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Abstract
Classical linear discriminant analysis (LDA) has been applied to machine learning and
pattern recognition successfully, and many variants based on LDA are proposed. How-
ever, the traditional LDA has several disadvantages as follows: Firstly, since the features
selected by feature selection have good interpretability, LDA has poor performance in
feature selection. Secondly, there are many redundant features or noisy data in the original
data, but LDA has poor robustness to noisy data and outliers. Lastly, LDA only utilizes
the global discriminant information, without consideration for the local discriminant
structure. In order to overcome the above problems, we present a robust sparse manifold
discriminant analysis (RSMDA) method. In RSMDA, by introducing the L2,1 norm, the
most discriminant features can be selected for discriminant analysis. Meanwhile, the local
manifold structure is used to capture the local discriminant information of the original
data. Due to the introduction of L2,1 constraints and local discriminant information, the
proposed method has excellent robustness to noisy data and has the potential to perform
better than other methods. A large number of experiments on different data sets have
proved the good effectiveness of RSMDA.

Keywords Lineardiscriminantanalysis .Robustsparsemanifolddiscriminantanalysis .Manifold
learning . Feature selection

1 Introduction

Feature selection and extraction, which have received extensive attention in recent years, play
an important role in pattern classification [10, 14, 41]. However an image raw data contains a
large number of redundant features and noise, which make difficult for image recognition and
image analysis. [18, 19, 27]. In this case, for classification tasks, how to select and extract the
different categories of the most significant features in the whole exercise is among the most
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difficult. It has proven that feature selection and extraction are effective tools in the field of
machine learning and pattern classification. They can reduce the complexity, increase the
efficiency and enhance the classification performance [20, 25, 26].

Whether it is feature selection or feature extraction, to a certain extent, they both are
subspace learning methods [2, 11, 13]. They have common goal in finding a low-
dimensional representation of the original high-dimensional data in a new learning space
[28, 30, 33].

Variousmethods of feature extraction have been proposed in the past few decades. In this branch,
principal component analysis (PCA) [38] is one of the most famousmethod, its main idea is to try to
learn a projection that can preserve the main energy of the original data. Local preserving projection
(LPP) [7], sparse preserving projection (SPP) [24] and neighborhood preserving embedding (NPE)
[8] which they learn their projections are also feature extractionmethods, thesemethods consider the
local manifold geometry of the original data and try to preserve the local information in the
projection space [4, 16, 29]. Subsequently, classifiers, such as K Nearest Neighbor (KNN) [42]
and Support Vector Machine (SVM) [3], are usually used for classification. Although the above
methods don’t use the label information of the data, have different advantages, the classification
performance of these algorithms are not good enough to some extent.

In fact, we hope that dimensionality reduction can be achieved for data with category labels
(supervised), and each category can be better distinguished after dimensionality reduction. At
this time, another classic feature extraction algorithm-linear discriminant analysis (LDA)
appeared [43]. LDA is a classic linear learning method. The idea of linear discrimination is
simple but very effective. LDA can greatly expand the distance between classes and reduce the
distance within classes. And through the use of label information to learn discriminant
projection, which improves the classification accuracy [9, 17, 40].To enhance performance
and efficiency, many variants based on LDA are proposed [5, 12, 15] such as orthogonal LDA
(OLDA) [31], unrelevant LDA (ULDA) [32]. OLDA and ULDA transform the image into a
vector for learning projection, which aim to solve the problem of small LDA sample size.
However, these methods, which based on LDA in the calculation of the L2 norm scatter matrix,
may cause the error seriously, and these methods are sensitive to outliers [1, 34, 44]. Later,
sparse linear discriminant analysis (SLDA) [23] and sparse uncorrelated linear discriminant
analysis (SULDA) [39] are proposed to learn sparse discriminant subspace for feature extrac-
tion. Robust Adaptive Linear Discriminant Analysis (RALDA) [6] method achieved an
appropriate latent subspace for data representation where L2,1 norm is adopted in the formu-
lations of loss function,which the regularization term can reduce the impact of outliers and
noise and predict the select discriminative features. Later, Ning et.al. proposed a method
named BULDP: Biomimetic Uncorrelated Locality Discriminant Projection for Feature Ex-
traction in Face Recognition, it is based on unsupervised discriminating projection and two
human bionic where in: homologous and isomeric principle of continuity principle of simi-
larity [21]. Later, Ning et.al. proposed Real-time 3D Face Alignment Using an Encoder-
Decoder Network with an Efficient Deconvolution Layer [22]. Zhang et.al. proposed a new
iterative reweight-based log-sum constraint channel estimation scheme. it used the structure
sparsity of the mmWave channels by formulating the channel estimation problem as an
objective optimization problem. [35].Later, Zhang et.al. proposed Block-Sparsity Log-Sum-
Induced Adaptive Filter for Cluster Sparse System Identification The main idea of the
proposed scheme is to add a new block-sparsity induced term into the cost function of the
LMS algorithm [36]. In addition, he proposed Block-Sparsity Log-Sum-Induced Adaptive
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Filter for Cluster Sparse System Identification [37] . The main idea is to add a sparsity lp norm
penalty cost function of the LMS algorithm.

