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Abstract
Link prediction is one of the most widely studied problems in the area of complex network
analysis, in which machine learning techniques can be applied to deal with it. The biggest
drawback of the existing methods, however, is that in most cases they only consider the
topological structure of the network, and therefore completely miss out on the great potential
that stems from the nodal attributes. Both topological structure and nodes’ attributes are
essential in predicting the evolution of attributed networks and can act as complements to
each other. To bring out their full potential in solving the link prediction problem, a novel
Robust Graph Regularization Nonnegative Matrix Factorization for Attributed Networks
(RGNMF-AN) was proposed, which models not only the topology structure of networks
but also their node attributes for direct link prediction. This model, in particular, combines two
types of information, namely network topology, and nodal attributes information, and calcu-
lates high-order proximities between nodes using the Structure-Attribute Random Walk
Similarity (SARWS) method. The SARWS score matrix is an indicator structural and
attributed matrix that collects more useful attributed information in high-order proximities,
whereas graph regularization technology combines the SARWS score matrix with topological
and attribute information to collect more valuable attributed information in high-order prox-
imities. Furthermore, the RGNMF-AN employs the ℓ2,1-norm to constrain the loss function
and regularization terms, effectively removing random noise and spurious links. According to
empirical findings on nine real-world complex network datasets, the use of a combination of
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attributed and topological information in tandem enhances the prediction performance signif-
icantly compared to the baseline and other NMF-based algorithms.

Keywords Complex network . Link prediction . Nonnegativematrix factorization . Attributed
network

1 Introduction

One of the most important tasks of complex network analysis is the task of identifying missing
links or predicting future links in the network, using the information obtained from the current
network, i.e., structural features and/or nodal attributes, commonly known as link prediction
[32, 33]. The link prediction task has been applied to solve problems in various fields;
therefore, it has been a hot topic for researchers from different disciplinary backgrounds.
Examples include but are not limited to recommender systems in commercial applications
[12], protein-protein interactions (PPI) in biological networks [48], collaboration prediction in
co-authorship networks [50], etc.

Most link prediction methods are based on the topological structure of the networks. While
the effectiveness of these methods has been established, they still suffer from neglecting a very
important source of information, i.e., features or attributes of nodes in the network. In many
real-world networks, each node is associated with an informative set of features. These types of
complex networks are called attributed networks [4, 17]. A famous example of these networks
would be collaboration networks, in which every researcher has a specific research back-
ground and profile that influences the interactions between them [67]. The importance of these
features has been studied in the concept of homophily, and many types of research have
emphasized the tendency of similar individuals to interact with each other [18, 19]. Hence, the
process of link formation is highly affected by homophily [2, 71].

Generally, link prediction approaches are classified into two main categories: similarity-
based and learning-based techniques. The first category calculates the probability of link
existence based on a similarity score that is assigned to the node pairs. The similarity score
is calculated based on the topological structure of the network or nodal attributes [32]. The
learning-based methods are divided into three sub-categories: The first sub-category, i.e.,
feature-based classification, treats the link prediction task as a binary classification problem
in which a pre-defined set of features are used as the input of the classifier, and the output of 1/
0 indicates link presence/ absence [63]. The second sub-category, i.e., probabilistic models,
assumes that the probability of a link existing between any pair of nodes depends on a set of
parameters. Therefore, an optimization function is defined based on those parameters, and
once the right set of values is learned for the parameters, the conditional probability of the
link’s existence is calculated for any pair of nodes [32]. The last sub-category belongs to the
dimensionality reduction-based groups.

Most learning-based methods suffer from the high computational complexity that is due to
the large size of the networks. Therefore, recently the dimensionality reduction-based methods
have been the focus of many researchers. There are two main approaches to deal with the
challenges of high dimensionality. The first approach is using embedding techniques which
tries to map the nodes to a lower dimension space, such that their structural and non-structural
properties are maximally preserved. Embedding techniques have been developed to be
applicable for many network analysis tasks such as community detection [5], link prediction
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[6, 26, 47], node classification [1, 8], and recommender systems [22]. Overall, the main
approaches for learning network embedding are classified into Matrix Factorization, Deep
Learning, Edge Reconstruction, Graph Kernel, and Generative Model [10]. Recently, many
studies have been conducted to apply embedding approaches to attributed networks and take
advantage of the node attributes to obtain more accurate embedding vectors [17, 36]. The
second approach is called matrix factorization, which receives a matrix, e.g., the adjacency
matrix of the current network, as input and decomposes it into two lower-dimension matrices,
i.e., a base matrix and a coefficient matrix, such that their product is as close as possible to the
original matrix [32]. To obtain the list of potential links, these matrices are used in a supervised
or unsupervised framework.

Matrix factorization methods consist of various categories, such as singular value decom-
position (SVD) [24], principal component analysis (PCA) [61], and independent component
analysis (ICA) [68]. However, for the task of link prediction, the most commonly used matrix
factorization based method is non-negative matrix factorization (NMF), which decomposes an
original matrix (X ∈ Rn × n ) into the base matrix (W ∈ Rn × k) and the coefficient matrix (H ∈
Rn × k) such that all the elements in the three matrices are greater than or equal to zero [60],
which leads to a situation also known as an additive parts-based representation of the original
data. This term refers to the fact that only an additive combination of the original data is
possible [21, 34].

NMF-based methods have been applied to many different problems, such as computer
vision [56], dimensionality reduction [42, 45, 57, 58], and data mining [35]. In addition, NMF-
based methods have also been applied to the link prediction problem in many different kinds of
networks such as temporal networks [20], weighted networks [14], directed networks [15], and
in order to improve their performance, they take advantage of the specific properties of those
networks. For example, Chen et al. [14] utilized the edge weights to improve prediction
accuracy, while in [15], the direction of links was used in the process of decomposition of the
original matrix. Since the effectiveness of this method has been established, due to the high
potential of NMF-based methods, in the present work, we decided to benefit from the NMF-
based method’s advantages in the attributed networks to solve the link prediction problem.
After learning the base and coefficient matrix and multiplying them to find the reconstructed
matrix, a score is obtained for every pair of nodes, which determines the probability of there
being a link between the node pairs.

