were preprocessed using the dull razor method to remove human hair
strands and noise particles. Lesions were then segmented using a UNet segmentation archi-
tecture from which colour and texture features were handcrafted by computing the colour
variegation and GLCM statistics. A total of 8 distinct features were extracted from each
image. Blocks in red elaborate on the metadata preprocessing procedure. We identified and
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Table 2 Distribution of data in Train, Validation and Test sets

Data Split AKIEC BCC BKL DF MEL NV VASC SCC

ISIC 2018 Train 261 411 879 92 890 5364 113 -

Val 32 51 109 11 111 670 14 -

Test 34 52 111 12 112 671 15 -

ISIC 2019 Train 693 2658 2099 191 3617 10300 202 502

Val 86 332 262 23 452 1287 25 62

Test 88 333 263 25 453 1288 26 64

preprocessed useful columns in the metadata file, which were further combined with the
handcrafted features into a single vector of feature values. They were then passed through a
pair of dense layers. Features from this layer and the flattened features from EfficientNets
were concatenated and passed through a multi-input fully connected network with two lay-
ers. The final layer with the softmax activation function produces a probability distribution
vector for all classes. The predictions from multiple models backed by different variants
of EfficientNets were ensembled using soft majority voting and weighted majority voting
techniques.

3.1 Image training

We fine-tuned EfficientNets to skin cancer-specific datasets ISIC2018 and ISIC2019. Effi-
cientNets were published by Google in the year 2019 [25]. It is a convolutional neural
network that employs a novel compound scaling technique to increase the efficiency and
accuracy of the network. Compound scaling is an aggregative strategy where the depth,
width as well as resolution of the network are scaled uniformly using a single compound
coefficient θ (1). EfficientNet variants are generated by incrementing the value of θ .

depth scaling = dθ width scaling = wθ resolution scaling = rθ

such that d ∗ w2 ∗ r2 ≈ 2, d ≥ 1, w ≥ 1, r ≥ 1 (1)

Fig. 1 Block diagram of the proposed Hybrid Ensemble Model
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EfficientNet B4, B5, B6, and B7 variants were exercised in this work. As only the skeletal
architecture of EfficientNets was required, we intentionally removed the final layers at the
head of the networks. It was observed that the space and time complexities increased in the
higher variants of EfficientNet.

3.2 Handcrafted Feature Extraction

Here, we draw out image-specific features from the skin lesion dataset to assist the
classification process. The following subsections describe each step in detail.

3.2.1 Image Pre-processing

All images were preprocessed to enhance the image quality such that unwanted distortions
are reduced, and aspects important to the application are improved. Since human skin hair is
an artifact of distortion that may hinder the proper extraction of features, we employed the
dull razor hair removal algorithm. Figure 2 illustrates the flow of the dull razor hair removal
procedure.

Initially, a black hat transformation is applied that uncovers minute components in an
image. The grey-converted image I is morphologically closed with a structuring element k

of size 5×5. It is further subtracted from the original image (2). A threshold t is obtained in
the process that best describes the separation of highlighted objects from the background.

BT (I) = I • k − I (2)

T Ip =
{
1, (BT )p ≥ t

0, otherwise
(3)

Next, a binary threshold is applied to the black hat transformed output BT (I) based on
the threshold t as in (3). Conceptually, binary 1 represents noise or hair segments, whereas
binary 0 represents skin regions, including the lesion areas. Finally, the binary thresholded
mask T Ip is inpainted into the original image with a masking radius value of 3. It fills in
the masked pixels with the surrounding pixels from the original image.

3.2.2 Lesion segmentation

We custom-trained the UNet architecture using the dataset available. UNet is an asymmetric
and fully convolutional network comprising an encoder and a decoder. While the encoder
reduces spatial dimension and records the image context using a series of convolution and

Fig. 2 Hair removal by Dull Razor Algorithm
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pooling operations, the decoder regenerates binary masks from feature maps using trans-
posed convolution operations. The knowledge from previous encoder layers is incorporated
into the decoder layers through skip connections.

Our encoder and decoder had five blocks each. Each block included a pair of convolution,
batch normalization, and pooling layers followed by ReLU activations. The network was
optimized with the Adam optimizer at a learning rate of 0.001. The binary cross-entropy
loss function calculated the prediction error among the intensity values of the predicted
mask and the ground truth intensities. We used the ISIC2018 dataset split in the ratio 8:2
to train and validate the network. The dataset has ground-truth masks associated with all its
images, while ISIC2019 has none. For this reason, the trained UNet model was simply used
to generate masks for the ISIC2019 dataset.

