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Abstract
Single channel speech separation (SS) is highly significant in many real-world speech
processing applications such as hearing aids, automatic speech recognition, control
humanoid robots, and cocktail-party issues. The performance of the SS is crucial for
these applications, but better accuracy has yet to be developed. Some researchers have
tried to separate speech using only the magnitude part, and some are tried to solve
complex domains. We propose a dual transform SS method that serially uses the dual-
tree complex wavelet transform (DTCWT) and short-term Fourier transform (STFT), and
jointly learns the magnitude, real and imaginary parts of the signal applying a generative
joint dictionary learning (GJDL). At first, the time-domain speech signal is decomposed
by DTCWT, which produces a set of subband signals. Then STFT is connected to each
subband signal, which converts each subband signal to the time-frequency domain and
builds a complex spectrogram that prepares three parts like real, imaginary and magnitude
for each subband signal. Next, we utilize the GJDL approach for making the joint
dictionaries, and then the batch least angle regression with a coherence criterion
(LARC) algorithm is used for sparse coding. Afterward, computes the initially estimated
signals in two different ways, one by considering only the magnitude part and another by
considering real and imaginary components. Finally, we apply the Gini index (GI) to the
initially estimated signals to achieve better accuracy. The proposed algorithm demon-
strates the best performance in all considered evaluation metrics compared to the men-
tioned algorithms.
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1 Introduction

Speech separation is a process where several signals have been combined together, and the
goal is to retrieve the original signals from the mixed signal. Speech separation has pulled in a
striking measure of consideration because of its expected use in several real-world applica-
tions, for example, hearing aids, automatic speech recognition, communication, medical,
multimedia, assisted living systems, control humanoid robots, cocktail-party issue, and so
forth [9, 29, 32, 47]. In these applications, well-separated signals are obligatory for the system
to work appropriately. According to the number of channels, the speech separation problem is
categorized into multichannel, binaural channel, and single channel types. A single-channel
speech separation (SCSS) process [4, 17, 26], which still remains a significant research
challenge because only one recording is available, and the spatial information that can be
extracted is restricted [34].

With the current growing interest in speech separation, many SCSS models have been
proposed in considering numerous parameters, for example, phase, magnitude, frequency,
energy, and the spectrogram of the speech signal. The factorial hidden Markov models
(HMMs) have been suggested by S.T. Roweis that are incredibly successful in demonstrating
a single speaker [31]. Jang and Lee [15] use a maximum likelihood approach to separate the
mixed source signal that is perceived in a single channel (SC). Researchers increasingly use
nonnegative matrix factorization (NMF) to separate SC source signals. It’s a collection of
methods in a multivariate analysis where a matrix is decomposed into two other nonnegative
matrices according to its components and weights. NMF was first presented by Paatero and
Tapper [22] and emerged for the use of source separation by Lee and Seung [28]. Sparse
nonnegative matrix factorization (SNMF) is applied to factorize the speech signals [41, 45].
They used SNMF to learn the sparse representation of the data that solves the problem of
separating multiple speech sources from a single microphone recording. Sparsity is prescribed
only for signal detection in the coefficient matrix [44].

Recently, wavelet-based separation methods [11, 12, 27, 42] have been emerged to the
researchers. In [42], discrete wavelet transform (DWT) and SNMF based speech separation
methods is implemented. The authors used the wavelet decomposition to speed up the
separation process by rejecting the high-frequency components of the source signals. Here
DWT is used that splits a signal into its low-frequency parts known as the approximations
coefficients and high-frequency parts known as details coefficients. Though it reduces the
separation time, but the intelligibility of individual speakers is severely affected due to the total
rejection of high-frequency components. In [11], the stationary wavelet transform (SWT) and
NMF based speech enhancement (SE) method is presented. The SWT discards the
downsampling approach used in both the DWT and discrete wavelet packet transform
(DWPT) at every level to acquire the shift-invariance property. This method leads to redundant
problems and cannot use the sparseness among different speech signals. The DTCWT is
utilized for speech enhancement by considering the NMF but ignoring the sparsity [12].
Therefore, the assessed speech has become inaudible because a few errors occur during
deteriorations of the signal utilizing NMF, i.e., some noises or artifacts have been incited
during disintegrations through NMF.

The dictionary learning (DL) algorithm [2, 7, 23, 25, 35, 36, 48, 49] is another useful
technique for model-based SCSS. They assume that speech signals that have sparse represen-
tations from different speakers have some individual components. Usually speaking, a joint
dictionary is a redundant dictionary. One source replies to categorize subdictionaries with
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additional sources that can’t be avoided, though sparse constraints are applied to train the
dictionaries. Some approaches for learning the discriminative dictionary have been improved
in the past, such as the Metaface learning method [49]. A series of approaches are presented in
[2, 7, 23], where the joint discriminative dictionary is made by varying objective functions or
adding penalty items to learn the dictionary. However, the solution of the optimization
problem comes to be difficult for the complexity of the objective function, and then the time
complexity becomes larger. The adaptive discriminative dictionary learning (ADDL) proce-
dure [2] undertakes that different speakers’ speech signals have distinctive constituents. The
dictionary column is known as an atom that is rational to the signal if the absolute value of the
inner product of the atom and the signal is large. Subsequently, using a discriminative
dictionary to code the several organized speech signals sparsely, the coding coefficients of
the different essential sources are disseminated separately over all dictionary elements. Se-
quential discriminative dictionary learning (SDDL) is presented in [48], where both distinctive
and similar parts of varying speaker signals are considered. The authors [25] present a sparsity
model comprising a couple of joint sparse representations (JSR). The mapping relationship
between mixture and speech is used in one JSR, while the mapping relation between speech
and noise is used in another. The authors of [35] construct a joint dictionary with a common
sub-dictionary method (CJD) where a CJD is built using similar atoms between identity sub-
dictionaries. The identity sub-dictionaries are trained using source speech signals correspond-
ing to each speaker. In [36], the authors offered a new optimization function to formulate a
joint dictionary (OJDL) with multiple identity sub-dictionaries and a common sub-dictionary.
The authors of [5] proposed a two-level correlative joint sparse portrayal technique to improve
the performance of single-channel speech separation. To suppress noise source confusion, a
two level joint inadequate portrayal was built utilizing the relationship between speech,
mixture signals, and the discriminative property of joint word dictionary. The authors of
[16, 39], proposed a speech improvement technique with substitute advancement of sparse
coefficient and dictionary. The Fisher criterion compelled the target capacity of dictionary
learning, and afterward, the discriminative dictionary and the sparse comparing coefficient are
acquired. Thusly, the irritated obstruction among joint dictionaries can be diminished.

