
A calibration method for paracatadioptric cameras
based on circular sections

Ruiqi Yang1 & Junhua Zhang1

Received: 29 September 2020 /Revised: 21 July 2021 /Accepted: 9 March 2022
# The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Camera calibration is a crucial step in 3D reconstruction. To improve the reconstruction
accuracy, we propose a calibration method for the paracatadioptric camera based on the
projective properties of spheres. The starting point of the method is to consider the three
great circles that are parallel to the projection of the sphere onto the unit viewing sphere in
the imaging model of the paracatadioptric camera. The absolute conic is determined from
the orthogonal vanishing points obtained from the intersections of the projections of the
three great circles on the image plane. Then, the intrinsic parameters are obtained from the
algebraic constraints on the image of the absolute conic. Compared with results obtained
by Zhao’s, Yu’s and Li′s methods, 3D reconstruction using our method appears more
accurate.

Keywords Paracatadioptric camera calibration . Unit viewing sphere . Great circle . Vanishing
point

1 Introduction

Camera calibration is the essential step of 3D reconstruction algorithms [24, 25]. Catadioptric
cameras are widely employed since they overcome the shortcoming of small imaging angle.
They are currently employed in two versions: the non-central catadioptric cameras and the
central catadioptric cameras [17]. In this paper, we focus on central catadioptric cameras since
the algebraic constraints may be obtained by using the unit viewing sphere model, making the
calibration method easier to obtain from geometric constraints [11].

According to type of mirrors, central catadioptric cameras could be divided into four categories:
planar, ellipsoidal, hyperboloidal and paraboloidal [3]. The line and point are used to calibrate the
central catadioptric camera [23, 32]. Under the central catadioptric camera, a cluster of line images
may be fitted [9]. Duan et al. [8] have found the algebraic constraints between the projection of the
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circle on image plane and the image of absolute conic (IAC) to calibrate central catadioptric camera.
Compared with the above common geometry, the projection of the sphere may be fitted more
accurately, so the sphere is often chosen for calibration [1, 2, 10, 13, 26]. The projection of the
sphere onto the image of central catadioptric cameras has double contact with modified image of
IAC. Two methods of central catadioptric camera calibration have been presented based on IAC
[19, 28]. Zhang et al. [31] have discussed the relationship between the dual sphere image and the
dual absolute conic. Based on this, a novel central catadioptric camera calibration method has been
derived. They also proposed two calibration algorithms according to the apparent contour of the
projection of the three spheres [30]. The geometric invariants have been then applied to calibrate the
central catadioptric camera [27]. Those geometric invariants are not suitable for the paracatadioptric
camera calibration. Two calibration methods for paracatadioptric camera by using lines were
presented [4, 12]. Based on the sphere, Duan et al. [5, 6] have presented two different methods
for paracatadioptric camera calibration based on the antipodal sphere images. Projections of two
spheres on the image plane were used to calibrate the paracatadioptric camera [20, 21]. Zhao et al.
[14, 15] used properties of the polar of a point at infinity with respect to a circle and antipodal sphere
images to obtain the imaged circular points. Yu et al. [34] have suggested a method exploiting self-
polar triangles to calibrate paracatadioptric camera. Wang et al. [22] have presented three methods
to calibrate paracatadioptric camera by pole-polar relationship and the antipodal sphere image.

Ying et al. [28] have found that the projection of the sphere onto the unit viewing sphere is
a special case of the line, but this relationship was not applied to calibrate the paracatadioptric
camera. Duan et al. [5, 6] have presented a method that it is necessary to fit the projective
contour of the parabolic mirror and need a lot of pictures of the sphere. In order to reduce the
demand for photos of the sphere, three different cases of two spheres were used to calibrate the
paracatadioptric camera [20, 21]. However, they need to be in the proper place when taking
photos, and projections of two spheres onto the image plane were hard to fit. Based on three
pictures of a sphere, Zhao et al. [14, 15, 22, 34] have proposed the calibration methods that
obtain the camera intrinsic parameter based on pole-polar relationship and the antipodal point
images. These methods all need to acquire the antipodal sphere images, because antipodal
point images were obtained based on the antipodal sphere images. Thus, the self-polar
triangles and the pole-polar could be used to calibrate the paracatadioptric camera. These
calibration methods are complex due to obtaining the formulation of antipodal sphere images.
Once the antipodal sphere images are computed wrongly, the intrinsic parameters would be
inaccurate. Therefore, they are sensitive to the noise.