In this article, a new robust version of the graph regularization non-negative matrix
factorization model combined with graph regularization and structure-attribute similarity is
presented to capture semi-local topology structure and attribute information to solve the
problem of link prediction in attributed networks. In order to obtain all of the link weight
information from the original network, the Biased Local Rand Walk is used to measure the
semi-local proximity and attribute similarity between local nodes; then, the graph regulariza-
tion technology is combined with SARWS to explore topology information. In addition, the
ℓ2,1-norm is used to remove random noise and spurious links. Ultimately, a unified link
prediction model (GRNMF-AN) is suggested, and in order to learn the parameters of
GRNMF-AN, multiplicative updating rules are used. The authors use nine real-world attrib-
uted networks and four evaluation metrics to assess the feasibility of the proposed model; the
experimental findings indicate that our model outperforms conventional algorithms.

In Section 2, a brief overview of previous works in the field of link prediction will be
provided. Then, in Section 3, some of the work’s preliminaries are discussed, such as the
definition of structural-attributed similarity, NMF variants, and the proposed algorithm
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(GRNMF-AN). Section 4 covers the experimental analysis, which involves evaluating the
performance of GRNMF-AN compared to state-of-the-art methods and analyzing the effect of
the parameter, and Section 5 presents the effectiveness of the GRNMF-AN in link prediction
performance. Finally, Section 6 presents the conclusion and future work and Section 5 presents
the conclusion.

2 Related work

In this section, we will briefly introduce some of the most important methods that have been
proposed to solve the problem of link prediction. Based on published surveys [32] on link
prediction in complex networks, the main link prediction methods are classified into two main
classes: similarity-based methods, which are the simplest way to predict missing or new links,
and learning-based methods, which require more computational resources. In the following,
we will discuss each class and provide a few examples of them.

Similarity-basedmethods calculate the probability of a link between a pair of nodes based on
a pre-defined similarity measure and then pick the L links which have the highest similarities.
The similarity score between a non-connected node pair is calculated using the topological
structure of the network. In general, we can use local, global, and semi-local scores to calculate
the similarity between pairs of nodes. Local-based scores use only the information from the
local structure of the nodes to obtain the most similar node pairs. Global methods consider the
whole structure of the network for calculating the similarity of a node pair. Therefore, they
suffer from high computational complexity while benefiting from global information. Semi-
local similarities have been able to achieve a trade-off between these two methods. They use
more information compared to local indexes, and, unlike global indexes, they do not require
high time and computational resources [7, 49]. To improve the performance of similarity-based
methods, some researchers proposed benefiting from the side information associated with each
node, also known as node attributes. For example, Muniz et al. [46] proposed a framework to
combine structural similarity, obtained by common neighbors, node attributes, obtained by
profile and gender information, and also temporal information, obtained by time attributes, and
get the probability of a link existing between a pair of nodes.

Learning-based methods use structural and non-structural properties of networks as inputs
for a machine learning framework to learn the probability of a link existing between a pair of
nodes. These methods are divided into feature-based classification, probabilistic models, and
dimensionality reduction methods [32]. The first class, i.e., feature-based classification, con-
siders the link prediction problem as a binary classification task and applies a learning model
such as a decision tree, neural network, and support vector machine to predict the labels for
each pair of nodes. Structural and non-structural features can be used as input for classification
[53]. The main challenge in this approach is how to define the right set of features to get the
best results. Keikha et al. [30] proposed a link prediction framework based on deep learning,
which extracts the best set of features from structural information and nodal attributes and
eliminates the need for manual feature engineering. Structural information includes informa-
tion from the local and global structure of nodes.

The second class, i.e., the probabilistic model, defines an objective function with a set of
parameters and tries to obtain the current structure of the network-based optimization function
with the right values for the parameters. When the right set of parameters are learned, the
probability of a link existing between a pair of nodes is calculated using the conditional

3748 Multimedia Tools and Applications (2023) 82:3745–3768



probability P(Aij = 1 |θ), the probabilistic [62] and maximum likelihood [27] based methods
have been widely studied, and several methods based on them have been proposed to solve the
link prediction problem. Their most challenging aspect is that they require parameter tuning,
which is computationally expensive and very time-consuming. Therefore, it is not applicable
to large-scale networks. The last class, i.e., dimensionality reduction-based methods, has been
the focus of attention by lots of researchers due to their applicability to large-scale networks. In
general, they consist of two main approaches, i.e., embedding techniques and matrix
factorization.

Embedding-based methods map the graph’s information to a low-dimensional space in
which the structural information of the graph and its components, e.g., nodes, edges, commu-
nities, etc., are preserved as much as possible. Some comprehensive surveys [10] provide a
detailed study of graph embedding techniques, which are great references for embedding
approaches and their applications. Here we summarize the three main approaches to graph
embedding techniques. The first category is matrix factorization, in which the graph is
represented in the form of a matrix, and then the matrix is factorized, and the embedding
vectors for nodes are obtained. Menon and Elkan [43] are the pioneers of this technique by
proposing a matrix factorization framework for graph structure and using it to solve the link
prediction method for the first time. Other examples of this category include the Hope method

[51], which is uses j S−Ysj Ytjj2F as an optimization function and tries to minimize it. S is the
similarity matrix in this setting, which can be defined using several similarity measures, e.g.,
common neighbors, the Adamic-Adar index, etc.

Another approach to learning the embedding of graphs uses Deep Learning methods. Most
of these methods use the autoencoder structure to achieve a dimensionality reduction on the
graph structure. For example, SDNE [65] uses a deep autoencoder to maintain the graph’s first
and second-order proximity. DNGR [11] is another example of using auto-encoder networks,
but its input consists of a positive pointwise mutual information (PPMI) matrix, similar to the
similarity matrix used in Hope. GraphSAGE [29] is a method that uses convolutional neural
networks (CNNs) to learn the embedding vectors for attributed graphs. The last approach to
learning graph embedding is based on random walks. DeepWalk [54] and Node2Vec [26]
were the two most well-known proposals in this category. First, these methods represent the
graph as a node sequence generated by random walks. Then they apply a natural language
processing method called SkipGram [44] to maximize the co-occurrence probability of the
nodes that are located in the w-sized window in the random walk. The difference between
DeepWalk and Node2Vec is in the generated random walks used to learn the embedding
vectors. While DeepWalk uses a pure random walk, Node2Vec takes advantage of a biased
random walk, providing a trade-off between structural equivalence and homophily.