Deep learning has got particular consideration in the SS community in which non-linear
mapping among the mixture and speech is considered. Deep learning-based techniques can be
divided into two divisions based on the association between the noisy input and desired
outputs. They are the deep neural networks (DNN) based mask algorithms [20, 50] and
DNN based on regression algorithms [38]. These techniques have been successfully imple-
mented and have shown outstanding performance in improving the desired signal from the
mixture signal. Besides, it is not suitable for dealing with limited features, constrained inside
the thought of sources, and somewhat greater computational complexity. Therefore, we
combined the DTCWT and STFT to take advantage of both transforms and better resolve to
process the noisy mixture [8, 13]. Finally, we’re applying SNMF after the DTCWT and STFT
to get the estimated clean speech. These algorithms work very well; however, only the
magnitude spectrum is enhanced and overlooks the phase’s enhancement.

Most of the techniques deliberated above consider only the magnitude part, while the phase
portion is not enriched. Though the consideration of the magnitude part does have a significant
contribution to the estimated speeches, but the improvement of the phase portion cannot be
overlooked. The effects of complex estimation have been used in [37, 46], and they found a
potential improvement of speech separation.

The contributions of this paper are briefly listed below:
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1. For an accurate and in-depth exploration of the signal, we apply dual transforms DTCWT
and STFT. The DTCWT decomposes the signal into a set of low and high-frequency
component subband signals that makes the signal more stationary. After applying
DTCWT, then connected STFT to each subband signal that builds a complex spectrogram
for each subband signal. Thus, we better understand the signal for further analyzing and
processing.

2. Unlike many other algorithms that investigate either magnitude or phase component, we
are handling the magnitude of the signal and the real and imaginary parts. So, these
techniques take complete advantage of all the information available in the waveforms of
the signals. To accumulate the best version of speech separation, we process the magni-
tude part, the real part, as well as the imaginary part. As concerns we know, we are the
first who jointly investigate the magnitude, the real and imaginary parts of the signal.

3. In this method, we use the DTCWT and STFT consecutively, then apply the GJDL
algorithm to both the magnitude part, the absolute value of the real and imaginary part of
the signal, and preserve the sign. We apply the LARC algorithm for sparse coding that
finds the necessary coefficients. Our suggested approach assesses the initial signals in two
separate ways. One is an estimated signal that considers only the magnitude part, and the
other is an approximate signal that includes both real and imaginary parts. Finally, the
Gini index is used to calculate the complementary impacts of both initially estimated
signals. Thus, we get advantages from using the GI with the initially estimated signals.

The rest of the paper is section-wise distributed as follows: A mathematical description of the
issue is given in Section 2. Section 3 briefly describes DTCWT, STFT, GDL, and GI.
Section 4 is this paper’s method, which entireties up the functions of each module.
Section 5 presents the experimental setting and results using the GRID [30], and TIMIT
[53] datasets for speech separation. Finally, section 6 finalizes the paper supplemented with
references. The nomenclature is provided in Table 1.

2 Problem formulation

Single-channel speech separation problem can be defined as follows: Assume z(t) be the
mixed signal which includes of two speakers speech signal x(t) and y(t). The goal of single
channel speech separation is to obtain the estimated signals x(t) and y(t) from the mixed signal
z(t). The expression for the mixed signal defines in Eq. (1).

z tð Þ ¼ x tð Þ þ y tð Þ ð1Þ
Now, the DTCWT is applied to Eq. (1) and gets the subbands are presented in Eq. (2) as
follows

zb;tl ¼ xb;tl þ yb;tl ð2Þ
where zb, tl, xb, tl and yb, tl denote the mixed, first source, and second source subband signals,
respectively, and b is one more than the level of DTCWT decomposition, and tl indicates the
tree level (describe in subsection 3.1). Now, we apply STFT to each subband signal and time-
frequency representation of Eq. (3) can be expressed as
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Zb;tl τ; fð Þ ¼ Xb;tl τ; fð Þ þ Yb;tl τ; fð Þ ð3Þ
where Zb, tl(τ, f), Xb, tl(τ, f) and Yb, tl(τ, f) are the STFT coefficients of zb, tl, xb, tl and yb, tl,
respectively. f and τ represent the frequency bin index and time frame index, respectively.