Accpix = T Ppix + T Npix

T Ppix + T Npix + FPpix + FNpix

IoU = Intersectionpix

Unionpix

= T Ppix

T Ppix + FPpix + FNpix

(4)

Mean pixel Accuracy (Acc pix) and Intersection over Union (IoU) metrics were used to
evaluate the UNet (4). While mean accuracy is the average number of correctly predicted
pixels in the generated binary mask, IoU calculates the percentage of area covered by the
predicted and ground truth masks.

3.2.3 Colour variegation

We extracted the colour variegation to represent the occurrence of various hues and colour
tones in each lesion. Colour variegation in skin lesions increases as they turn more cancerous
and could potentially be an influential discriminator of skin lesions.

Cr = σ(img[:: 1])
max(img[:: 1]) Cg = σ(img[:: 2])

max(img[:: 2]) Cb = σ(img[:: 3])
max(img[:: 3]) (5)

Assuming the image is in the RGB colour space, the standard deviation of the intensity
distribution across each channel was calculated and normalized separately (5). The value
quantifies the dispersion of image intensities concerning their mean.

3.2.4 Grey level co-occurrence matrix

GLCM [14] estimates the textural characteristics of an image using second-order statistical
characteristics. It is a histogram of co-occurring greyscale values at a predetermined offset.
Each element (i, j) in the matrix is the frequency with which a grey level i co-occurs with
grey level j at a distance d in the direction θ . Since the non-cancerous classes of skin lesion
have close textural patterns, we considered four angles θ = 0, π

2 , π, 3π
2 with a pixel spacing

of 1 to extract GLCM features. Further, the contrast, energy, homogeneity, dissimilarity and
correlation second-order statistics (denoted as S1, S2, S3, S4, and S5) were measured from
the normalized GLCM.

μSk
= 1

4
[ Sk|0 + Sk| π

2
+ Sk|π + Sk| 3π

2
] (6)

We calculated the five statistics separately for each of the co-occurrence matrices (ie,
about all angles of co-occurrence enquiry) denoted as Sk|0, Sk| π

2
, Sk|π , Sk| 3π

2
, where k =

(1 to 5). A single representation of each statistic μSk
was obtained by averaging similar

statistics across all co-occurrence matrices (6).
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3.3 Metadata encoding

The lack of standard procedures in collecting metadata leaves a lot of missing values in
the data. We undertook various data cleaning and pre-processing measures to identify and
handle such dispensable data for the smooth functioning of the model.

1. Feature selection- the insignificant attributes that could misguide the classification such
as lesion id and diagnosis type were removed from both datasets.

2. Handling missing values- The mean substitution and the maximum frequency imputa-
tion techniques were employed to handle missing fields in the numerical and categorical
attributes. While the mean substitution method filled all the zeroes and non-numerical
values with the average value across the column, maximum frequency imputation
filled missing values with the most frequently occurring category in the entire attribute
column.

3. Metadata encoding- Unlike numerical values, categorical values need to be converted
to numerals to process them. One-hot encoding was implemented where additional
columns were generated based on the unique categorical values. Binary 1 in a one-hot
encoded row indicates the existence of a category while the rest of the categories are
set to 0.

3.4 Combined feature normalization

The preprocessed metadata and the extracted features were combined to produce a total
of 23 features for ISIC2018 and 28 features for ISIC 2019. The value difference is due to
the extra number of anatomical site categories in the ISIC2019 dataset. Attributes with a
wide range of values affect a model to bias towards them. To equalize the contribution of
all features, we used Min-Max normalization, ensuring that the entire feature set values are
transformed to the [0, 1] scale similar to the one-hot encoded features (7). The scaling aids
the training of networks to be more stable and quicker.

uminmax = u − umin

umax − umin

(7)

3.5 Architecture design

To evaluate a scenario, the human brain tries to connect information acquired from the
different senses. Similarly, a network architecture capable of processing multiple input data
from the same source is anticipated to outperform its single input counterparts. A Multi-
Input Single-Output (MISO) model was built to take in image data and their corresponding
numerical metadata and give out categorical lesion classes.