However, LDA has some obvious disadvantages. Firstly, each new feature combined with
others, which the most of projection coefficients are not zero. The learned projection matrix
cannot explain the features well. This also shows that LDA cannot select the most useful
function from redundant data. Secondly, LDA selects k feature vectors as the projection of
feature extraction, and the selected k feature vectors will have a one-to-one correspondence
with the first k smallest feature values, and the number of k is related to the data. For
dimensionality reduction, this makes the choice of the classification accuracy of linear
discriminant analysis sensitive. Thirdly, LDA, and many methods based on linear discriminant
analysis are sensitive to noise.

In order to overcome this problem, a new robust sparse manifold discriminant analysis
(RSMDA) algorithm is proposed for dimension reduction. Especially, the proposed RSMDA
method uses L2,1 norm based sparse constraint to choose the important feature. At the same time,
the manifold based local discrimination information is added on the basis of the original linear
discrimination analysis. The innovations of this article mainly include the following aspects.

(1) The most useful and discriminative features can be selected by introducing the L2,1 norm.
(2) Compared with other methods based on linear discriminant analysis, the proposed

method is more robust to noise.
(3) By introducing the local discriminative information, the sparse projection can use the

local identification information to enhance the discrimination of projection.

The remaining chapters of this article are specifically arranged as follows. Section 2 mainly
reviews some related work. The third part describes the robust discriminant analysis of sparse
manifolds in detail and gives the optimal iterative scheme of RSMDA. In Section 4, There are
a large number experiments on different libraries to prove the good performance. Section 5
gives the corresponding conclusion.

2 Related work

In this section, we will briefly review the research work, which mainly includes LDA and
manifold based local discriminant information learning. For convenience, Table 1 introduce
some notations used through the paper.

2.1 Linear discriminant analysis (LDA)

Suppose there are c pattern classes, ni represents the number of samples of the ith class, n

¼ ∑c
i¼1 is the total number of all samples, column vector xij∈Rm denotes the jth sample of the ith

class. LDA tries to find a projection matrix, which makes the samples in the same category as
close as possible, and makes the samples in different categories are as far away as possible.
LDA uses the following fisher to obtain this projection vector.

a ¼ arg max
a

aTSba
aTSwa

ð1Þ
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where Sb is the inter-class scatter matrix, and Sw is the intra-class scatter matrix. Sb and Sw are
calculated as following.

Sb ¼ 1

n
∑c

i¼1ni ui−uð Þ ui−uð ÞT ð2Þ

Sw ¼ 1

n
∑c

i¼1ni∑
ni
j¼1 xij−ui

� �
xij−ui

� �T
ð3Þ

where ui ¼ 1
ni
∑ni

j¼1x
i
j is the mean feature of samples of the ith class, ui ¼ 1

ni
∑c

i¼1∑
ni
j¼1x

i
j is the

mean feature of all samples. Generally, problem (1) is equivalent to the following optimization
problem .

a ¼ argminaT Sw−μSbð Þa
s:t: aTa ¼ I

ð4Þ

where μ is a small positive constant.
By solving Eq.(4), we can observe that the optimal projection vector a, it is the eigenvector

corresponding to the minimum eigenvalue of Swa = μSba. Generally, a single projection
vector is not enough to distinguish multiple classes. In real world applications, we usually

select a set of projection vectors which satisfy the optimal Fisher criterion A ¼ arg min
ATA¼1

T r

AT Sw−μSbð Þ�
AÞ for multiclass classification. The projection matrix X is selected as a set of

eigenvectors corresponding to the first k smallest eigenvalues of SwA = λSbA. Let A = [a1, a2,
.., ak] ∈ Rm × k be the set of the selected k eigenvectors, we can obtain discriminative feature

vector yij∈R
k of each sample by yij ¼ ATxij.