Eq. (3) can be decomposed the real and imaginary parts as follows, where ZRb, tl(τ, f) and
ZIb, tl(τ, f) represent the real and imaginary parts of Zb, tl(τ, f) and the same for others.

ZRb;tl τ; fð Þ þ iZIb;tl τ; fð Þ ¼ XRb;tl τ; fð Þ þ iXIb;tl τ; fð Þ þ YRb;tl τ; fð Þ þ iYIb;tl τ; fð Þð4Þ
The magnitude ∣Zb, tl(τ, f)∣, real |ZRb, tl(τ, f)| and imaginary |ZIb, tl(τ, f)| parts are learned

jointly using the GJDL algorithm and get the estimated signals fX1b;tl τ; fð Þ, fY1b;tl τ; fð Þ from
the magnitude part and fX2b;tl τ; fð Þ, fY2b;tl τ; fð Þ from the real and imaginary parts by using
LARC.

Let we get eXb;tl τ; fð Þ and eYb;tl τ; fð Þ that are the estimated complex speech signals fromfX1b;tl τ; fð Þ, fY1b;tl τ; fð Þ and fX2b;tl τ; fð Þ, fY2b;tl τ; fð Þ respectively by applying the Gini index.
At last, the expected first and second source speech signals are calculated via the following
equations.

Table 1 Nomenclature

Nomenclature

x, X (lowercase & uppercase) Variables
x (lowercase bold) Vector
X (uppercase bold) Matrix
X (uppercase italic) Function
X (uppercase bold italic) Method
× Elementwise multiplication
√(.) Elementwise square root operation
SS Speech separation
STFT Short-time Fourier transform
ISTFT Inverse short-time Fourier transform
NMF Non-negative matrix factorization
SNMF Sparse non-negative matrix factorization
DWT Discrete wavelet transform
IDWT Inverse discrete wavelet transform
GJDL Generative joint dictionary learning
LARC Least angle regression with a coherence criterion
SWT Stationary wavelet transform
DTCWT Dual-tree complex wavelet transform
IDTCWT Inverse dual-tree complex wavelet transform
CJD Joint dictionary method with a common sub-dictionary
OJDL Optimization joint dictionary learning
GI Gini index
PM Proposed method
HASQI Hearing- Aid’ Speech Quality Index
HASPI Hearing- Aid’ Speech Perception Index
PESQ Perceptual evaluation of speech quality
STOI Short-time objective intelligibility
SDR Source distortion ratio
SIR Signal-to-interference ratio
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ex tð Þ ¼ IDTCWT ISTFT eXb;tl τ; fð Þ
� �� �

ð5Þ

ey tð Þ ¼ IDTCWT ISTFT eYb;tl τ; fð Þ
� �� �

ð6Þ

where ex tð Þ and ey tð Þ are the estimated first and second source signals, ISTFT and IDTCWT
specify the inverse short term Fourier transform and inverse dual-tree complex wavelet
transform, respectively.

3 Preliminaries

This section presents all relevant terms such as DTCWT, STFT, GDL, and GI that are linked
to our proposed technique.

3.1 DTCWT

Kingsbury presents in [21] that the more computationally productive strategy refers to the
DTCWT having different valuable properties, such as approximate shift-invariance, perfect
reconstruction, and limited redundancy. The DTCWT [14] splits the signal into two trees; the
first tree delivers the real part of the transform, while the second tree offers the imaginary part.
Both trees have a low pass filter that provides the approximate coefficient and a high pass filter
that delivers a detail coefficient. The complex-valued scaling functions and wavelets calculated
from the two trees are roughly analytic.

In the first level DTCWT decomposition, both trees have one approximation coefficient and
one detail coefficient. For the upper tree, the approximation coefficient is (x11;1) and the detail

coefficient is (x12;1), here, the DTCWT decomposition level (dl) is presented by superscript,

and the first and second subscripts indicate the subband index and tree-level (tl), individually.
At that point, all subband signals are downsampled. For the second level decomposition, the
filters are used to pass through the approximation coefficients only, and the subband signals
are produced and so on. Two levels of the DTCWT decomposition are shown in Fig. 1a and b
represent IDTCWT.

Fig. 1 The two-level filter bank implementation of a the DTCWT and b the IDTCWT
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3.2 STFT

STFT is a dominant time-frequency analysis tool for audio signal processing [1]. It illustrates
an especially useful class of time-frequency distributions which indicate complex amplitude
versus time and frequency for any signal. In practice, the data to be transformed is divided into
shorter segments of equal length. Each section is Fourier transformed separately, and the
complex outcome is complementary to a matrix. It can be expressed as follows.

STFT x tð Þf g¼X τ; fð Þ ¼ ∫
∞
−∞x tð Þw t−τð Þe−iftdt ð7Þ

Here, w(τ) denotes window function, restrained around zero, and x(t) is the signal to be
transformed. X(τ, f) is basically the Fourier Transform of x(t)w(t − τ) that signifies the phase
and magnitude of the signal over time and frequency. The time index τ is shifted windows, and
f identifies the frequency.