To improve abovementioned calibration methods for paracatadioptric camera, we propose a
calibration method using the sphere image directly instead of antipodal sphere images. Firstly,
the projection of a sphere onto the unit viewing sphere is a small circle. Additionally, we may
calculate the great circle which passes through the center of the unit viewing sphere and is
parallel with the small circle. This may be regarded as the projection of a line onto the unit
viewing sphere. Overall, a pair of orthogonal vanishing points is determined by the intersec-
tions of the projection of the great circles on the image plane. Based on constraints between the
vanishing points and the absolute conic (IAC), the intrinsic parameters of the paracatadioptric
camera can be obtained using three sphere images. The proposed method is simpler, so the
performance is better against the noise.

In this paper, we use the relationship between the projection of the sphere and the line onto
the unit viewing sphere to calibrate paracatadioptric camera. In this way, the calibration
methods using the line would connect with that using the sphere. However, the mirror
parameter for other types of the central catadioptric cameras is unknown. The formulation of
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the sphere image will contain an unknown mirror parameter constant ξwhich cannot be solved
directly in our method. Due to the sphere image is still a conic, the principle in this paper is
also suitable for solving ξ by adding the sphere image.

This paper is organized as follows. Section 2 reviews the unit viewing sphere model for the
paracatadioptric camera, the calibration method using the line, and the geometric properties of
the line and the sphere under the paracatadioptric camera. Section 3 describes that our
calibration algorithm using the projection properties of three spheres in detail. Section 4
illustrates the results for simulated and real experiments, confirming the effectiveness of the
algorithms. Section 5 closes the paper with some concluding remarks.

2 Preliminaries

In this section, we review the geometric properties of the line and the sphere with central
catadioptric camera [28]. The imaging and calibration processes for the line based on the
paracatadioptric camera also are discussed [33].

2.1 Paracatadioptric camera projection model

Geyer et al. [11] have presented the unit viewing sphere model for central catadioptric camera
calibration. There are two coordinate systems, as shown in Fig. 1. One is the global coordinate
system O-xwywzw, where the origin O is placed at the center of the unit viewing sphere, and the
zw- axis is perpendicular to the image plane. The other coordinate system is that of the virtual
camera Oc-xcyczc, whose zc- axis coincides with zw- axis. They are both referred to as optical
axis. Based on the unit viewing sphere model, Ying and Zha [27] have suggested a projective
process of the sphere for the paracatadioptric camera. This consists of two steps, as follows.

Fig. 1 Sphere projection with a paracatadioptric camera
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Step 1: The projection of the sphere Q onto the unit viewing sphere, which is the small circle s.
Step 2: By the perspective projection of the virtual camera, the projection of the small circle s

into the image plane∏, i.e., the conic Cs is obtained.

Let the intrinsic parameter matrix of the virtual camera be K. It can be expressed as

K ¼
r f e s u0
0 f e v0
0 0 1

2
4

3
5 ð1Þ

where fe, r, s are the effective focal length, the aspect radio, and the skew factor, respectively.
[u0v0 1]T is the homogeneous coordinate of the principal point P.

2.2 Geometric properties of the line and the sphere under the central Catadioptric
camera

Ying et al. [28] have introduced the projective geometric properties of the line and the sphere,
whose properties are as follows:

Proposition 1 In Fig. 1, the projection of the sphere onto the unit viewing sphere is the small
circle s, it can be written as:

nxxw þ nyyw þ nzzþd0 ¼ 0 ð2Þ
where [nxnynz]T is the unit normal vector and |d0| is the distance from the origin O to the plane.
[xwywzw]T is a point on s. Thus, there is the great circle S that is parallel to the small circle and
placed across the origin O. It can be regarded as projection of the line onto the unit viewing
sphere. By setting d0 = 0, it can be written as:

nxxw þ nyyw þ nzzw ¼ 0 ð3Þ
The projection of the line may be considered as a special case of the projection of the sphere
onto the image.

Proposition 2 In Fig. 1, Hs is referred to as the viewing conic which is formed by projection
of the sphere onto the image plane Cs and the center of the visual camera OC.