Table 1 Significant Notations Annotated in This Paper

Notations Description

c
n
m
xi
Sb
Sw
ui
u
L
D
W
wi
wij
di
Gw
Gb
P
Q
E

classes
Input data samples’ number
Input data samples’ dimension
Represents the i-th data samples
inter-class scatter matrix
intra-class scatter matrix
i-th row of U
small positive constant
Laplacian matrix
Diagonal matrix
Weight matrix
i-th row of W
j-th element of wi
i-th row of D
within-class graph
between-class graph
orthogonal reconstruction matrix of m×d
discriminative projection matrix of m×d
denotes random noise
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2.2 Local manifold learning

The nearest neighbor graph G is first constructed and its weight matrix is defined as follows:

Wij ¼ 1; if xi∈N xj
� �

or x j∈N xið Þ
0; otherwise

�
ð5Þ

where N(∙) is a set of k nearest neighbors, the nearest neighbor graph G is divided into two
graphs, i.e., within-class graph Gw and between-class graph Gb for extracting local discrimi-
nant information of samples. For each sample xi, its k nearest neighbors are split into two
subsets, Nw(xi) and Nb(xi). Nw(xi) contains the neighbors sharing the same label with xi, whereas
Nb(xi) contains the neighbors that have different labels. Let Ww andWb be the weight matrices
of Gw and Gb, respectively. Let Ww and Wb be the weight matrices of Gw and Gb, respectively.
In each of the graphs defined above, if two samples have a nonzero weight, then they are
referred to as connected samples. It is clear to see that W = Ww + Wb. In this way, the
conversion matrix A can map samples from the original sample space to the label space.The
result is that the connected samples of Gw stay as close together as possible, while the
connected samples of Gb stay as far as possible. Given a map as fi = xiA (i = 1, …, n), it
should satisfy the following objective functions:

min∑
ij

f i− f j

�� ��2Ww
ij ð6Þ

max∑
ij

f i− f j

�� ��2Wb
ij ð7Þ

In Eq. (6), if xi and xj are close and have the same label, then fi and fj should be close as well. In
Eq. (7), if xi and xj are close but have different labels, then fi and fj should be far from each
other. (6) and (7) can be converted into

min∑
ij

f i− f j

�� ��2Ww
ij ¼ minTr ATX TLwXA

� � ð8Þ

max∑
ij

f i− f j

�� ��2Wb
ij ¼ maxTr ATX TLbXA

� � ð9Þ

where Lw and Lb are the Laplacian matrix of Gw and Gb. They are defined as Lw = Dw − Ww,
Lb = Db − Wb. Dw and Db are diagonal matrices, which their diagonal entries areDw

ii ¼ ∑ jW
w
ij

and Db
ii ¼ ∑ jW

b
ij.

Finally, the Eqs. (8) and (9) can be rewritten as

min
A

Tr ATX TLwXA
� �

−Tr ATX TLbXA
� �� �

¼ min
A

Tr ATX T Lw−Lbð ÞXA� � ð10Þ
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3 Robust sparse manifold discriminant analysis (RSMDA)

In this section, the motivation of our RSMDA is firstly introduced. Then the optimization
solution of RSMDA is given.

3.1 The motivation of RSMDA

The main object of LDA is projection. The advantage of this algorithm is that the projection, it
shortens the projection distance of the same type of sample, and it can also increase the
distance of different types of samples. But the LDA also has its design defects. Most of the
projection coefficients are non-zero, and the new feature samples are linear combinations of all
sample features, which leads to the lack of good explanatoryness of the projective matrix to the
characteristics, which is reflected in the following aspects. First of all, LDA does not have a
good explanation for matrix features, but it cannot select the most suitable function in a large
amount of redundant data. Second, when LDA selects k eigenvector corresponding to the first
k minimum eigenvalue as a feature extraction projection, it is greatly affected by the data, and
the LDA data classification varies greatly. This leads to great differences in LDA classification
accuracy of different sizes. Third, most LDA-based implementation methods cannot be
ignored by external environmental impacts, such as many methods that are vulnerable to
noise. In this paper, we propose a robust sparse manifold discriminant analysis (RSMDA) to
solve the above problems.