3.3 GDL

The GDL approach is addressed in [33]. During the training process, the mix speech matrix Z
∈ ℝF × T is distributed approximately into two matrices; one is dictionary matrix D ∈ ℝF × R

and another is coefficient matrix C ∈ ℝR × T, and the number of dictionary atoms is
symbolized by R. The sparse representation error of the speech signals x and y over the
speech signals dictionary Dx, and Dy respectively can be reduced using Eq. (8) and Eq. (9), as
follows:

min
Dx;Cx

X−DxCxk k2F s:t: cx;k
�� ��

1
≤qx;∀k; ð8Þ

min
Dy;Cy

Y−DyCy

�� ��2
F

s:t: cy;k
�� ��

1
≤qy;∀k; ð9Þ

where ‖∙‖F indicates the Frobenius norm, and ‖.‖1 indicates the l1 norm. The kth column of the
sparse coding matrix Cx and Cy, are presented by cx, k and cy, k respectively. qx and qy are the
sparsity constraint for speech signals x and y, respectively. In [33], the LARC scheme is
developed for sparse coding to solve the cost function presented in Eq. (8) and Eq. (9). K-SVD
scheme is estimated for dictionary update, and Dx and Dy are obtained. The mixed signal is
sparsely exemplified over the composite dictionary as follows

Ztest ¼ D� E ¼ Dx;Dy

� �� Ex

Ey

� �
ð10Þ

whereEx and Ey indicate the sparse coding matrix during the testing stage equivalent toDx and
Dy. Finally, the estimated speeches can be obtained in the following way.

bX ¼ Dx � Ex ð11Þ

bY ¼ Dy � Ey ð12Þ
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3.4 GI

The GI, introduced in 1921, is utilized to process the imbalance or sparseness of wealth or
speech distribution. It is the principal measure that fulfills all the attractive standards for
sparsity [10]. The GI is twice the area between the Lorenz curve and the 45-degree line.

Given data z(t) = [z(1), z(2), …, z(T)], the Lorenz curve initially defined in [24], is the
function with support (0, 1), which is piecewise linear with T + 1 points defined,

L g=Tð Þ ¼ ∑
g

j¼1
z jð Þ=∑T

k¼1zk
� �

; g ¼ 0;…;T ð13Þ

where z(1) ≤ z(2) ≤ … ≤ z(T) denotes T values orderly from lowest to biggest. α indicates GI
as the following equation.

α ¼ 1−
1

T
∑
T

m¼1
L

m−1
T

	 

þ L

m

T

� �	 

: ð14Þ

4 Proposed SS algorithm

In this section, we describe the newly proposed SS algorithm and subtleties connected to the
substances of this algorithm. Most speech separation systems work on the STFT of the speech
signal considering only the magnitude spectrum. Generally, the STFT transforms the time
domain input signal by taking the small segments or frames of that signal and deliberates each
subdivision to be stationary. But the subdivision may not be more stationary because we can’t
surely know what frequency exists at what time occurrence. In our proposed algorithm, firstly,
we use DTCWT that divides the input signal into subbands where high and low-frequency
components are separated. For a particular DTCWT level decomposition, we have represented
all subbands by xb, tl, where b = dl + 1, and tl = 2 because it has 2-trees. For one level
DTCWT decomposition, the total number of subbands is 4 (2 × 2), and two levels DTCWT
decomposition the total number of subbands is 6 ( 3 × 2) and so on. In our proposed
technique, we use the first-level decomposition, in which the time-domain signal is
decomposed into four subband signals. For illustration, the DTCWT breaks down the source
signal x(t) into subband signals, denoted by xb, tl. For the first level decomposition, the
subbands are x1, 1, x1, 2, x2, 1, and x2, 2, as clarified in the DTCWT part of Section 3. Then
STFT is applied to each more stationary subband signal that comes from DTCWT decompo-
sition. STFT gives superior transforms for more stationary signals. After applying DTCWT
and STFT successively, the generative joint dictionary learning (GJDL) algorithm is used to
jointly learn the magnitude, the absolute value of the real and imaginary parts of the signal.
The LARC algorithm catches the required coefficients using such dictionaries. The initial
signals are evaluated in two ways in our proposed method. The first is an estimated signal that
only considers the magnitude component, whereas the second is an estimated signal that
considers both the real and imaginary components. Figure 2 illustrates the comprehensive
framework of the SS algorithm mentioned in this paper. We use these dual transformations in
both the testing and training stages, and the training and testing phases are detailed separately
in the following subsections.
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4.1 Training stage

In the training stage, we consider two individual speech source generating signals x(t) and y(t).
DTCWT is utilized to get the subband source signals xb, tl and yb, tl from the signals x(t) and
y(t). The STFT is applied to each subband source signal and found the complex spectrums Xb,

tl(τ, f) and Yb, tl(τ, f), where τ and f specify the time and frequency bin indexes, respectively.
At this point, we obtain three parts the magnitude part XMb, tl(τ, f), the real part XRb, tl(τ, f)
and the imaginary parts XIb, tl(τ, f) from Xb, tl(τ, f), and apply similar operation for Yb, tl(τ, f).
We take the absolute of the real and imaginary parts and concatenate it with a magnitude part
as follows.

XMRITrainb;tl ¼
XMb;tl τ; fð Þ�� ��
jXRb;tl τ; fð Þj
jXIb;tl τ; fð Þj

2
4

3
5 ð15Þ

YMRITrainb;tl ¼
YMb;tl τ; fð Þ�� ��
jYRb;tl τ; fð Þj
jYIb;tl τ; fð Þj

2
4

3
5 ð16Þ

The GJDL is applied to train the dictionaries DXMRIb, tl and DYMRIb, tl for all of the three
components by using Eqs. (8) and (9), based on Eqs. (15) and (16). Using the LARC algorithm
for sparse coding and the approximate K-SVD algorithm for dictionary update [33], the cost
function Eqs. (8) and (9) have been solved and DXMRIb, tl and DYMRIb, tl are acquired as
follows.