Recently, some research has been conducted to incorporate node attributes in the represen-
tation learning process to improve the quality of obtained embeddings, which are then used for
the prediction of new links. For instance, Yang et al. [70] proposed a matrix factorization-
based method called TADW, which took advantage of node attributes to enhance the quality of
node embeddings. Pen et al. [52] proposed a framework to combine the structural information,
nodal attributes, and node labels to learn embedding vectors. Xu et al. [69] proposed a method
called GANE to combine different types of biological information to learn protein represen-
tations, which then can be used to predict PPI and disease genes. Masrour et al. [41] studied the
impact of three different approaches for incorporating node attribute information in the process
of representation learning and how they can improve the accuracy of link prediction.
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Matrix factorization-based methods take an original matrix X and try to learn two lower
rank matrices W and H, such that the product of W and H is as close as possible to X. These
methods preserve local and global properties of networks in the form of a matrix, e.g.,
adjacency matrix, similarity matrix, etc., and factorize it to perform the link prediction task
[20]. Most authors proposed methods based on non-negative matrix factorization to apply for
the link prediction problem. For example, Chen et al. [16] proposed an NMF-based framework
for the link prediction problem by combining manifold regularization and sparse learning. Ma
et al. [39] proposed an asymmetric NMF (SNMF) method be applied to the link prediction task
in temporal networks, which consisted of three steps. First, it uses SNMF to discover features
in each time step. Next, it combines the feature matrices from the previous step to obtain a
unified feature matrix. Finally, that feature matrix is used to predict new links in the current
time step. In another work, presented by Chen et al. [14], a graph regularized NMF-based
framework was proposed to solve the link prediction problem by using link weights and
capturing local topology information. Ma et al. [40] applied graph regularized NMF to
temporal networks to predict new links. In the time step T, GrNMF factorized the matrix
associated with GT while considering the networks in previous time steps as regularization.
Therefore, it captures the topological information of temporal networks.

NMF-based methods have also been applied to attributed networks. Chen et al. [13]
proposed an NMF-based framework to solve the link prediction problem in attributed net-
works. The proposed method simultaneously decomposed the adjacency matrix A and the
attribute matrix B to map them to a lower dimension space while keeping the representations at
a minimum distance and similar to each other. Gao et al. [25] proposed an NMF-based model
in which three types of information, i.e., local information of nodes, the global structure of the
network, and nodal attributes, were combined into a unified optimization function.

3 Methodology

In this section, the authors include some notions and preliminary information concerning the
definition of the variants NMF and the similarity matrix using a weighted-biased random walk
and the proposed method.

3.1 Notions and notations

Given an attributed network G = (V, E, A) with n nodes V = {1, 2, …, n}, m links E = {e1,
e2, …., em} and t node attributes Ai ={ a1, a2, …., at}, the network is usually represented by
an adjacent matrix X = (Xij) n × n and an attribute matrix A = (Aik) n × m, where Xij = 1 if a
link exists between nodes i and j, or 0 otherwise; Aik = 1 if node i has the kth attribute, or 0
otherwise. The authors also consider the attributed graphs as undirected, connected, simple
graphs, and all the node attributes conform to a unique multi-dimensional schema, A. Other
notations, which will be often used in this paper, are summarized in Table 1.

3.2 A brief review of various versions of NMF

In this section, Non-negative Matrix Factorization (NMF), Graph Regularized Non-Negative
Matrix Factorization (GNMF), and weighted non-negative matrix factorization (WNMF) are
briefly reviewed.
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Non-negative matrix factorization (NMF) is a computational method for reducing the linear
dimensionality of a given data matrix X, and it can be used to solve complex data mining and
machine learning challenges. An NMF decomposes an initial data matrix into two low-
dimensional non-negative matrices. One of the decomposed matrices is a coefficient matrix,
which is used to store a low-dimensional representation, while the other is a basic matrix,
which may be considered as parts-based representations of the original data. In the following, a
summary of the Non-negative Matrix Factorization problem is stated:

Given a non-negative matrix Xn ∗ n, find two non-negative matrices Wn ∗ k and Hn ∗ k with
the condition k << rank(X), that minimize F(X,WHT), where F(A, B) is a loss function defining
the “distance” between the matrices A and B. The choice of the loss function F affects the
solution of the minimization problem. One popular choice is the Frobenius norm (or the
Euclidean Distance).

minW;H ≥0 ¼ X−WHT
�� ��2

F ; ð1Þ
where ‖.‖F indicates the Frobenius norm, constrain W, H ≥ 0 requires that all the elements in
matrices W and H are non-negative.

NMF optimization is a convex optimization problem [29]. According to the NP-hardness of
the problem and the lack of suitable convex formulations, non-convex formulations with
remarkably straightforward solvability are usually employed, and only local minima can be
achieved in a reasonable time for computation. The multiplicative iterative updating of the
Frobenius norm can be achieved as follows:

Wik←Wik
XHð Þik

WHTH
� �

ik

; ð2Þ

Hjk←Hik

X TH
� �

jk

HTHWT
� �

jk

; ð3Þ

where at the very outset of the iterative update process, the two non-negative matrices W0 and
H0 are initialized randomly. The iterative update process is performed until the given terminal
condition is fulfilled, as presented in (2) and (3). Finally, the final W and H can be obtained.

Table 1 Some often used parameters

Symbol Definition

n∈R The number of network nodes.
X∈Rn*n

þ The adjacent matrix of network nodes.
A∈Rn∗t The attributed matrix of network nodes.
W∈Rn*k

þ The base matrix of network nodes.

H∈Rk*n
þ The coefficient matrix of network nodes.

L∈Rn∗n The Laplacian matrix of network nodes.
P∈Rn∗n The Transition matrix network nodes.
D∈Rn∗n The diagonal matrix.
S∈Rn∗n The similarity matrix of network nodes.
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However, NMF has two major shortcomings, one of which is that it only recognizes global
data structures of X and ignores the local relationships between data. A graph regularization is
applied to NMF to solve the first problem. Cai et al. [70] introduced the graph regularization
non-negative matrix factorization (GNMF), which is a well-known effective method that
incorporates a graph Laplacian term to consider the intrinsic geometrical structure. The
objective function of GNMF, in particular, can be seen as follows:

minW ;H ≥0 ¼ X−WHT
�� ��2

F þ α Tr HLHT� �
; ð4Þ

where α ≥0 is the regularization parameter, L = D − S is called the Laplacian matrix, which is
based on spectral graph and manifold learning theories. D is a diagonal matrix with
Di ¼ ∑n

j Sij, and S is a similarity matrix between nodes. The multiplicative update rules to

solve (4) are given as the following.