At the same time, in practical applications, the acquired data is generally high-dimensional. Data
contains a large amount of redundant information, and some noise can corrupt data or images.
Therefore, the choice of those essential features from the original complex data discriminant analysis
in thewhole learning process is vital, because it can effectively reduce the negative impact caused by
redundant features. Applying a sparse norm constraint projection allows the model to perform
feature selection, such as the L2,1 norm. The L2,1 norm has good line sparsity compared with the L1
norm, precisely because of its property, whichmakes it easier for the projection to interpret elements.
Sparse projection discrimination information can grasp the local identification of the projection to
extend. At the same time, we are concerned about the situation of random noise.We use this term to
compensate for the noise sparse so that can reduce the negative impact to some extent. Inspired by
this motive, we recommend learning more powerful by using the following constraints discrimina-
tion subspace

min
P;Q;E

T r QT Sw−μSbð ÞQ� � þ λ1 Qk k2;1 þ λ2 Ek k1 s:t:X ¼ PQTX þ E;PTP ¼ I ð11Þ

where Q ∈ Rm × d(d < m) is divided into scattering matrices between different classes and within
the same class. λ1 and λ2 are trade-off parameters, μ is a small positive constant used to balance the
importance of Sb and Sw. LDA realizes maximizing the interclass scattering matrix Sw and
minimizing the internal class scattering matrix Sb according to the balanced optimization projection
matrix.E represents errors and it is used to simulate randomnoise. ‖⋅‖1 is theL1 norm. In some cases,
X = PQTX and PTP = I can be regarded as variants of PCA, which has the advantage that the
original data can be recovered well. P ∈ Rm × d is an orthogonal reconstruction matrix. By
reconfiguring the relationship between the sample and the original sample that is considering
conversion, on a reduced dimension, the transformed data can be retained as much as possible the
main energy of the original data. In this way, RSMDAnot only learn discriminant subspace, but also
learn optimization frameworkwith theminimum loss of information, it is possible to perform better.
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The research shows that the discriminant analysis method based on global structure information
ignores the local information of the image. On the basis of manifold technology, the original image
is reduced and dimensionally processed, the local data manifold structure in the nonlinear sub-
manifold can be better maintained. By introducing the manifold based local discriminative infor-
mation, the objective function of the proposed RSMDA can be rewritten as follows.

min
P;Q;E

TQT Sw−μSbð ÞQ þ T rQTX T Lw−Lbð ÞXQ
þ λ1 Qk k2;1 þ λ2 Ek k1

s:t:X ¼ PQTX þ E; PTP ¼ I

ð12Þ

3.2 Optimization of RSMDA

In this section, we propose an iterative algorithm to update the rules to solve the optimal
solution in eq. (12). Since the objective function is non-convex and contains four different
variables. It’s difficult for us to get the global optimal solution. Therefore, we can obtain the
local optimal solution through continuous iteration. First of all, we use the Lagrange function
to convert the problem (12) to the following form.

L P;Q;E; Yð Þ ¼ Tr ðQT Sw−μSbð ÞQ Þ þ Tr ðQTX T Lw−Lbð ÞQX Þ
þ λ1 Qk k2;1 þ λ2 Ek k1 þ Y ;X−QTX−E

� 	

þ β
2

X−PQTX−E
�� ��2

F

¼ Tr ðQT ðSw−μSb ÞQ Þ þ Tr QTX T ðLw−Lb
� �

QX Þ
þ λ1 Qk k2;1 þ λ2 Ek k1−

1

2β
Yk k2F

þ β
2

X−PQTX−E þ Y
β

����
����
2

F

ð13Þ

where β is a penalty parameter, Y is the Lagrangian multiplier.Then P, Q, E can be alternately
solved by minimizing the Lagrangian function L with other variables fixed. The solution
scheme is as follows.