DXMRIb;tl ¼ GJDL XMRITrainb;tl

� �
ð17Þ

Fig. 2 Shows a block diagram of the proposed speech separation system including the training and testing stage
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DYMRIb;tl ¼ GJDL YMRITrainb;tl

� �
ð18Þ

At this point, we concatenate all the dictionaries and obtain the concatenated dictionaries
like DXYMRIb, tl, in eq. (19) and it is forwarded to the testing phase.

DXYMRIb;tl ¼ DXMRIb;tl DYMRIb;tl
� � ð19Þ

4.2 Testing stage

The mixed speech signal z(t) is decomposed by applying DTCWT and produced a set of
subband signals zb, tl. The STFT is applied to every subband of mixed signal and obtained
complex spectrum Zb, tl(τ, f). At this point, we take the magnitude part |ZMb, tl(τ, f)|, phase
ZPb, tl, the real ZRb, tl(τ, f) and the imaginary ZIb, tl(τ, f) parts from complex spectrums Zb,

tl(τ, f) and preserve sign values of real and imaginary parts. We take the absolute of the real
and imaginary parts and concatenate it with a magnitude part as follows.

ZMRITestb;tl ¼
ZMb;tl τ; fð Þ�� ��
jZRb;tl τ; fð Þj
jZIb;tl τ; fð Þj

2
4

3
5 ð20Þ

We have the testing mixture signal with three parts ZMRITestb;tl and the concatenated

dictionaries DXYMRIb, tl, we can obtain the sparse coding CXYMRIb, tl by using eq. (10)
as follows.

CXYMRIb;tl ¼ LARC ZMRITestb;tl ;DXYMRIb;tl
� �

ð21Þ

The initially estimated magnitude, real and imaginary components XMb;tl, XRb;tl, and XIb;tl,

respectively for one source signal and YMb;tl, YRb;tl, and YIb;tl for another source signal are
acquired using the corresponding speech signals dictionaries and sparse coding, which are
getting from DXYMRIb, tl and CXYMRIb, tl as follows.

XMb;tl ¼ DXMb;tlCXb;tl; ð22Þ

XRb;tl ¼ DXRb;tlCXb;tl; ð23Þ

XIb;tl ¼ DXIb;tlCXb;tl; ð24Þ

YMb;tl ¼ DYMb;tlCYb;tl; ð25Þ

YRb;tl ¼ DYRb;tlCYb;tl; ð26Þ
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YIb;tl ¼ DYIb;tlCYb;tl; ð27Þ
The addition of the initial estimate XMb;tl and YMb;tl may not be equivalent to the mixed
signal magnitude spectrum ZMb, tl. To make it error-free, we compute the subband ratio mask
(SBRM) using the following Eq. (28) and Eq. (29) as follows:

X1b;tl ¼
XMb;tl

� �2

XMb;tl

� �2
þ YMb;tl

� �2 � ZMb;tl; ð28Þ

Y1b;tl ¼
YMb;tl

� �2

XMb;tl

� �2
þ YMb;tl

� �2 � ZMb;tl; ð29Þ

Now, we apply the phase spectrum ZPb, tl with the estimated source signals magnitude

spectrum X1b;tl and Y1b;tl to acquire the reformed complex spectrum fX1b;tl τ; fð Þ and fY1b;tl
τ; fð Þ using the Eq. (30) and Eq. (31) as follows:

fX1b;tl τ; fð Þ ¼ X1b;tl e
iZPb;tl ; ð30Þ

fY1b;tl τ; fð Þ ¼ Y1b;tl e
iZPb;tl ; ð31Þ

Now, we use the sign preserved previously and multiply the sign with real and imaginary
estimates of the signal. Then, the real and imaginary parts are joined to form the complex
spectrum of the speech signals as follows.

X2b;tl ¼ XRb;tl þ iXIb;tl; ð32Þ

Y2b;tl ¼ YRb;tl þ iYIb;tl; ð33Þ

To make the estimated signal X2b;tl and Y2b;tl are more accurate, we calculate the complex
subband ratio mask (CSBRM) using the following Eq. (34) and Eq. (35).

fX2b;tl τ; fð Þ ¼
X2b;tl

� �2

X2b;tl
� �2

þ Y2b;tl
� �2 � Zb;tl τ; fð Þ; ð34Þ

fY2b;tl τ; fð Þ ¼
Y2b;tl

� �2

X2b;tl
� �2

þ Y2b;tl
� �2 � Zb;tl τ; fð Þ; ð35Þ
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The accuracy of fX1b;tl τ; fð Þ and fX2b;tl τ; fð Þ are not similar due to the different estimation
processes. The first is based on the signal’s magnitude, while the second is based on the signal’s

real and imaginary components. fY1b;tl τ; fð Þ and fY2b;tl τ; fð Þ are also estimated in the same way.
As these estimated signals have complementary effectiveness we use a weighting parameterαb, tl

which is found by using Eq. (14), and estimated signals can be calculated as follows:

eXb;tl τ; fð Þ ¼ 1−αb;tl

� 
fX1b;tl τ; fð Þ þ αb;tl
fX2b;tl τ; fð Þ; ð36Þ

eYb;tl τ; fð Þ ¼ 1−αb;tl

� 
fY1b;tl τ; fð Þ þ αb;tl
fY2b;tl τ; fð Þ; ð37Þ

The ISTFT is used to transform the complex speech signals spectrum eXb;tl τ; fð Þ andeYb;tl τ; fð Þ to the subband signals exb;tl and eyb;tl. Finally, the estimated source speech signalsex tð Þ and ey tð Þ is achieved by transforming the IDTCWT to the subband signals exb;tl and eyb;tl.
The suggested algorithm for the training and testing stages are presented below in Table 2.