2.3 Using the line to calibrate the Paracatadioptric camera

Gu et al. [33] have proposed a method to calibrate the central catadioptric camera using the
line. On the unit viewing sphere, projection of the line is the great circle across the origin O.
Because a point on the circle outside the diameter is perpendicular to the line at both ends of
the diameter, the orthogonal vanishing points can be determined by the line. The intrinsic
parameters of camera may be obtained from the algebraic constraints between the orthogonal
vanishing points and IAC.
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3 Method of calibrating the intrinsic parameters
of the PARACATADOIPTRIC camera

This section discusses how to use the sphere to calibrate the paracatadioptric camera in details.

3.1 Solution of the equation of the small circle

Proposition 3 In Fig. 1,Hs is formed by the projection of the sphere onto the image Cs and the
center of the visual camera OC. The equation of Hs is

xyz1½ �

f e þ 2

zþ 1

� �2

β11
f e þ 2

zþ 1

� �2

β12 0
f e þ 2

zþ 1
β14

f e þ 2

zþ 1

� �2

β21
f e þ 2

zþ 1

� �2

β22 0
f e þ 2

zþ 1
β24

0 0 0 0
f e þ 2

zþ 1
β41

f e þ 2

zþ 1
β42 0 β44

2
666666664

3
777777775
xyz1½ �T ¼ 0 ð4Þ

where fe is the effective focal length, and βij (i, j = 1, 2, 3, 4) are non-zero constants.

Proof In homogeneous coordinate, Cs can be rewritten as

x1 y1 z1 1½ �
β11 β12 0 β14

β21 β22 0 β24

0 0 0 0
β41 β42 0 β44

2
664

3
775 x1 y1 z1 1½ �T ¼ 0 ð5Þ

where βij = βji (i, j = 1, 2, 3, 4), and [x1y1z1 1]T is the homogeneous coordinate of a point on
Cs. The global coordinate of the zw axis is fe+1. Cs can be also expressed as

x1 y1 f e þ 11½ �
β11 β12 0 β14

β21 β22 0 β24

0 0 0 0
β41 β42 0 β44

2
664

3
775 x1 y1 f e þ 11½ �T ¼ 0 ð6Þ

where βij = βji (i, j = 1, 2, 3, 4). It is expressed as F′(x1, y1, z1) = 0.
The line formed by the point m on Cs and OC is called the generating line, where OC = [0

0–1 1]T. The parametric equation of the generating line is

x1 ¼ xλ
y1 ¼ yλ

z1 þ 1 ¼ zþ 1ð Þλ
:

8<
: ð7Þ

Thus, the equation of the viewing cone Hs can be obtained by merging Eqs. (6) and (7).

F x1; y1; z1 1ð Þ ¼ 0
x1 ¼ xλ
y1 ¼ yλ

z1 þ 1 ¼ zþ 1ð Þλ

8>><
>>:

ð8Þ
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from which we have

xyz1½ �

f e þ 2

zþ 1

� �2

β11
f e þ 2

zþ 1

� �2

β12 0
f e þ 2

zþ 1
β14

f e þ 2

zþ 1

� �2

β21
f e þ 2

zþ 1

� �2

β22 0
f e þ 2

zþ 1
β24

0 0 0 0
f e þ 2

zþ 1
β41

f e þ 2

zþ 1
β42 0 β44

2
666666664

3
777777775
xyz1½ �T ¼ 0 ð9Þ

where βij = βji (i, j = 1, 2, 3, 4). It also can be written as F′(x, y, z) = 0.

Proposition 4 If the equation of Cs is known, equation of the small circle s can be obtained.

Proof From Fig. 1, one may see that the small circle s is the intersection of the right cone and
the viewing cone.

In the global coordinate system, the unit viewing sphere can be re-expressed as

xw yw zw 1½ �
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

2
664

3
775 xw yw zw 1½ �T ¼ 0 ð10Þ

It also can be expressed as F′(xw, yw, zw) = 0.
Thus, the equation of the small circle s can be obtained from