Wik←Wik
XHð Þik

WHTH
� �

ik

; ð5Þ

Hjk←Hik

X TW þ λSH
� �

jk

HWTW þ λDH
� �

jk

: ð6Þ

Additionally, Cai et al. [9] proved that the objective function under these two update rules is
convergent. In this way, the manifold learning theory can be combined with the NMF, which
has an excellent performance.

Another problem of NMF is that it is extremely sensitive to outliers and noises because of
applying the squared error function to measure the loss; this issue leads to the objective function
being easily dominated by a few outliers with large errors. Kong et al. [5] proposed ℓ2,1-norm to
enhance the robustness of NMF. It alleviates the impact of noises or outliers by utilizing ι2, 1-
norm to replace the Frobenius norm. The objective function of RNMF is defined as:

minW ;H ≥0 ¼ X−WHT
�� ��2

2;1
; ð7Þ

where ‖.‖2, 1 represents the ℓ2,1 norm.
Other modified versions of the negative matrix factorization algorithm include weighted

non-negative matrix factorization (WNMF) [31], which is applied to emphasize the signifi-
cance of important components; the element is more important in the case of higher weights.
The objective function for general weighted non-negative matrix factorization can be formu-
lated as follows:

minW ;H ≥0 ¼ Yo X−WHT� ��� ��2
F ; ð8Þ

where :k k2F is the Frobenius norm, Y ∈ Rn ∗ n implies the weight matrix, and o denotes the
Hadamard product. Since the objective function in the equation is not convex with W and H
jointly, the purpose is to find a local minimum by iteratively updating W and H in a similar
way with the unweight NMF in the eq. (1).
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3.3 Constructing the similarity matrix based on the random walk

In the attributed network, two data sources can be applied to perform the link prediction task.
The first source of data comes from the network and the set of connections between nodes; the
second is the data regarding the nodes and their attributes. With the increase of rich graph
attributes, including gene annotations in protein interaction networks and user profiles in social
networks, it is more important than ever to consider both the structure and attribute information
of graphs for high-quality link prediction.

According to the homophily property of social networks, the relationships between nodes
with similar attributes tend to be stronger than the relationships between nodes with different
attributes, and they will be more probable to connect in the network [4, 23]; therefore, attribute
information can influence the existence of links in networks. In order to further improve the
efficiency and accuracy of node similarity measurement in the attributed network, the Struc-
tural and Attribute Random Walk Similarity (SARWS) is presented to compute the similarity
between nodes through fusing structure and attribute information.

The first step is embedding the information about vertex attribute similarity into a trans-
formed weighted graph G0 = (V, E, W). In particular, for each edge e = (ui, uj) ∈ E, an edge
weight w(e) is assigned to quantify the vertex attribute similarity for ui and uj. As a result, the
vertex attribute information of G is encoded into the weighted graph G0 as edge weights. The
well-known cosine similarity of the angle between two node vectors is used to measure the
similarity between two nodes. The reason for choosing cosine similarity is its effectiveness for
sparse vectors that consider only non-zero values. For two nodes ui and uj, whose attribute
vector is Ai ={ ai1, ai2, …., ait} and Aj ={ aj1, aj2, …., ajt}, respectively, the attribute
similarity is expressed as follows:

ATSIM ui; uj
� � ¼ ∑t

d¼1AidAjdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑t

d¼1 Aidð Þ2
q

:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑t

d¼1 Ajd
� �2q ; ð9Þ

where t denotes the dimension of an attribute vector.
The second step is to run the biased random walk on the weighted graph to discover

similarities between the nodes. Each node initially has a walker in random walk methods, so
each walker would randomly select a neighbor of the node it currently stands on to localize. By
a special rule of transition probability, the random walk similarity is constructed for a pair of
nodes which could better capture both the information potential of topological and attribute
relationships between nodes. A weight-biased random walk on a graph can be defined by a
more general transition matrix, where the element pij gives again the probability that a walker
on the node ui of the graph will move to node uj in a single step but depending on appropriate
weights for each pair of vertex ui and uj. In the present article, the appropriate weight for each
pair of nodes in the network is considered to be determined proportional to the attribute
similarity (ATSIM) between the nodes obtained from the Eq. (9).

Therefore, a transition probability pij = ATSIMij on each link (ui, uj) is assigned. The Local
Random Walk (LRW) algorithm [37] uses semi-local information to obtain similarities
between nodes. According to the Bias Local RandomWalk model, the final formula is defined
as follows:

SBLRWij ηð Þ ¼ ∑η
l¼1

di
2 Ej j:

ATSIMij

∑ j∈Γ ið ÞATSIMij
lð Þ þ d j

2 Ej j:
ATSIMij

∑i∈Γ jð ÞATSIMij
lð Þ; ð10Þ

3753Multimedia Tools and Applications (2023) 82:3745–3768



in which η is the number of random walk steps. d and E are referred to as the degree of node
and the number of existing links in the network, respectively. In the SARWS similarity matrix,
each entity obtains the similarity between nodes using structural information and attributes by
applying a formula. The obtained matrix captures nodal attribute similarity in addition to the
higher-order structural proximity of node pairs. Therefore, it can be treated as the weight
matrix of the graph. For the sake of simplicity, from now on, we refer to the SARWS matrix as S.

3.4 The unified model: RGNMF-AN

In this section, a new algorithm is proposed, which overcomes the deficiency of
GNMF for the attributed network in the link prediction problem. Firstly, the formu-
lation of the objective function is introduced; then, the optimization method is
assigned. Under the NMF framework, the novel RGNMF-AN model is proposed,
which considers topology structures and node attribute information simultaneously to
optimize a unified objective function. By integrating topological and attribute infor-
mation of network through matrix S in Section 3.3 and enabling ℓ2,1-norm to
constrain the loss function and a regularization term, a unified model RGNMF-AN
is proposed for link prediction in attributed networks. The optimized overall objective
function is expressed as follows:

JRGNMF−AN ¼ minW;H ≥0 S o X−WHT� ��� ��2
2;1

þ αTr HLSHT
� �

; ð11Þ

where o is the Hadamard product, ‖.‖2, 1 represents the ℓ2,1-norm, and α denotes the
regularization parameter. LS = D−S is called the Laplacian matrix, which is based on
spectral graph theory and manifold learning theory. D is a diagonal matrix with
Di ¼ ∑n

j Sij, and S is the structure-attribute similarity between nodes in the objective

function. In original GNMF algorithms, the similarity matrix is represented by the
network’s adjacency matrix; therefore, the attributed information of nodes cannot be
expressed, and the network information is limited. However, the S similarity has been
applied, which preserves a higher level of similarity between nodes in terms of
structure topology and attribute information.