5 Evaluation and results

In this section, the proposed algorithm is analyzed through simulation experiments. First,
provide an overview of the data and performance evaluation indicators that will be used to
measure the efficiency of separated speech. We show the impact of joint learning regarding
SDR, SIR, STOI, PESQ, HASPI, and HASQI scores at male-female separation. Then we
explore the impact of GJDL over SNMF concerning STOI and PESQ scores at the same and
opposite gender cases. Finally, we compare our algorithm with the current mainstream single-
channel SS algorithm and use the experimental results to confirm the lead of the proposed
strategy. The comparison algorithms are STFT-SNMF [45], DWT-STFT-SNMF [42], ADDL
[2], SWT-SNMF [11], DTCWT-SNMF [12], CJD [35], OJDL [36], and DTCWT-STFT-
SNMF [8].

5.1 Data sets and performance evaluation indicators

In this simulation, we collect the speech signals (including different male speech and female
speech) from the GRID audio-visual corpuses [3], which are used as the training and testing data.
There are 34 speakers (18 male, 16 female), and each speaker speaks 1000 utterances. In case of
selecting each speakers’ utterances, we randomly take 500 utterances for training purposes and
200 utterances for testing. In this simulation, we use two types of speech signal data grouping;
one is used for same-gender (male-male or female-female) speech separation and another for
opposite gender (male-female) speech separation. For same-gender speech separation, eight
same-gender speakers’ utterances are exploited to form one experimental group, and different
eight same-gender speakers’ utterances are used to build another experimental group. For
opposite-gender speech separation, we choose sixteen male speakers for one experimental group
and sixteen females for another experimental group. The length of the training signal is about
60 s, and that for the test is about 10 s. The sampling rate of a speech signal is 8000 Hz, and the
signal is transformed into the time-frequency domain by using 512-point STFT.
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In this paper, the following six indicators are used to measure the performance of SS:
HASQI [18], HASPI [19], PESQ [19], STOI [40], SDR [43], and SIR [43] metrics.

The SDR [43] value approximates the overall speech quality, and it is the proportion of the
intensity of the input signal to the intensity of the difference among input and reformed signals.
The higher SDR scores regulate the recovered performance.

SDR ¼ 10log10
xtarget

�� ��2
l

einterf þ enoise þ eartifk k2l
ð38Þ

where xtarget, einterf, enoise, and, eartif are the targeted source, the interference error, the pertur-
bation noise and the artifacts error, respectively.

Table 2 Algorithm for the training and testing stages of the proposed technique
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In addition to SDR, SIR [43] reports errors produced by failures to remove the interfering
signal during the source separation technique. A higher value of SIR relates to higher
separation quality.

SIR ¼ 10log10
xtarget

�� ��2
l

einterfk k2l
ð39Þ

The PESQ is nominated for the objective quality assessment and is commonly used to measure
speech signals’ quality superiority. It deals with scores ranging from −0.50 to 4.50, where the
higher scores lead to more outstanding voice quality. PESQ measures the combination of only
two parameters – one symmetric disturbance (dSYM) and one asymmetric disturbance (dASYM),
provides a good balance between prediction accuracy and the ability to simplify, described in
[19].

PESQ ¼ 4:5−0:1 dSYM−0:0309dASYM ð40Þ
STOI [40] is a state-of-the-art speech intelligibility indicator and deals with the correlation
coefficient among the clean speech temporal envelopes and the separated speech in short-time
regions. It conveys the scores somewhere in the range of 0 to 1, where the higher STOI value
signifies better intelligibility. We measure STOI, in light of a correlation coefficient between
the transient envelopes of the perfect and estimated speech, in a short time frame overlapping
fragments. It is a function of the clean and corrupted speech, represented by x and ex,
respectively.

STOI ¼ Avg
x−μxð ÞT ex−μex

	 


x−μxk kl ex−μex
����

����
l

0
BBB@

1
CCCA ð41Þ

The HASPI [19] depends on a model of the hear-able fringe that incorporates changes
because of hearing loss. The file looks at the envelope and fleeting fine construction
yields of the hear-able model for a reference signal to the yields of the model for the
signal below test. It ranges from 0 to 1, and advanced scores relay to better sound
intelligibility.

The HASPI intelligibility index is specified by:

p ¼ −9:047þ 14:817cþ 0:0aLow þ 0:0aMid þ 4:616aHigh

HASPI ¼ 1

1þ e−p
ð42Þ

where c is cepstral correlation and aLow, aMid, and aHigh are the low-level auditory coherence
value, mid-level value, and high-level value, respectively.

The HASQI [18] is a model-based objective measure of quality created regarding portable
hearing assistants for ordinary hearing and hearing-impaired listeners. HASQI is the product of
two autonomous indices. The first QNonlin, detentions the properties of noise and nonlinear
distortion, and the second, QLinear,detentions the properties of linear filtering and spectral
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changes by focusing on contrasts in the long-term average spectra. It ranges from 0 to 1, and
advanced scores relay to better sound quality.