& Fix other variables to update Q

we fix P, E and update Q by solving the following problem

L Qð Þ ¼ Tr QT Sw−μSbð ÞQ� �þ TrQTX T Lw−Lbð ÞQX

þ λ1 Qk k2;1

þ β
2

X−QTX−E þ Y
β

����
����
2

F
ð14Þ

Define X−E þ Y
β ¼ M , Q can be calculated by the derivative of L(Q) with respect to Q

∂L Qð Þ
∂Q

¼ 2 Sw−μSbð Þ þ λ1DQþ β XXTQ−XMT� � ð15Þ
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where D is defined as qi the ith row of Q and Q ¼
q1
⋮
qm

2
4

3
5. Let ∂L(Q)/∂Q = 0, then we obtain

Q ¼ 2 Sw−μSbð Þ þ λ1Dþ βXXT� �−1
βXMT� � ð16Þ

& Fix other variables to update P

We fix Q E and update P by minimizing the following problem

min
PTP¼I

X−PQTX−E þ Y
β

����
����
2

F
ð17Þ

Let X−E þ Y
β ¼ M . The optimization (17) is converted to

min
PTP¼I

M−PQTX
�� ��2

F ¼ min
PTP¼I

Tr MTM−2MTPQTX
� � ¼ min

PTP¼I
Tr MTPQTX
� �

¼ min
PTP¼I

Tr PTMXTQ
� � ð18Þ

Problem (18) is an Orthogonal Procrustes problem and it can be simply solved. Suppose
SVD(MXTQ) = USVT, then P is obtained as P = UVT, where SVD represents the singular
value decomposition operation.

& Fix other variables to update E

We fix P, Q and update E by solving the following problem.

min
E

λ2 Ek k1 þ β
2

X−PQTX−E þ Y
β

����
����
2

F
ð19Þ

If we define ε ¼ λ2
β and E0 ¼ X−QTX þ Y

β, in according to shrinkage calculator, problem (19)

has the closed solution as follows.

E ¼ shrink E0; eð Þ ð20Þ
where shrink means the shrinkage calculator.

& Fix other variables to update Lagrange multiplier

Y and β are respectively updated by using the following formulas

Y ¼ Y þ β X−PQTX−E
� � ð21Þ

β ¼ min ρβ;βmaxð Þ ð22Þ
where ρ and βmax are the constant.
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3.3 Computational complexity and convergence analysis of RSMDA

We analyze the computational complexity of RSMDA. the major computational cost is the
matrix inverse operation. For a m × m matrix, the computational complexity of inverse
operation is O(m3). The whole computational complexity of the proposed method is O(τ(m2n
+ m3 + 2 max(m2; mn)d + d3)), where τ is the iteration number. For simplicity, we suppose
that m ≫ n, thus the computational complexity of the proposed method is O(τ(m2n + m3 +
2m2d + d3)).

In this section, two databases are selected to analyze the convergence of the proposed
RSMDA. The optimization solution process of RSMDA is realized by iteratively updating
three variables. It can be seen from the experimental results in Fig. 1 that the RSMDA
algorithm is convergent and converges to the local optimal solution.

4 Experiments

Some experiments have been carried out in this section to prove the good performance of the
proposed RSMDA algorithm. This includes classification accuracy, convergence to global
optimality, and the effectiveness of high-dimensional image maintenance. In this section, five
public image databases are selected to evaluate the effectiveness of the proposed method,
KNN and some supervised learning methods, including SVM, LDA, SLDA, OLDA, ULDA,
SULDAare chose to compare with the proposed method. At the same time, the accuracy of all
test results (AC) is used as a unified evaluation standard. The standard is based on the
percentage and actual results of the correct classification results.

4.1 Experiments on the Yale B face database

There are 2432 face images from 38 subjects in the Expanded Yale B Face database. 64
images of faces under different lighting conditions were provided for each subject, and we
manually converted each image to a 32 × 32 Gy scale image. One experiment, as show in Fig.
2. which 10, 15, 20 and 25 samples were randomly selected as training samples and the rest as
test samples was repeated 10 times, and the classification accuracy of each algorithm was show
in Table 2.