As depicted in Fig. 3, the EfficientNet model was trained using the lesion images. The
compiled metadata was transformed into their latent representations using a multilayer per-
ceptron with two dense layers comprising 256 neurons in the second branch. Each layer
was followed by Batch normalization and ReLU activation layers. A dropout of 25% after
the first dense layer tried to generalize metadata into the network, thereby avoiding possi-
ble overfitting of data. We designed a custom generator that generates mini-batches of skin
lesion images and their corresponding metadata for network training. A similar custom test
data generator was also defined for the sequential generation of singular data.

A total of 1280 features from the CNN branch and an additional 256 features from the
MLP branch were combined to train the classification layers. The initial fully connected
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Fig. 3 Outline of the MISO model

dense layer followed by the Batch Normalization layer, ReLU activation, and a Dropout rate
of 40% transformed the (1280 + 256) input features into their 1024 latent representations.
A second dense layer with the softmax activation deduced confidence scores of each class.
The predictions are obtained in probability values that correspond to the confidence with
which the input data belongs to a specific skin lesion class.

σi(l) = expli∑n
j=1 expli

(8)

The function σ generates a vector of n confident scores, one for each skin lesion class
l (8). The label corresponding to the maximum probability score is the final predicted skin
lesion class.

3.6 Majority voting ensemble technique

Neural networks have very high variance as the hyperparameters of a model keep tuning
each time the network is trained. This can affect the performance of a model. We combined
the predictions from several trained models based on majority voting to reduce variance and
improve predictions.

Majority voting This soft voting method asserts that the final predicted skin lesion class
would be the label associated with the maximum of the summed up probability values for
each class label i = 1 to n across all models j = 1 to m (9).

prediction = label (max(p′) ‖ p′
i = ∑m

j=1 pij )

where i = 1 to n (9)

Weighted Majority Voting: This technique demands that weights be assigned to each
model based on their contribution to the most error-free predictions. Unlike simple major-
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ity voting, confidence scores generated by model j are weighted wj times prior to voting
(Equation 10).

predictionw = label (max(p′) ‖ p′
i =

m∑
j=1

wjpij )

where i = 1 to n (10)

Estimation of model weights An optimal set of model weights needs to be computed
before weighted majority voting. A grid search is performed in the vector of all possible
weight combination the models could be assigned to. The process searches for the unique
weight combination that produces the finest prediction set.

[Wa]m1 = max( acc( true, predictionw))

[Ws]m1 = max( tpr( true, predictionw)) (11)

We evaluated the predictions for each combination of weights using (10). Simultane-
ously, we computed the accuracy and sensitivity for the new predictions and stored them
alongside the combinations worked. Once all combinations were operated with, the weight
vectors Wa and Ws associated with the maximum accuracy and the maximum test positive
rate were determined to be the optimal model weights (11).

3.7 Evaluationmetrics

Our model was assessed using Mean Sensitivity, Specificity, and the Balanced Accuracy
metrics to focus on individual classes. These are determined from a confusion matrix plotted
against the actual lesion classes for the predicted lesions. True positives and negatives are the
numbers of lesion classes rightly predicted, while false positives and negatives are those that
are incorrectly predicted. Sensitivity measures the true positive rate, evaluating the model’s
capability to rightly categorize persons suffering from a disease class. Conversely, speci-
ficity or the true negative rate measures the model capacity to categorize persons without
the condition.

Mean Sensitivity TPR = 1

N

N∑
i=1

TPRi
(12)

Mean Specif icity TNR = 1

N

N∑
i=1

TNRi
(13)

Balanced Accuracy = TPR + TNR

2
(14)

Using (12) and (13), we calculated TPR and TNR for each class i, which was further
averaged to obtain the mean sensitivity and mean specificity. Balanced accuracy (BA) was
computed by averaging the true positive and true negative rates (14). BA gives a sense of
how sensitive and specific the model concerns disease diagnosis.

4 Results and discussion

We trained and tested the proposed approach on the train and test splits of the ISIC2018 and
the ISIC2019 datasets separately. There are three separate modules (the image training, the
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handcrafted feature extraction, and the metadata preprocessing modules) conjoined by the
classification entity.