QLinear ¼ 1−0:579σ1−0:421σ2

QNonlin ¼ c3

HASQI ¼ QNonlin � QLinear

ð43Þ

where c, σ1, σ2 are cepstrum correlation, standard deviation of the spectral difference, and the
standard deviation of the slope difference, respectively.

5.2 Impact of joint learning

The speech signal is short-term stationary and sparse in nature. Most of the speech separation
methods used STFT to transform the signal into the time-frequency domain, which makes the
complex spectrum of that signal. Some approaches have been proposed considering only the
magnitude part while overlooking the real and imaginary part of a complex spectrum. Here we
compare among the methods deliberate only the magnitude part, only the real and imaginary
part and the magnitude, real, and imaginary part jointly. Figure 3 shows that if we use joint
learning (magnitude, real and imaginary part of the complex matrix), it beats the SDR, SIR,
HASQI, and STOI scores in male-female separation to the individual (magnitude or real and
imaginary). That’s why in the proposed approach, we consider the magnitude, the real and
imaginary parts together, which upgrades the separation performance.

5.3 Effect of GJDL over SNMF

We are exploring the impact of GJDL over SNMF concerning STOI and PESQ scores at the
same and opposite gender cases. Figure 4 reveals the GJDL’s impact on SNMF. For all
considering cases, PESQ and STOI scores are produced and averaged. The DTCWT-
STFTMRI-SNMF and DTCWT-STFTMRI-GJDL methods use the SNMF and GJDL, respec-
tively. It appears to be shown that both the speech’s PESQ and STOI values are improved at
the same and opposite gender cases, explaining that to some degree, the DTCWT-STFTMRI-
GJDL takes care of the speech signals distortion issues subsequently the SS processing.

Fig. 3 Effect of joint learning at opposite gender cases (Ma: magnitude, RI: real and imaginary and MRI:
magnitude, real and imaginary)
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5.4 Overall performance comparison of algorithms

In Fig. 5, we show that the SDR and SIR of the proposed model gain considerably better
results than other existing models, namely STFT-SNMF, DWT-STFT-SNMF, ADDL, SWT-
SNMF, DTCWT-SNMF, CJD, and OJDL. For all cases of separation, the SDR values of the
proposed model are higher than the existing models. Our proposed method increases SDR
scores by 37.47%, 39.17% for M1 and M2, 21.29% and 18.20% for F1 and F2, and 27.73%
and 27.20% for M and F, respectively than the existing method OJDL. From the figure, we can
also realize that the SIR values of estimated signals are better than existing models. DTCWT
and STFT are used consecutively for the dual transformation of the signal that delivers a more
flexible basic framework for the improvement of feature modules that’s why it gives better
performance.

Fig. 6 presents the comparative performance analysis in terms of STOI and PESQ using the
proposed method and other existing methods. STOI is improved from 0.746 to 0.819 for M1,
0.768 to 0.825 for M2, 0.785 to 0.800 for F1, 0.787 to 0.799 for F2, 0.793 to 0.896 for M and
0.778 to 0.863 for F using the proposed models over OJDL method. From the figure, we can
also realize that the PESQ score of expected signals is better than the existing models. The
STOI and PESQ scores in three different cases are shown that the suggested technique beats
the other eight methods, i.e., the suggested approach deals with the maximum quality of
speech separation comparative to the different seven schemes. In the case of considering only
the magnitude part, the phase information is not enriched. But, if the complex domain training
targets were exploited, then the phase information can be considered. As a result, we have used
both magnitude, real, and imaginary components in our technique, which increased separation
performance.

Tables 3 and 4 delineate the HASQI and HASPI results of different techniques, including
STFT-SNMF, DWT-STFT-SNMF, ADDL, SWT-SNMF, DTCWT-SNMF, CJD, OJDL,
DTCWT-STFT-SNMF, and DTCWT-STFTMRI-GJDL for the same gender and opposite
gender speech separation. From Table 3, we can perceive that DTCWT-STFTMRI-GJDL
earnings advanced HASPI values for all separation cases. It can also be seen that the HASQI
results of DTCWT-STFTMRI-GJDL achieve progressive value to the other nine methods for
all separation cases.

In order to have more performance evaluation about the proposed method, the spectrograms
of the speech separation algorithms are examined. The separation results of the different
approaches are displayed in Fig. 7, where the original female and male speech spectrograms
are presented in Fig. 7a and b, respectively. The projected female and male speech

Fig. 4 Effect of GJDL over SNMF method concerning PESQ and STOI at the same and opposite gender cases
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spectrograms are presented in Fig. 7c, d, e, f, g and h for DWT-STFT-SNMF, SWT-SNMF,
and proposed model, respectively. From the figure, we see that the excellence of separated
speech is poor in the DWT-STFT-SNMF method due to the entire elimination of the high-
frequency component and estimated male and female speech by SWT-SNMF method supple-
ment more undesirable vocal. The proposed method improves male and female speech roughly
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Fig. 5 Comparison of the separation performance of the nine methods in terms of a SDR and b SIR for the same
and opposite gender cases
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similar to original female and male speech. Also, it is realized that other methods have extra
vocal distortion than our mentioned algorithm.