F
0
x; y; zð Þ ¼ 0

F
0
xw; yw; zwð Þ ¼ 0

�
ð11Þ

3.2 Calculating of the great circle on the unit viewing sphere

Proposition 5 From Fig. 1, one sees that if the small circle s is known, then the great circle S
can be written as

nxX s þ nyY s þ nzZs ¼ 0
X s

2 þ Ys
2 þ Zs

2 ¼ 1

�
ð12Þ

Proof The equation of the small circle s can be described as

nx x
0
‐xs

� �
þ ny y

0
−ys

� �
þ nz z

0
−zs

� �
¼ 0 ð13Þ

where n = [nxnynz 1]T is the normal direction of s. If we choose three points at random on the
small circle s, the normal direction n can be calculated by Eq. (13). The distance of the small
circle s from the center of the origin O = [0 0 0 1]T can be computed as

d0 ¼ jnxxs1 þ nyys1 þ nzzs1jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx2 þ ny2 þ nz2

p ð14Þ
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The equation of the great circle S is then given by

nxX s þ nyY s þ nzZs ¼ 0
X s

2 þ Ys
2 þ Zs

2 ¼ 1

�
ð15Þ

Proposition 6 If the normal direction of the small circle s is known, the projection of the line
onto the image plane CL can be written as

CL ¼
nz2 0 − f enznx
0 nz2 − f enzny

−nznx −nzny − f e
2nz2

2
4

3
5 ð16Þ

where fe is the effective focal length.

Proof The sphere image Cs satisfies

λCS ¼ KC
‐THSKC

−1 ð17Þ

where KC ¼
f x s u0
0 f y v0
0 0 1

2
4

3
5 describes the intrinsic parameters of the virtual camera.

HS ¼
d0−nzð Þ2 0 d0−nzð Þnx

0 d0−nzð Þ2 d0−nzð Þny
d0−nzð Þnx d0−nzð Þny d02−nz2

2
4

3
5: ð18Þ

It is the equation of the viewing cone, where d0 is the distance of the origin O from the small
circle s. The great circle S can be regarded as the projection of the line onto the unit viewing
sphere. The projection of the line onto the image plane CL also can be obtained from (17) and
rewritten as

λCL ¼ KC
‐TH

0
SKC

−1 ð19Þ

where H
0
S ¼

nz2 0 −nznx
0 nz2 −nzny

−nznx −nzny −nz2

2
4

3
5.

3.3 Calibrating the Paracatadioptric camera by the projection of the small circle
onto the image

Starting from the projection of three great circles onto the image plane, the vanishing points
would be obtained by the intersections of two of them. This allows one to calibrate the
paracatadioptric camera. To prove this statement, let us start from the following proposition.

Proposition 7 The vanishing points can be determined from the three small circles si(i =
1,2,3).

Proof As shown in Fig. 2, one sees that for every small circle si may determine the unique
great circle Si(i = 1,2,3). Intersection of them on the image plane is obtained from.
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Hij*Kij ¼ CLi∧CLj ð20Þ
where the CLi(i, j = 1, 2, 3) is the projection of the great circle onto the image plane, and

“ “represents the intersection of two conics. H*K is the intersection of them on image plane
[33].

As shown in Fig. 2, there are total six intersections, according to the geometric properties of
the circle. Thus, three pairs of orthogonal vanishing points can be determined on image plane.

The intersection of H12 H13 and K12 K13 (see in Fig. 3) can be obtained from

Fig. 2 Projection of the sphere and corresponding great circle onto the unit viewing sphere

Fig. 3 A pair of orthogonal vanishing points in image plane
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f 23 ¼ H12∧H13

� �
∧ K13∧K12

� �
ð21Þ

and the intersection of H12 K13 and H13 K12 can be obtained from

u23 ¼ H12∧K13

� �
∧ H13∧K12

� �
ð22Þ

where f23 and u23 are the intersections. They also are a pair of the orthogonal vanishing points.
Other two pairs of orthogonal vanishing points are f24 and u24, f34 and u34. They can be
computed in same way.

In Fig. 4, H12 K12, H13 K13 and H23 K23 intersect at a point P = (wxwy) which is the
principal point. It can be obtained from

P ¼ H12K12∧H13K13∧H23K23 ð23Þ

If the center of coordinate system of the image plane is moved to principal point P, all
image points also would be moved. This shift is obtained by multiplying by the matrix T0

T0 ¼
1 0 −wX

0 1 −wy

0 0 1

2
4

3
5 ð24Þ

In the new coordinate system, the coordinates of H ij K ij can be obtained from.