4.1 Network settings

The hyperparameters of the model set for training are given in supplementary material
(Table S2). Each model was trained for 40 epochs with a batch size of 32 per step. The
model was transfer-learned initially for 10 epochs at a learning rate of 1e − 3. Here, all
the layers except the final classification layers were frozen. Later, they were fine-tuned for
another 30 epochs at a learning rate of 1e − 4 to capture data-specific information within
the network parameters. This is done by unfreezing a preset number of layers as given in the
supplementary material (Table S3). We reduced the learning rate by half for effective learn-
ing during the process, whenever the validation loss did not improve for three continuous
epochs. The Adam optimizer was configured with the following settings: alpha rate (ini-
tial step size of descent)= 0.001, beta 1, and beta 2 (exponential decay rates of the first
and second-moment computations)= 0.9 and 0.999. The classification error was computed
as the Categorical Cross Entropy loss function. It compares the two probability distri-
butions (true and predicted) and determines the difference between them during the training
process (15).

ECC = −
l∑

i=1

truei log(σi(l)) (15)

We performed data augmentation of images to regularize the model and avoid over-fitting
problems. Each image was transformed by randomly rotating, translating, and flipping them
by a factor of 0.1 each. Another strategy used for data balancing was introducing class
weights during the training of the two datasets. Table 3 displays the weights assigned to each
class. The model considers the minority classes with greater weightage, thereby maintaining
a balance in the data.

4.2 Data preparation

All the images were initially resized to 224×224 to maintain integrity in comparing the dif-
ferent variants of EfficientNets. Before extracting features, the images were preprocessed
using the dull razor hair removal algorithm. We customized the UNet architecture with a
validation accuracy of 70.23% and IoU of 75.21%. The segmented masks were superim-
posed on the original image to obtain the region of interest (i.e. lesion areas). The colour

Table 3 Categorical Class Weights of the two datasets

Class Weights ISIC2018 ISIC2019

AKIEC 4.384 3.654

BCC 2.784 0.952

BKL 1.301 1.206

DF 12.437 13.260

MEL 1.285 0.700

NV 0.213 0.245

SCC – 5.045

VASC 10.126 12.538
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and texture feature corresponding to the images were extracted and stored alongside the
preprocessed metadata. Figure 4 shows the initial records of the normalized and combined
metadata.

4.3 Training and validation

The following experiments were conducted by feeding data from a single dataset at a time.

1. We trained four MISO models (pillared by EfficientNets B4 through B7) using image
data, handcrafted feature (denoted as h feat), and metadata (denoted as meta).

2. Similarly, a separate set of multi-input models was trained that accepted only images
and the processed metadata to compare the performance exempting handcrafted
features.

3. Further, the predictions from the model sets were ensembled using the majority voting
technique.

4. An optimal set of model weight vectors [Wa] and [Ws] were obtained by performing
a grid search on every possible combination of weights where each model could be
assigned values in the range [0, 1.0].

5. We then weighted and ensembled the predictions to produce systems that are most
accurate (max acc) and most sensitive (max tpr).

The training and validation loss curves of the first set of experiments on ISIC2018 and
ISIC2019 are presented in Fig. 5. Similarly, the training and validation accuracy plots of
the same experiments are provided in the supplementary material (Figure S3). The training
curve depicts how well the model fits the training data, while the validation curve describes
the behaviour of the trained model on unseen data [2]. It could be inferred that the validation
was consistent with training, thereby eliminating any possibility that the model is overfitted
to the train data. Moreover, the models improved after the initial 10 epochs (i.e., transfer
learning), explaining how the latent features of the lesion images were captured in the fine-
tuning phase. It was also observed that the models had converged at around 30 epochs as

Fig. 4 The Combined Metadata file
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Fig. 5 Training and Validation loss curves of a) ISIC2018 and b) ISIC2019 datasets

the validation curve remained static later. Any further training would be in vain as it simply
would increase the computational complexity.

4.4 Model evaluation

ISIC2018- The most sensitive system was the ensemble model weighted based on maxi-
mum sensitivity with a remarkable mean sensitivity of 90.50% and balanced accuracy of
94.13% (Table 4). It was observed that certain models exhibit similar performance. How-
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Table 4 Performance of proposed hybrid ensemble model on ISIC2018