Finally, to further confirm the centralities of improvements, for a mixed speech separation
investigation, we have used the TIMIT database [6]. We have investigated 24 speakers (12
male and 12 female speakers) were picked from the TIMIT database. Each speaker utters the
ten sentences that outcomes total of 240 sentences. Out of 10 sentences of different speakers,
the first eight sentences are selected for training, and the remaining are used for testing. To
investigate the performance of our proposed scheme, we consider SDR, SIR, STOI, and PESQ
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Fig. 6 Comparison of the separation performance of the nine methods in terms of a STOI and b PESQ for the
same and opposite gender cases
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Table 4 Performance comparison of various approaches in terms of HASQI values for the same and opposite
gender cases

Case method M1+M2 F1+F2 M+F

M1 M2 F1 F2 M F

STFT-SNMF [45] 0.412 0.405 0.407 0.414 0.555 0.503
DWT-STFT-SNMF [42] 0.269 0.246 0.271 0.257 0.485 0.445
ADDL [2] 0.421 0.412 0.413 0.434 0.565 0.513
SWT-SNMF [11] 0.322 0.352 0.328 0.428 0.488 0.418
DTCWT-SNMF [12] 0.333 0.364 0.33 0.42 0.47 0.452
CJD [35] 0.346 0.373 0.349 0.421 0.483 0.461
OJDL [36] 0.389 0.398 0.401 0.429 0.521 0.493
DTCWT-STFT-SNMF [8] 0.439 0.398 0.401 0.429 0.521 0.493
DTCWT-STFTMRI-GJDL [PM] 0.479 0.500 0.465 0.463 0.631 0.610

Fig. 7 Spectrogram of original male speech, original female speech, and recovered female speech, recovered
male speech for DWT-STFT-SNMF, SWT-SNMF, and proposed model, where x-axis corresponds to the time in
seconds, and the y-axis corresponds to the frequency in kHz

Table 3 Performance comparison among different techniques concerning HASPI values for the same and
opposite gender cases

Case method M1+M2 F1+F2 M+F

M1 M2 F1 F2 M F

STFT-SNMF [45] 0.9942 0.9956 0.9954 0.9956 0.9982 0.9987
DWT-STFT-SNMF [42] 0.9724 0.9573 0.9761 0.9576 0.9951 0.9915
ADDL [2] 0.9781 0.9881 0.9871 0.9787 0.9898 0.9885
SWT-SNMF [11] 0.9767 0.99 0.9845 0.9854 0.9939 0.7514
DTCWT-SNMF [12] 0.9785 0.9911 0.9857 0.9817 0.9917 0.9894
CJD [35] 0.9793 0.9944 0.9863 0.9845 0.9943 0.9869
OJDL [36] 0.9813 0.9947 0.9896 0.9885 0.9964 0.9878
DTCWT-STFT-SNMF [8] 0.9961 0.9967 0.9971 0.9964 0.9995 0.9878
DTCWT-STFTMRI-GJDL [PM] 0.9978 0.9986 0.9976 0.9973 0.9997 0.9995
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scores. From Fig. 8 and Table 5, one can without much stretch be seen that the proposed
approach is achieved better performance than the existing eight techniques (STFT-SNMF,
DWT-STFT-SNMF, ADDL, SWT-SNMF, DTCWT-SNMF, CJD, OJDL, and DTCWT-
STFT-SNMF) depending on the SDR, SIR, STOI and PESQ scores at opposite gender
separation.

6 Conclusion

We have developed a new framework of speech separation based on dual-domain transform in
which GJDL is used for joint learning and GI for joint accuracy. The main emphasis is to learn
the dictionary considering magnitude, real and imaginary parts jointly, in contrast to the
traditional approach of learning considering only the magnitude part or only the complex
domain. DTCWT and STFT are used serially for the dual transformation of the signal that
offers a more flexible basic framework for upgrading feature segments. Then GJDL is used to
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Fig. 8 Comparative performance evaluation of the existing and proposed model of SDR and SIR for the opposite
gender case considering the TIMIT database

Table 5 Performance assessment of PESQ and STOI values of nine methods for the opposite gender case
considering the TIMIT database

Method PESQ STOI

M F M F

STFT-SNMF [45] 2.204 1.097 0.757 0.439
DWT-STFT-SNMF [42] 2.376 2.170 0.708 0.673
ADDL [2] 2.253 1.998 0.773 0.730
SWT-SNMF [11] 2.356 1.983 0.787 0.721
DTCWT-SNMF [12] 2.335 1.938 0.780 0.717
CJD [35] 2.324 2.012 0.789 0.719
OJDL [36] 2.375 2.141 0.805 0.730
DTCWT-STFT-SNMF [8] 2.509 2.192 0.805 0.730
DTCWT-STFTMRI-GJDL [PM] 2.666 2.349 0.855 0.805
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jointly learn the magnitude, the absolute value of the real and imaginary parts of the signal.
The LARC algorithm captures the required coefficients using such dictionaries. We initially
estimate the signals in two ways, one by considering only the magnitude part and another in
view of real and imaginary components. At last, the GI finds better accuracy analyzing the
corresponding subband of the two different sets of estimated signals and achieves the final
estimated speech signals.

The DTCWT separates the high and low-frequency components of the time domain signal,
whereas the STFT accurately investigates the time-frequency components. We also deal with
the signal’s magnitude as well as its real and imaginary portions. As a result, this algorithm
entirely uses all of the information contained in the waveforms of the signals. The relevant
experimental results reveal that our approach outperforms traditional methods when measured
using several evaluation metrics such as SDR, SIR, HASQI, HASPI, PESQ, and STOI. We
use limited features to train GJDL but to get better performance need to consider more
features. If we consider more features, the time complexity will increase for both training
and testing stages. We plan to investigate alternative training and testing algorithms using deep
neural networks in the future and expand it on multisource/multichannel processing, which is a
very relevant and interesting path.
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