H
0
ij ¼ ToHij;K

0
ij ¼ ToKij ð25Þ

CL2

H23

K12

K13

H12H13

  p

CL1

CL3

K23

Fig. 4 Coordinate of principal
point
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The new coordinates for the orthogonal vanishing points are obtained from

f
0
23 ¼ H

0
12∧H

0
13

� �
∧ K

0
12∧K

0
13

� �
ð26Þ

u
0
23 ¼ H

0
12∧K

0
13

� �
∧ H

0
13∧K

0
12

� �
ð27Þ

Because f′ij (i, j = 1,2,3) and u′ij (i, j = 1,2,3) is a pair of the orthogonal vanishing points, the
algebraic constraint of IAC may be written.

f
0
ij
T
ω

0
u

0
ij ¼ 0 i; j ¼ 1; 2; 3ð Þ ð28Þ

The image of IAC is written as

ω
0 ¼ K

0−T
K

0−1 ð29Þ
where K′ = T0K.

A pair of the orthogonal vanishing points provides a constraint for the IAC, whereas the
projection of a sphere onto the unit viewing sphere can only provide a great circle. Sinceω′ has
five degrees of freedom, at least the projection of three spheres is necessary to obtain ω′. In
order to calculate K′-1, one may decompose using Cholesky decomposition, and the matrix K′

can be obtained by solving for the inverse of K′-1. If the principal point P is known, the intrinsic
parameter matrix K can be obtained.

According to the above analysis, we may summarize the algorithm in six steps.

Step 1: Use the projection of k (k ≥ 3) spheres onto the image plane as input, and extract the
pixel coordinates of the conics Cs and projective contour of the mirror. Solve the
equation of the Cs [19].

Step 2: Select the points on the Cs, and evaluate the effective focal length fe [7].
Step 3: Solve the equation of the viewing conic Hs by Proposition 1 and the small circle s,

which is the intersection between the viewing conic and the unit viewing sphere. It
may be obtained by Proposition 2.

Step 4: Obtain the image of the great circle S that is parallel to the s on the surface of the unit
viewing sphere by Proposition 3 and Proposition 5. The orthogonal vanishing points
may be obtained from Eqs. (21) and (22).

Step 5: Determine the principal point P by Eq. (23). Moving the origin of coordinate system
of the image plane to principal point P. Obtain the new coordinates of a pair of the
vanishing points by multiplying by a matrix T0, according to Eqs. (26) and (27).

Step 6: Find ω′ by using Eq. (29). K′ may then be calculated by decomposing ω′ which
obtained using Cholesky decomposition. The matrix K′ can be obtained by solving
the inverse of K′-1. Since the principal point P is known, the intrinsic parameter
matrix K can be obtained.
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4 Experiments

In order to assess the performance of the proposed method, we have performed experiments
with simulated and real data.

4.1 Experiment with simulated data

The principal point of the simulated paracatadioptric camera were assumed as P = (400,300
1). We have generated three views to calibrate the camera. Figure 5 shows the projection of the
sphere onto the image plane. The blue small conic and the great conic represent the projection
of the sphere onto the image plane, the projected contour of the paraboloidal mirror, respec-
tively. In Fig. 6, the blue small circle represents the projection of the sphere onto the unit
viewing sphere, and the green great circle represents the great circle that is parallel with them,
regarded as projection of the line onto the unit viewing sphere. The red great circle represents
the contour circle of the unit viewing sphere.

To test the steady of our method, we have compared the steady of our method to that of Li’s
method, Yu’s and Zhao’s methods with the same noise. We used 100 points from each image
to added Gaussian noise which sampled from a distribution with zero mean and a standard
deviation σ. The noise level σ was varied from 0 to 4 pixels. For each noise level, we have
performed 100 independent trials to obtain the absolute errors of the five intrinsic parameters.
The experimental results are as shown in Figs. 7(a)-(e).