The link prediction similarity scores are determined in the first term. To tackle random
noises in the observed network, it is important to apply ℓ2,1-norm to a loss function to achieve
similarity score accuracy. The second term, Tr(HTLSH), is a manifold regularization, which is a
combination of local similarity, structure topology, and node attributed to obtain local topol-
ogy information in a new latent space. In the original GNMF, the method utilizes the
adjacency matrix to compute the Laplacian matrix. Despite all of its benefits, the adjacency
matrix contains only 0/1 values for any pair of nodes, which results in not being able to
distinguish between node pairs. While in real-world situations, each interaction has a specific
value in the network. Therefore, we need to consider a new approach to obtain a more
informative and accurate similarity matrix.

Since the objective function JRGNMF − AN is non-convex, it is extremely challenging to find
the optimal global solution. The Lagrange function is used to update the objective function,
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which includes two variables W and H. It is convex for each matrix by fixing the other.
According to matrix trace properties: Tr(WH) = Tr(HW), ‖A‖2, 1=trace (AUAT), the objective
function can be rewritten as follows:

JRGNMF−AN ¼ min W;Hð Þ
U≥0;W≥0

S ο X−WHT
� ��� ��

2;1
þ α trace HTLH

� �
¼ trace X−WHT

� �
U S ο X−WHT

� �� �T� � ð12Þ

in which the diagonal matrix U is defined as U = [uii]n × n with the diagonal elements given by

uii¼ S1=2 ο X
� �

i
− S1=2 ο WHT

� �� �
i

��� ���
2
; ð13Þ

where (S1/2 ο X)i and (S1/2 ο (WHT))i is the ith column of S1/2 ο X and S1/2 ο (WHT), respectively.
In addition to this, please note that S1/2 ο S1/2. Hence, we have

X−WHT
�� ��

2;1
¼ trace X−WHT

� �
U S ο X−WHT

� �� �T� �
¼ trace X−WHT

� �
U S ο XT−S ο WHT

� �� �� �
¼ trace X−WHT

� �
U S ο XT

� �
−U S ο WHT

� �� �� �� �� �
¼ trace XU S ο XT

� �� �
−XU S ο WHT

� �� �
−WHTU S ο XT

� �þWHTU S ο WHT
� �� �� �� �� �

ð14Þ

1. First term: ‖S ο (X − WHT)‖2, 1

1.1. Second part: trace ((S ο XT)UHWT)

We have

∂trace S ο Xð ÞUHWT
� �

∂W
¼ S ο Xð ÞUH; ð15Þ

∂trace S ο Xð ÞUHWT
� �

∂H
¼ U S ο XT

� �
H; ð16Þ

1.2. Third part: trace (WHTU(Sο(HWT)))

We have

∂trace WHTU S ο HWT
� �� �� �

∂W
¼ 2 S ο HWT

� �� �
UH; ð17Þ
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∂trace WHTU S ο HWT
� �� �� �

∂H
¼ 2U S ο HWT

� �� �
W; ð18Þ

2. Second term: trace(HTLH)

∂trace HTLH
� �
∂H

¼ 2LH ð19Þ

3. Derivative of J with respect W and H

Considering the constraints W, H>≥0, we set Largrange multipliers A, B for them. Then, the
Largrange function of the problem can be written as

JRGNMF−AN ¼ S ο X−WHT� ��� ��
2;1

þ α trace HTLH
� �þ trace AWT� �þ trace BHT� �ð20Þ

According to (2), (3), (4), and (5), we have

∂L
∂W

¼ −2 S ο Xð ÞUHþ 2 S ο WHT
� �� �

UHþ A: ð21Þ

∂L
∂W

¼ −2U S ο Xð ÞWþ 2U S ο WHT
� �� �

Wþ 2αLHþ B: ð22Þ

According to the Kuhn-Tucker conditions, we have AijWij = 0 and BijHij = 0 , and hence we
get

−2 S ο Xð ÞUHð ÞijWij þ 2 S ο WHT
� �� �

UH
� �

ijWij þ AijWij ¼ 0: ð23Þ

−2 S ο XT
� �

W
� �

ijHij þ 2 U S ο WHT
� �� �

W
� �

ijHij þ 2α S−Dð ÞHð ÞijHij þ BijHij ¼ 0:ð24Þ

Therefore, we have

Wij←

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wij

S ο Xð ÞUHð Þij
S ο WHT

� �� �
UH

�
ij

vuut : ð25Þ

Hij←

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hij

U S ο XT
� �

Wþ αDH
� �

ij

U S ο HWT
� �

Wþ αSH
� ��

ij

vuuut : ð26Þ
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We obtain the new basic matrixW and the feature matrix H by minimizing Eqs. (25) and (26).

Finally, we can reconstruct the similarity score of the original network with bX ¼ WHT to
obtain the link prediction similarity. The RGNMF-AN algorithm is as follows:

3.5 Proof of convergence

The RGNMF-AN model uses iterative updating rules to optimize the model. To be more
specific, at each iteration, we update a variable e.g.W, while keeping fixing the other variable,
e.g. H. The proof of convergence for Eqs. (25) and (26) is given in [64]. Therefore, the
convergence of the RGNMF-AN under those updating rules to the local minimum can be
easily proven.

3.6 Computational complexity analysis

The computational cost of the RGNMF-AN algorithm is analyzed, which consists of two key
steps. The first step is to construct a similarity matrix, and the second step is to update the rules
for optimizing the objective function. For the first key step, constructing a similarity
(SARWS), one needs to O(n2d) to calculate a similar node clustering matrix, where d denotes
the average node degree. For the second key step, in each iteration, updating W and H
according to Eqs. (17) and (19) require O(n2 ∗ k ∗ iter). Since both iter and k are constants,
the overall time complexity of RGNMF-AN is O(n2).

4 Experiments

4.1 Datasets

To evaluate the proposed method, we conducted some experiments on 9 real-world datasets,
including citation and biological networks. All the experiments were carried out on a desktop
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PC equipped with a quad-core Intel i7 2.20GHz processor and 16GB RAM. Details of these
networks can be found in Table 2.