Wa Ws Model Mean Sensitivity Mean Specificity Balanced Accuracy

0.0 0.3 EfficientNetB4+meta+h feat 83.86 97.33 90.60

0.4 0.9 EfficientNetB5+meta+h feat 85.79 97.04 91.42

0.1 0.0 EfficientNetB6+meta+h feat 81.82 97.21 89.51

0.5 0.9 EfficientNetB7+meta+h feat 82.63 97.13 89.88

0.0 0.0 EfficientNetB4+meta 81.83 96.98 89.41

0.2 0.1 EfficientNetB5+meta 85.47 97.28 91.37

0.3 0.0 EfficientNetB6+meta 82.81 96.99 89.90

0.3 0.0 EfficientNetB7+meta 84.15 96.95 90.55

Ensemble 84.99 97.47 91.23

Weighted Ensemble- max acc 88.54 97.79 93.17

Weighted Ensemble- max tpr 90.50 97.76 94.13

ever, the significance of each model relies hugely on the optimal weight vectors Wa and
Ws . It was also noticed that the simple voting strategy could only perform almost equiva-
lent to some of the individual models. The weighted ensemble based on maximum accuracy
had performed comparatively better than the individual models. The normalized confusion
matrices of the different ensemble methods exhibit the percentage of each category classi-
fied (Fig. 6). The Receiver Operating Characteristic (ROC) curves at different classification
thresholds for the predictions using ensemble models as a one-class versus rest-of-the-
classes case were also plotted. We perceived that the classes with the least representation
(DF and VASC) were accurately captured in the TPR-based weighted voting technique.
However, the significance of a skin cancer detection model lies in detecting cancerous
classes (BCC and MEL). They were categorized remarkably by recognizing exactly 47 out
of 50 BCC cases and 94 out of the 112 Melanoma cases.

ISIC2019 - Here, the ensemble strategy based on maximum sensitivity outperformed the
other models by a slight margin (Table 5). However, we could infer that the ensemble
strategy, in general, outmatches the individual networks. In contrast, their independent per-
formances were limited to 89.00%, and the ensemble performed with ∼91.00% accuracy.
The normalized confusion matrices and ROC curves of the three ensembles are plotted in
Fig. 7. They perform similarly to their ISIC2018 counterparts, except for classification per-
formance on the new class SCC. Squamous cell carcinoma is a cancerous category that
contributes to the significance of the model. The model’s reduced sensitivity towards SCC
could have occurred due to its high visual similarity with the BCC and BKL categories.
Overall, the model exhibits immense potential in identifying skin lesions with an accuracy
of 91.93%.

The performance of the model with the two datasets is comparable. From the ROC
curves, the Area under the Curve (AUC) of each model was computed to be over 98.00%.
The disparity in performance evaluation might be since ISIC2019 is a composite of different
standard skin cancer datasets, whereas ISIC2018 is relatively homogeneous.
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Fig. 6 Normalized Confusion matrices and ROC curves based on one-versus-all classes of the classification
predictions on ISIC2018 test data (right to left) Ensemble by majority voting, Voting based on maximum
accuracy, Voting based on maximum sensitivity
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Table 5 Performance of proposed hybrid ensemble model on ISIC2019

Wa Ws Model Mean Sensitivity Mean Specificity Balanced Accuracy

0.3 0.1 EfficientNetB4+meta+h feat 80.82 97.40 89.11

0.1 0.4 EfficientNetB5+meta+h feat 81.47 97.62 89.54

0.0 0.0 EfficientNetB6+meta+h feat 81.04 97.50 89.27

0.4 0.1 EfficientNetB7+meta+h feat 81.80 97.61 89.70

0.3 0.3 EfficientNetB4+meta 79.98 97.57 88.77

0.3 0.3 EfficientNetB5+meta 80.89 97.65 89.27

0.4 0.2 EfficientNetB6+meta 81.84 97.64 89.74

0.3 0.4 EfficientNetB7+meta 80.51 97.88 89.19

Ensemble 85.12 98.30 91.71

Weighted Ensemble- max acc 84.98 98.38 91.68

Weighted Ensemble- max tpr 85.58 98.29 91.93

4.5 Discussion

The proposed model results conclude the hybrid ensemble approach to be an effective skin
lesion classification method. To illustrate the quality of research, we compared the model
with relevant works in the area performed using the same data set. Entries in the ISIC 2018
challenge were evaluated with the balanced accuracy metric. Gessert et al. secured the sec-
ond position with a performance of 85.1% by employing an ensemble model integrated with
metadata [8]. Milton et al. [19] and Shahin et al. [22] also experimented with ensembles on
the open-sourced ISIC2018 dataset. Almaraz-Damian et al. showcase the significance of the
fusion of handcrafted features with an image training network [1]. Our model outperforms
all methods by a margin of at least 6% (Table 6).