As it is apparent from those plots, the absolute errors increase linearly with the noise.
However, the projection of the sphere onto the unit viewing sphere is used directly in our
method. It’s easier than others based on the antipodal sphere image, so our method is more
robust against the noise. Although other methods are all linear too, the performance of Zhao’s
[22] methods is better using the simpler pole-polar relationship. The absolute error variation
trend of three methods presented in Zhao’s study [22] is mostly the same due to the similar
geometric relationship. Yu’s [34] method involves additional steps. Moreover, the common
self-polar triangles highly depend on four imaginary intersection points from the pair of
antipodal circles and great circle. Therefore, the robustness is less than that of the Zhao’s
methods. Li’s [15] methods are necessary to acquire two pairs of antipodal image points on
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Fig. 5 The projection of the sphere onto the image plane, and the projected contour of the paraboloidal mirror
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every sphere image. In addition, the vanishing line passing through the orthogonal vanishing
points would be inaccurate due to the added noise. Therefore, the absolute error of Li’s
methods [15] is slightly larger than that of other methods, and there are no obvious distinctions
from Figs. 7(a)-(e) based on the Li’s methods [15]. The results state that our method has the
superior robustness.

4.2 Experiment with real images

To measure whether our method can estimate the intrinsic parameters successfully, the five
intrinsic parameters have been obtained using our method, Zhao’s [22] methods, Li’s [15], and
Yu’s methods [34]. The results are presented in Table 1. Although other methods are linear
too, these methods highly rely on the antipodal sphere images. Compared to our method which
directly obtains the intrinsic parameters using the sphere images, these methods are complex to
obtain the antipodal sphere image. Moreover, the common self-triangles would be inaccurate
in Yu’s method [34], due to the four imaginary intersection points are obtianed diffcultly
umder the influence of the noise. In Zhao’s method [22], the sphere image contour is acquried
inaccurate due to the noise. Therefore, the intrinsic parameters obtained by our method are
closer to the ground truths as shown in Table 1. The results state that the intrinsic parameters
are more accurate obtained by our method.

In our experiment, we have employed a central catadioptric camera designed by the Center
for Machine Perception at Czech Technical University and used a yellow table tennis ball as

Fig. 6 (a)-(c) Projection of the spheres onto the unit viewing sphere and the corresponding great circles
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the calibration model. The paraboloidal mirror parameter is ξ = 0.966. The table tennis has
been placed on a checkerboard in different positions (see the images in Figs. 8(a)-(c)), and the
resolution is 1204 × 1176 pixels. The edge points of the sphere images and the mirror contour

Fig. 7 Variations in the absolute errors of (a) fe, (b) r, (c) s, (d) v0, (e) u0 obtained by our calibration method and
by those of Zhao [22], Li [15], and Yu [34], for different amount of Gaussian noise

Table 1 Calibration results with real data (Unit: Pixel)

Methods fe r s v0 u0

Ground truth 1038.0 1.0022 0.9511 582.0 591.0
Our 1038.7 1.0023 0.9512 582.7 591.3
Zhao1 [22] 1041.9 1.0088 1.0043 589.8 584.8
Zhao2 [22] 1036.7 1.0149 0.9724 572.7 585.6
Zhao3 [22] 1038.9 1.0144 0.9854 584.9 590.6
Li1 [15] 1040.3 1.0098 1.0032 591.6 588.7
Li2 [15] 1039.4 1.0138 1.0023 595.3 592.1
Yu [34] 1039.0 1.0123 0,9956 587.9 589.3

Multimedia Tools and Applications



projection have been acquired by Canny edge detector, as shown in Figs. 9(a)-(c). The
projection of the spheres and mirror contour onto the image plane has been obtained by
least-square fitting.

To further assess the performance of our methods, we have used the intrinsic parameters
obtained by our method to correct images of Figs. 8(a)-(c). The corrected results are shown in
Figs. 10(a)-(c), which all the deformed lines were straightened. The real information is
displayed by corrected images well. To perform the more detailed verification, we checked
the orthogonal lines on the checkerboard. The orthogonal intersections of the projection for

Fig. 8 (a)-(c) Three images of a table tennis ball in different position on the checkerboard

Fig. 9 (a)-(c) Edges of the three images above, extracted with Canny edge detector

Fig. 10 (a)-(c) A group of the corrected images in three positions using our method
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two corresponding parallel lines on to the image plane have been detected by Hough
transformation [16]. Results are shown in Figs. 11(a)-(c). In principle, a vanishing line can
be determined by a pair of orthogonal vanishing points, which should be coincident. In
practice, they do not intersect at a single point due to the noise, as shown in Figs. 12(a)-(c).
Results clearly show that our method is convincing and accurate.