& Cora1 [59] is a citation network in which nodes present machine learning papers, and an
edge between two papers is formed only if one of them is cited by the other. Keywords in
papers are treated as node attributes. It consists of 2708 nodes and 5278 edges.

& CiteSeer is a citation network in which nodes present scientific papers, and an edge
between two papers is formed only if one of them is cited by the other. Keywords in papers
are treated as node attributes. It consists of 3312 nodes and 4732 edges.

& Cornell, Texas, Washington, and Wisconsin2 are subnetworks drawn from the WebKB
dataset. Each of them contains web pages as nodes and links connecting them. Cornell has
195 nodes and 304 edges. Texas consists of 187 nodes and 328 edges. Wisconsin contains
265 nodes and 530 edges.

& Protein-Protein-Interaction Networks

We also evaluated our proposed method, using three protein networks provided by Guo’s
dataset [28]. E. coli dataset containing 1834 proteins with 6954 interactions, Drosophila
dataset containing 7059 proteins with 21,975 interactions, and C. elegan dataset containing
1607 proteins with 2877 interactions.

4.2 Comparing methods

To evaluate our proposed method, we compare it against some of the state-of-the-art methods
for representation learning. The description of these methods can be found here:

& NMF is used directly and the reconstructed matrix is considered as the score matrix.

min
W ≥0;H ≥0

X−WHT� ��� ��2
F

1 https://linqs.soe.ucsc.edu/data
2 http://www.cs.cmu.edu/~webkb/

Table 2 Details of datasets. |V|, |E|, and |Attr| are the number of nodes, links, and attributes of each node,
respectively.CC is the average clustering coefficient, Max_Degree is the maximum degree of a node in the
network, 〈d〉 is the average shortest path in the network and r is the assortative coefficient

Dataset |V| |E| |Attr| CC Max_Degree 〈d〉 r

Texas 187 328 1703 0.1937 104 3.0362 −0.2687
Cornell 195 304 1703 0.1568 94 3.2005 −0.2408
Washington 230 366 1703 0.1974 122 2.9946 −0.2226
Wisconsin 265 530 1703 0.2080 122 3.2599 −0.1882
Cora 2708 5278 1433 0.2407 168 6.3109 −0.0656
CiteSeer 3312 4536 3703 0.1425 99 9.3104 0.0480
E.coli 1505 5576 343 0.1033 152 3.5643 −0.1237
C.elegan 1607 2877 343 0.0285 151 4.4924 −0.1692
Drosophila 5511 19,712 343 0.0128 166 4.1488 −0.0495
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& GNMF [9] method combines the link structure with graph neighbor information of nodes.

min
U ≥0;V ≥0

X−WHT
�� ��2

F þ λTr HTLH
� �

;

where λ is the parameter, L is the Laplacian matrix that is obtained via L = D − S, in which D
is the diagonal matrix and S is the similarity matrix between node pairs.

& FSC-NMF [3] is an NMF-based method that learns node embeddings while taking the
structure and contents of nodes into account. The model includes two optimization
functions that iteratively optimize them.

min
B1 ≥0;B2 ≥0

A−B1B2k k2F þ α1 B1−Uk k2F þ α2 B1k k2F þ α3 B2k k2F ;

min
U ≥0;V ≥0

C−UVT
�� ��2

F þ β1 U−B1k k2F þ β2 Uk k2F þ β3 Vk k2F ;

& TADW [70] incorporates the text features of each node into the embedding process under
a framework of matrix factorization

min
W ;H

X−WTHT
�� ��2

F þ λ
2

Wk k2F þ Hk k2F
� �

& M-NMF [66] uses a matrix factorization approach to learn the representation of nodes
while capturing the community structure of the network

min
M ≥0;U ≥0;H ≥0;C ≥0

S−MUT
�� ��2

F þ α H−UCT
�� ��2

F− βTr HTBH
� �

;

where α and β are non-negative parameters.

& GraphSAGE [29] is a representation learningmethod based on CNN, which uses the nodes’
attributes of the neighborhood of each node to learn the embedding vector of that node.

4.3 Evaluation metrics

AUC [38]: TheAUCmetric evaluates link predictionmethods based on the scores, they give to non-
observed links. The AUC calculation is done through the following procedure: First, we compare the
scores of randomly selected missing links vs. randomly selected non-existent links. Then, among n
comparisons, assume the score of the missing link has been higher than the score of the non-existent
link for n’ times and also for n”, the scores were equal. Then AUC can be defined as:

AUC ¼ n
0 þ 0:5 n

0 0

n

F-measure: F1-measure can be interpreted as the weighted average of two other evaluation
metrics, i.e. precision and recall. The F1-measure can be calculated as the following:

F1 ¼ 2*
precision*recallð Þ
precisionþ recallð Þ
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In which, the precision and recall can be calculated as follows:

precision ¼ True Positive
True Positiveþ False Positive

;

recall ¼ True Positive
True Positiveþ False Negative

ROC curve [55]: this curve can compare the capability of different models in identifying
positive and negative samples, in varying decision thresholds. If model A has a higher true
positive rate with respect to a false-positive rate, in all the thresholds, compared to model B,
then model A is outperforming model B in the classification task. This curve is appropriate
when we are dealing with a highly imbalanced dataset, like complex networks, in which the
percentage of the negative class is significantly higher than the positive class.

RMSE and PCC are the standard deviations of the differences between the vectors of
predicted and actual values of node pairs.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i; j rij−Aij

� �2
n

s
;

PCC ¼ ∑i; j Aij−average Að Þ� �
rij−average rð Þ� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑i; j Aij−average Að Þ� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i; j rij−average rð Þ� �2q ;

in which, Aij and rij are the actual value and the predicted value, respectively.

4.3.1 Parameter settings

To evaluate the proposed method against other methods, as usual, we need to split our data into
training and testing sets. To get the positive samples for the test set, we randomly delete 10%
of edges from the original network while making sure that the residual network is obtained
after the edge removals are connected. And add them to the test set. The remaining edges
belong to the training set. To obtain negative samples for training and testing, we randomly
select an equal number of node pairs that have no link connecting them. Other parameters were
set empirically. In particular, α = 0.1, max_iter = 40, and the dimension of latent space to 70.