We also compared the performance of the proposed hybrid multi-input single-output
model on the ISIC2019 dataset with a few of the top submissions in the 2019 skin lesion
analysis challenge (Table 7). Mean sensitivity and specificity being the evaluation metrics
of the competition, Gessert et al. won the challenge with an exceptional tpr-fpr rate by
employing ensembles of multiresolution EfficientNets [7]. While Valiuddin et al. [27] and
Guissous et al. [11] failed to implement any data balancing schemes, data augmentation as
the only data proportioning strategy could not keep up the network performance in Steppan
et al. [24].

Our proposed model outperformed the state-of-the-art models that were compared with.
Including the patient and lesion-centric data in the model brought forth the much-needed
edge during classification. It was fascinating how metadata and custom features influenced
skin cancer detection. However, it was also discovered that the suggested framework works
better on the smaller dataset ISIC2018, which is likely due to the diverse nature of the
bigger dataset. Moreover, the prediction of Melanoma in both datasets is a whopping 84%
and 85%, respectively. This is way higher given that the clinical melanoma recognition rate
is only 70% [23]. A downside to the model could be that many of the benign Nevi class
is being categorized as Melanoma. However, this does not pose any potential risk as the
automated system is proposed as a physicians’ aid to initial diagnosis.

3171Multimedia Tools and Applications (2023) 82:3155–3175



Fig. 7 Normalized Confusion matrices and ROC curves based on one-versus-all classes of the classification
predictions on ISIC2019 test data (right to left) Ensemble by majority voting, Voting based on maximum
accuracy, Voting based on maximum sensitivity
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Table 6 Comparison of models trained on ISIC2018

Technique Mean Sensitivity Mean Specificity Balanced Accuracy

InceptionResNet+Inception+NasNet+SENet [19] - - 76.00

DenseNet+SENet+ResNeXt [8] - - 85.10

ResNet+Inceptionv3 [22] 79.60 86.20 82.91

MobileNet+handcrafted features [1] 86.41 90.00 88.21

Proposed Hybrid Model 90.49 97.76 94.13

5 Conclusion

We present a novel Artificial Intelligence-based classification model for skin lesion detec-
tion and classification based on ensembles of networks. Deep learning has made it possible
to build and deploy intelligent medical diagnosis and classification systems using all kinds
of imaging modalities available at present. Moreover, they have proven beneficial in improv-
ing diagnostic accuracy. The hybrid model combines lesion images, their custom-made
features, and relevant patient metadata for the effective diagnosis of the various skin can-
cer classes. It is trained and tested on the well-known, highly imbalanced International Skin
Imaging Collaboration (ISIC) challenge datasets of 2018 and 2019.We extracted highly rep-
resentational handcrafted features from lesion images by implementing segmentation and
feature extraction algorithms. Various data balancing and regularization techniques were
performed to enhance the model sensitivity towards all classes. Transfer learning and fine-
tuning fit well for the compiled architecture training. The suggested weighted majority
voting strategy wrings out the goodness of each network and escalates the model perfor-
mance way more than anticipated. Furthermore, we could infer that the ensemble model is
consistent as it predicts well on the two datasets trained and evaluated separately.

No other works incorporate handcrafted features from the lesion images into the training
process, along with image data and the patient metadata. The suggested study outperforms
the state-of-the-art models against which it was assessed. It, however, appears to function
better on the smaller dataset by a slight margin, probably due to the diverse nature of the
larger dataset.

The technique could be extended by exploring other ensemble techniques such as the
k-fold cross-validation and integrated stacking. Besides the colour and texture features
extracted from skin lesions, other representational features such as the boundary sym-
metry and circularity of lesions might contribute to the model capability. Additionally, it

Table 7 Comparison of models trained on ISIC2019

Technique Mean Sensitivity Mean Specificity Balanced Accuracy

InceptionResNet+SEResNeXt+ 52.50 97.30 63.40

NASNet+ EfficientNet [24]

EfficientNet+SENet+ResNeXt [7] 74.20 98.31 –

DenseNet201+InceptionNet [27] 79.00 71.00 –

ResNet+EfficientNetB3-B4 [11] 50.20 96.40 90.50

Proposed Hybrid Model 85.58 98.29 91.93
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would be interesting to examine the performance of the proposed model with other imaging
modalities requiring a similar task.
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