To further verify the accuracy of the intrinsic parameters obtained by our method, we have
performed the 3D reconstruction [18] for the checkerboard of Fig. 8 using the parameters
reported in Table 1. Fifty points of the checkerboard using Harris corner detection [29] have

Fig. 11 (a)-(c) Results of extracting lines from Fig. 10(a)-10(c) by Hough transform, respectively

Fig. 12 (a)-(c) Vanishing lines are obtained by the Hough transform using Fig. 11(a)-11(c)

Fig. 13 (a)-(c) Results of the Harris corner detector in Fig. 8(a)-8(c), respectively
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Fig. 14 Reconstruction results with the intrinsic parameters in Table 1 for (a) our method, (b)-(d) Zhao [22], (e)-
(f) Li [15], (g) Yu [34]
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been selected from each image as shown in Figs. 13(a)-(c). The results are shown in
Figs. 14(a)-(g) using our method, Zhao’s [22] methods, Yu’s [34] and Li’s [15] methods.
As shown Figs. 14(a)-(g), the 3D reconstruction results are similar. To measure the perfor-
mance of 3D reconstruction based on the different methods, the parallelism and orthogonality
of the 3D reconstruction results would be test. To obtain the equation for each line and column
as shown in Figs. 14(a)-(g), the angles between any two lines in parallel directions have been
calculated and then averaged by least-square fitting. The average angle in the orthogonal
directions may be analogously computed. The angle results as Table 2 shown. The angles for
parallel and orthogonal lines are 0° and 90° in the checkerboard, respectively. Therefore, the
closer the angles for the parallelity and orthogonality of 3D reconstruction are to 0°, 90°,
respectively, the better the performance of the method. More antipodal image points and the
projective contour of the mirror are obtained in Li’s methods [34], so the results of Li’s
methods [34] are not good as others. Common self-polar triangles highly depend on four
imaginary intersection points obtained more difficultly, so the performance of Yu’s methods
[15] is not competitive with that of Zhao’s methods [22]. Only a pair of antipodal image points
is obtained in Zhao’s methods [22], so the results of their three methods are similar and better
than Li’s [34] and Yu’s [15] methods. Different from these methods, our method is only based
on the projection of sphere onto the unit viewing sphere directly without using the pole-polar
relationship and properties of the antipodal sphere image, so it is simpler. It demonstrates that
the reliability of our method and the enhancement in precision compared to other six methods.

5 Conclusion

In this paper, we propose a calibration method for paracatadioptric camera. According to the
unit viewing sphere model, the projection of the spatial sphere is the small circle onto the unit
viewing sphere. There exists a great circle which is parallel to the corresponding small circle,
representing the projection of a line onto the unit viewing sphere. Based on a point of the circle
outside the diameter is perpendicular to the line at both ends of the diameter on the great circle,
the orthogonal vanishing points may be obtained using the geometric invariance on the image
plane. Therefore, the intrinsic parameters of paracatadioptric camera are obtained from the
algebraic constraints between the vanishing points and intrinsic parameters. The experimental
results state that our method can estimate the intrinsic parameters accurately.

The calibration methods [15, 22, 34] for paracatadioptric camera using the sphere are all
based on the antipodal sphere image. Li et al. [15] used the antipodal sphere image to obtain
polar and corresponding point at infinity. However, the vanishing lines cannot intersect at

Table 2 Testing results of the Parallelity and Orthogonality of 3D Reconstruction with Real Data (Unit: Degree)

Methods Parallel Orthogonal

Our 1.0585 89.875
Zhao1 [22] 1.1225 88.943
Zhao2 [22] 1.1263 88.907
Zhao3 [22] 1.1385 88.836
Li1 [15] 1.2047 87.345
Li2 [15] 1.1986 87.395
Yu [34] 1.1784 88.221
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circular points due to the noise. Yu et al. [34] used the antipodal sphere image to acquire the
self-polar triangles, but the imaginary intersection points are obtained difficultly. Zhao et al.
[22] acquired the symmetry axis according to the antipodal sphere image, but the sphere image
contour is obtained inaccurate due to the noise. To improve the abovementioned methods, we
obtained the intrinsic parameters by exploiting the properties of the projection of the sphere
onto the unit viewing sphere. Our method makes indeed use of the geometric properties of the
projection of the line and the sphere onto the unit viewing sphere directly. This also allows that
the calibration method using lines may be also applied to cases where spheres are used as
calibration model.

Funding National Natural Science Foundation of China (62063034).
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