4.4 Experiment analysis

The obtained results for the AUC measure are summarized in Table 3. The best-obtained result
for each dataset is shown, highlighted in bold. It is shown that in all datasets, the proposed
method has outperformed other methods. RGNMF-AN and RGNMF are abbreviations for the
proposed methods with and without considering node attributes in the random walk generation
process. In particular, except for CiteSeer and C.elegans, the proposed method has achieved
the highest AUC in all the networks. To be more specific, the obtained results show that
adding structure and content information can significantly improve the prediction accuracy
compared to regular GNMF. For example, in Wisconsin, Cora, and CiteSeer networks,
RGNMF-AN achieved 11%, 34%, and 29% improvement and RGNMF achieved 10%,
33%, and 27% of AUC, compared to GNMF. Also, it is shown that by using both structural
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and content information, we can obtain better results compared to using only structural
information.

The micro-F1 scores that resulted from all the algorithms are reported in Table 4. The best-
obtained result for each dataset is shown, highlighted in bold. Results show that in all the
datasets, the proposed methods have a better or competitive advantage over NMF and GNMF.
In addition to that, in all networks, the proposed methods significantly outperformed
embedding-based methods. For instance, the RGNMF-AN and RGNMF have achieved
39%, 30%, and 29% higher F-measure in Cornell, Washington, and Wisconsin compared to
the best results obtained by embedding methods.

Tables 5 and 6 report the RMSE and PCC results for the proposed methods vs. comparing
methods. As Table 5 shows, RGNMF-AN and RGNMF have achieved the lowest RMSE,
compared to NMF and GNMF in all the networks except for CiteSeer. Compared to the
embedding-based methods, i.e., FSCNMF, TADW, and MNMF, the proposed methods, achieved
remarkable improvement in all networks. From Table 6, it can be concluded that overall, the
proposed methods do not perform well in terms of PCC, compared to embedding-based methods,
while compared with NMF and GNMF, they achieved considerable improvement.

To investigate the effect of content and structure on the performance of link prediction in
NMF-based methods, we used Fig. 1, to compare obtained AUCs for different networks. It is
obvious that taking advantage of higher-order similarity, obtained by LRW, can increase the
prediction accuracy compared to regular GNMF. Furthermore, in addition to structural
information, taking advantage of the content of nodes in computing the similarity matrix can
improve the obtained results.

Table 3 AUC results for link prediction

Algorithms Dataset

Texas Cornell Washington Wisconsin Cora CiteSeer E.coli C.elegans Drosophila

RGNMF-AN 0.8222 0.7737 0.8051 0.8537 0.9232 0.9428 0.9583 0.8091 0.7897
RGNMF 0.7896 0.7403 0.7901 0.8482 0.9187 0.9230 0.9582 0.8060 0.7855
NMF 0.5476 0.5826 0.6715 0.7176 0.8627 0.8861 0.8959 0.7293 0.7672
GNMF 0.7852 0.7258 0.7555 0.7417 0.5806 0.6504 0.9303 0.7635 0.7630
FSCNMF 0.7736 0.7691 0.7716 0.7851 0.8356 0.9292 0.9318 0.7701 0.7161
TADW 0.7461 0.6543 0.7060 0.5728 0.5748 0.6217 0.7226 0.6919 0.5467
MNMF 0.7576 0.7015 0.5408 0.7239 0.9020 0.9643 0.9131 0.8525 0.7531
GraphSAGE 0.6364 0.6423 0.7438 0.7367 0.7584 0.8190 0.6269 0.5799 0.5538

Table 4 F-measure results for link prediction

Algorithms Dataset

Texas Cornell Washington Wisconsin Cora CiteSeer E.coli C.elegans Drosophila

RGNMF-AN 0.9983 0.9985 0.9986 0.9986 0.9999 0.9999 0.9994 0.9997 0.9998
RGNMF 0.9983 0.9985 0.9986 0.9986 0.9998 0.9997 0.9994 0.9997 0.9998
NMF 0.9954 0.9983 0.9935 0.9952 0.9996 0.9996 0.9994 0.9993 0.9994
GNMF 0.9972 0.9936 0.9945 0.9953 0.9994 0.9996 0.9993 0.9995 0.9994
FSCNMF 0.9819 0.6071 0.6944 0.7000 0.6508 0.7549 0.8536 0.6898 0.6270
TADW 0.6428 0.6250 0.6944 0.6111 0.5569 0.5894 0.6579 0.6271 0.5256
MNMF 0.6250 0.5714 0.4583 0.6000 0.7817 0.9514 0.8563 0.7491 0.7681
GraphSAGE 0.5780 0.6856 0.6111 0.6256 0.6325 0.7329 0.5435 0.5121 0.5072
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4.4.1 Parameter sensitivity

The performance of RGNMF-AN depends on various factors and parameters. Those param-
eters are the alpha, the dimensionality of latent space, and the maximum iteration number. To
investigate the impact of these parameters, we performed experiments such that two out of
three parameters are fixed and the third one is varied over a range of values. The alpha
parameter can take a value between {105, 103, 101, 10−1, 10−3, 10−5} while the latent space
dimension can have a value between {10, 20, …, 90} and the maximum number of iterations
can be in the range of {10, 20, …, 60}.

4.4.2 Impact of alpha

Figure 2 demonstrates the effect of parameter alpha on the four evaluation metrics. It is shown
that by decreasing the value of alpha from 105 to 101, the performance does not improve, but
when the value of alpha is equal to 10−1, the performance increases significantly and from that
point, varying the alpha value does not produce any significant change. Therefore, we can see
that the optimal value of alpha should be set to 10−1.

4.4.3 Impact of iteration

Figure 3 illustrates the effect of the maximum number of iterations on the performance of
RGNMF-AN using the four evaluation metrics. From observing Fig. 3, we can see that with

Table 5 RMSE results for link prediction

Algorithms Dataset

Texas Cornell Washington Wisconsin Cora CiteSeer E.coli C.elegans Drosophila

RGNMF-AN 0.0018 0.0016 0.0016 0.0014 0.0001 0.0001 0.0006 0.0002 0.0001
RGNMF 0.0018 0.0016 0.0016 0.0014 0.0001 0.0001 0.0006 0.0002 0.0001
NMF 0.0020 0.0018 0.0019 0.0016 0.0002 0.0001 0.0007 0.0003 0.0002
GNMF 0.0022 0.0022 0.0017 0.0016 0.0002 0.00009 0.0008 0.0003 0.0002
FSCNMF 0.1758 0.2085 0.1980 0.2004 0.2088 0.1805 0.1123 0.2153 0.2359
TADW 0.2138 0.2316 0.2073 0.2575 0.2445 0.2396 0.2238 0.2259 0.2492
MNMF 0.2190 0.2574 0.2736 0.2284 0.1602 0.0465 0.1174 0.1486 0.1617
GraphSAGE 0.2012 0.2232 0.2455 0.2154 0.2342 0.1923 0.2852 0.3337 0.3010