(a) Yale (b) ORL

Fig. 1 The convergence curve of the proposed NMF_ASGR on the two data sets. (a) Yale, (b) ORL
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Table 2 shows the experimental results obtained by different methods on the extended Yale
B database. It can be seen that the proposed RSMDA method has better performance than
other supervised learning methods, especially KNN, SVM and LDA.

4.2 Experiments on the CMU PIE face database

There are 41,368 face images from 38 subjects in the CMU PIE face database. These facial images
were obtained from 68 subjects in different poses and different lighting conditions. In this exper-
iment, we used a subset of the CMU PIE face database, which contains 11,554 images from 68
subjects. We manually convert each image into a 32 × 32 Gy scale image. Figure 3 shows the
sample image of one of them. In this experiment, the training set was the first 10, 15, 20, and 25
images of each person, and the test set was the remaining images. Repeat the algorithm 10 times.
The classification accuracy of each algorithm is shown in Table 3.

It can be seen from Table 3 that as the number of training samples increases, the recognition
rates of KNN, SVM, LDA, SLDA, OLDA, ULDA, SULDA and the proposed RSMDA are
steadily increasing. Still, no matter how many samples are, the proposed methods perform
better than other contrast algorithms. This proves that RSMDA can capture as much discrim-
inative information as possible, which is better than these comparison methods to some extent.

4.3 Experiments on the AR face database

The AR face database contains color face images of 120 people, and the total number of face
images exceeds 4000. Among them, 120 subjects were photo graphed twice with different

Fig. 2 Some typical images of the Extended Yale B face database

Table 2 Classification accuracy (%) of different methods on the Yale B database

Methods The number of the training samples per class

10 15 20 25

KNN 34.28 42.83 49.17 55.40
SVM 63.90 75.97 82.55 86.30
LDA 81.09 87.53 90.57 92.41
SLDA 85.74 90.41 92.60 93.92
OLDA 87.38 91.32 93.20 94.33
ULDA 85.74 88.15 90.79 92.41
SULDA 82.97 88.11 90.72 92.50
RSMDA 87.60 91.64; 93.59 94.57

Bold indicates the highest recognition accuracy
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facial expressions, light conditions and shade, with a 14-day interval, and each person
produced 26 images. In our experiment, out of 26 facial images of 120 people, seven were
selected from each stage, or 14 face images per person. We manually converted each image to
50 by 40 pixels. Figure 4. shows the sample image of one of them. In this experiment, the
training set is the first 4, 6, 8, and 12 images of each person, and the test set is the remaining
images. Repeat the algorithm 10 times. The classification accuracy of each algorithm is shown
in Table 4.

Table 4 shows the experimental results of different methods on the AR face database. It is
clear from the Table 4 that when the number of training samples increases from 6 to 8, the
classification accuracy of ULDA and SULDA is decreasing, while the classification accuracy
of RSMDA is steadily improving, and no matter how the number of training samples changes,
this method achieves the best performance in many methods.

4.4 Experiments on ORL database

The ORL database includes a total of 400 facial images, collected from 40 people, and each
person provides 10 facial images. And the images were taken at different times and under a
different light. The image content includes different facial expressions and facial details.
Figure 5. below shows a sample image of one of them. In this experiment, the training set is
the first 3, 4, 5, and 6 images of each person, and the test set is the remaining images. Repeat
the algorithm 10 times. The classification accuracy of each algorithm is shown in Table 5.

We can clearly see from Table 5 that the proposed RSMDA is superior to KNN, SVM,
LDA, SLDA, OLDA,ULDA and SULDA.

Fig. 3 Some faces images one object from CMU PIE database

Table 3 Classification accuracy (%) of different methods on the CMU PIE database

Methods The number of the training samples per class

10 15 20 25

KNN 43.29 50.77 56.08 59.86
SVM 72.34 81.40 86.38 89.24
LDA 82.01 87.57 90.24 91.94
SLDA 83.77 88.97 91.74 93.31
OLDA 86.18 90.38 92.56 93.78
ULDA 82.49 88.20 91.02 92.63
SULDA 84.61 88.72 91.66 92.14
RSMDA 87.46 88.72 93.26; 94.53

Bold indicates the highest recognition accuracy
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4.5 Experiments on Georgia Tech database

The Georgia tech face database contains photos of 50 people taken during two or three
sessions. The faces in these pictures may be front and tilted, or they may be front or tilted.