Table 6 PCC results for link prediction

Algorithms Texas Cornell Washington Wisconsin Cora CiteSeer E.coli C.elegans Drosophila

RGNMF-AN 0.0887 0.1323 0.0636 0.1588 0.0858 0.1202 0.1977 0.0229 0.0489
RGNMF 0.0845 0.1337 0.0752 0.1644 0.0877 0.1187 0.2016 0.0286 0.0401
NMF 0.0002 0.0187 0.0279 0.0836 0.0710 0.0961 0.1461 0.0292 0.0449
GNMF 0.1530 0.1109 0.1083 0.1140 0.0101 0.0205 0.2011 0.0469 0.0339
FSCNMF 0.1798 0.4350 0.4829 0.4850 0.4231 0.5551 0.7488 0.4204 0.2681
TADW 0.4043 0.3241 0.4150 0.1129 0.1503 0.2204 0.3335 0.3252 0.0582
MNMF 0.3780 0.1919 −0.0134 0.3244 0.6455 0.9070 0.7283 0.6427 0.5943
GraphSAGE 0.3554 0.2565 0.1123 0.1067 0.1121 0.1764 0.4615 0.1345 0.1132
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the increase of iteration number, the model shows unstable results until we reach the point
where the maximum number of iterations is equal to 40. At that point, the performance is
stabilized which proves that the model is converged.

4.4.4 Impact of latent space dimension

Figure 4 shows the effect of the value of the latent space dimension on the performance of the
model. It is very critical to find the optimal value of a dimension since it has a direct impact on
both performance and complexity. From Fig. 4, we can see that for most datasets, the best
performance is achieved when we set the values of dimensions 70 and 80. Therefore, we chose
to consider 70 as the optimal value for the latent space dimension.

To make the evaluation more reliable, we use ROC curves to compare the proposed
methods, i.e., RGNMF-AN and RGNMF, against other algorithms. The ROC curve for each
algorithm illustrates the ability to distinguish between the positive and negative classes for that
particular algorithm. In the worst-case scenario, an algorithm predicts the labels, randomly and
as a result, the curve would be in the form of x = y. Since ROC curves are suitable for
experiments in highly imbalanced datasets, they are perfect for the evaluation of link prediction
methods. Figure 5 compares the obtained ROC curves for each method in all networks.
Overall, RGNMF-AN and RGNMF obtained better results in almost all the thresholds and
therefore achieved the highest area under the curve.

Fig. 1 Comparing the effect of structural and attributes information on GNMF

Fig. 2 Impact of alpha on the performance of the proposed method
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5 Discussion

Most of the existing methods in the area of link prediction concentrate on the information
provided by the topological structure of the networks. Although these methods have some
benefits, they neglect a crucial information source, i.e. nodal attributes, which negatively
impacts their performance. In this work, we proposed a method that considers both structural
and non-structural information, that is present in the network. The nodes’ attributes are
integrated with topological information via multiplying a Hadamard matrix. This approach
was used to solve the link prediction problem in weighted and directed networks, but to the
best of our knowledge, this is the first time that it has been applied to attributed graphs to deal
with link prediction. Our proposed similarity matrix, which is the combination of structural
and non-structural information has high accuracy in capturing the proximity between node
pairs.

For evaluation purposes, we have performed various experiments on different datasets. The
comparison methods are some of the most well-known NMF-based and deep learning-based
methods. In particular, we have compared the performance of the proposed method, i.e.,
RGNMF-AN to six other methods, i.e., NMF, GNMF, FSC-NMF, TADW, M-NMF, and
GraphSAGE. The obtained results in Table 3, illustrate the superiority of our algorithm in
terms of AUC. In particular, in all the networks, except for CiteSeer, the proposed method has
achieved better results. Table 4 shows the obtained F-scores for all methods. Clearly,
RGNMF-AN has outperformed all the other methods and achieved better results. Tables 5
and 6 summarize the performance of RGNMF-AN, against the comparing methods. It is
obvious that overall, the proposed methods have achieved the least RMSE among other
methods. More specifically, except for CiteSeer, in all the other networks, RGNMF-AN

Fig. 3 Impact of iteration number on the performance of the proposed method

Fig. 4 Impact of latent space dimension on the performance of the proposed method
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achieved the best RMSE, whereas, according to Table 6, it was not able to do well, compared
to other methods.

To further evaluate other aspects of our algorithm, we performed some experiments to
investigate the effect of various parameters, i.e., alpha, number of iteration, and latent space
dimensions on the performance of RGNMF-AN. The obtained results are illustrated in Figs. 2,
3, and 4. We have also, plotted the ROC curve for comparing the proposed method, vs.
comparing methods that illustrate the better performance of RGNMF-AN.

6 Conclusion

In this paper, the authors focused on the problem of link prediction in attributed networks. The
main contribution of the present paper was to propose a method, called Robust Graph
Regularization Nonnegative Matrix Factorization (RGNMF-AN), that simultaneously con-
siders topological and non-topological information about networks, to capture the semi-local
proximity between a pair of nodes and present it as a weight between node pairs. Furthermore,
ℓ2,1-norm was also used to constrain the objective function, to minimize the influence of the
random noises and spurious links, in the step of reconstructing the original matrix. In addition,
multiplicative updating rules are applied to learn and optimize the model parameters. Accord-
ing to the experimental analysis performed on various datasets, the proposed method has
outperformed the other NMF-based methods and achieved better results, in terms of predicting
new links. In particular, an extensive experimental analysis was performed on nine real-world
datasets, using AUC, F-measure, RMSE, and PCC metrics to compare the obtained results of
the RGNMF-AN against other methods, and the superiority of the RGNMF-AN was proved.

Fig. 5 ROC Curve for the proposed method vs. comparing methods
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In future studies, the proposed method would have the option to be applied to multilayer,
signed, and bipartite networks to deal with the link prediction problem. Furthermore, suggest-
ing an approach to specify a high-order relationship among nodes by applying hypergraph
form in the present study could be an excellent topic for future studies.
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