Fig. 4 Sample faces images from AR database

Table 4 Classification accuracy (%) of different methods on the AR database

Methods The number of the training samples per class

4 6 8 10

KNN 53.88 62.92 69.15, 77.43
SVM 69.51 82.75 89.22 95.51
LDA 87.33 93.60 95.56 97.47
SLDA 89.83 94.00 95.83 97.38
OLDA 90.11 94.35 96.08 97.37
ULDA 86.16 92.56 91.02 97.02
SULDA 87.34 93.75 96.14 95.95
RSMDA 90.48 94.57 96.94 98.17

Bold indicates the highest recognition accuracy

Fig. 5 Sample faces images from ORL face database
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These images include different expression, illumination and proportion. Each image is man-
ually cropped to 60 by 50 pixels. Be converted to grayscale images. Figure 6 shows the sample
image of one of them. In this experiment, the training set was the first 5, to 8 images of each
person, and the test set is the remaining images. Repeat the algorithm 10 times. The
classification accuracy of each algorithm is shown in Table 6.

Table 6 shows the RSMDA method has better performance than KNN, LDA, OLDA and
ULDA, and the recognition rate is higher. Compared with SULDA, the classification accuracy

Table 5 Classification accuracy (%) of different methods on the ORL database

Methods The number of the training samples per class

3 4 5 6

KNN 56.46 61.77 69.23 76.52
SVM 67.88 82.43 90.30 93.21
LDA 88.66 94.20 95.87 97.92
SLDA 89.96 95.10 95.83 98.33
OLDA 88.23 92.87 94.49 97.31
ULDA 88.71 94.07 95.79 97.41
SULDA 90.11 94.27 96.14, 97.59
RSMDA 91.56 95.85 96.88 98.41

Bold indicates the highest recognition accuracy

Fig. 6 Sample faces images from Georgia Tech face database
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of RSMDA steadily increases with the increase in the number of training samples.This also
shows that RSMDA is more stable than SULDA to a certain extent.

4.6 Parameters selection

There are two regularization parameters, which can affect the performance of RSMDA. In the
following, we examine the effects of these two parameters λ1 and λ2 on the proposed
algorithm by examining the changes in the recognition performance of RSMDA under
different parameter values. We choose two databases as the test set, they are CMU PIE and
Yale B databases. The experimental results of the algorithm are shown in Fig. 7. We take
(10−5,10−4, 10−3,10−2,10−1,1, 101, 102, 103, 104, 105) as the value range of the two regulariza-
tion parameters λ1 and λ2, then execute the proposed method RSMDA. As can be seen from
the Fig. 7, the proposed method performs best when the value λ1 and λ2 are close to 0.0001.
Differences in the classification results show that the two parameters for the identification and
classification of learning and performance projection algorithm has an important influence.

Table 6 Classification accuracy (%) of different methods on the Georgia Tech database

Methods The number of the training samples per class

5 6 7 8

KNN 81.91 86.58 89.31 92.72
SVM 83.95 90.16 93.05 95.45
LDA 77.57 79.13 87.56 93.33
SLDA 84.96 89.80 92.47 95.71
OLDA 77.10 84.61 89.16 93.28
ULDA 53.94 70.85 80.84 88.13
SULDA 74.12 75.08 67.50 82.08
RSMDA 85.63 91.11 93.34 95.92

Bold indicates the highest recognition accuracy

Fig. 7 The Classification accuracy (%) of the proposed method versus parameters λ1 and λ2. on the Yale B
database, CMU PIE database and AR database
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5 Conclusion

In this paper, we propose a novel supervised feature extraction method termed robust sparse
manifold discriminant analysis (RSMDA), in which the global discriminative information, local
manifold discriminative information and sparse representation are integrated into a framework.
By using the L2,1 sparse norm to limit the discriminative projection matrix, the proposed method
can perform feature selection and feature extraction at the same time, and these features are more
suitable for classification tasks because they have the most discriminative information. This
reconstruction constraint minimizes the loss of difference information, thereby improving the
accuracy of classification. In addition, the local identification information is introduced, which
further enhances the discrimination of the extracted projectionmatrix. The experimental results on
six five databases all show that this method performs better than other competing methods.
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