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Abstract
Epilepsy is a common neurological disease that uses electroencephalogram (EEG) data
for its detection purpose. Neurologists make the diagnosis by visual inspection of EEG
reports. As it is time-consuming and due to the shortage of specialists worldwide,
researchers have proposed automated systems to detect the disease. In the past decade,
most of the systems were designed using hand-engineered features. However, identifying
appropriate features is always a challenging task in the development of a seizure detector
system. Deep learning networks eliminate the problem of selecting the best features but
suffer from long training time, generally days or weeks. To overcome this problem, the
authors have proposed a new 1D convolutional neural network (CNN) that automatically
extracts features at an average of seven epochs, only followed by traditional machine
learning (ML) classifier. 1D CNN architectures are intrinsically suitable for the process-
ing of EEG time-series data. The proposed model doesn’t require any preprocessing of
EEG signal and results in approximately 94% reduced training time than end-to-end deep
learning models. Different ML techniques have been applied to extracted features to
check the robustness of the proposed 1D CNN. Maximum accuracy of 99.83% has been
achieved by most of the classifiers to detect between healthy and seizure patients. The
reduced number of processing steps and epochs makes it suitable for real-time clinical
applications.

Keywords EEG . CNN .Deep learning . Epilepsy . Classification . Seizures

https://doi.org/10.1007/s11042-022-12702-9

* Mustafa Sameer
mustafa.ec17@nitp.ac.in

Bharat Gupta
bharat@nitp.ac.in

1 Department of Electronics and Communication Engineering, National Institute of Technology Patna,
Ashok Rajpath, 800005 Patna, India

Published online: 5 March 2022

Multimedia Tools and Applications (2022) 81:17057–17070

/

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-022-12702-9&domain=pdf
mailto:mustafa.ec17@nitp.ac.in


1 Introduction

Epileptic seizures are one of the most common brain disorders, and according to World Health
Organization (WHO) reports, approximately 50 million people worldwide are suffering from
it. Mainly middle income and low-income countries people are affected by this disease.
Seizures results due to excessive discharge of neurons in the brain. It can result in a sudden
fall if a person is standing or an accident if a person is driving. Individuals detected with
epilepsy have a higher death rate as compared to a healthy person.

Generally, an EEG machine is used to capture the electrical activity of the brain for
diagnosis purposes. The significant advantage of EEG is its high temporal resolution,
noninvasiveness in nature, and low cost. EEG is obtained by placing electrodes on the human
scalp. The widely recognized 10–20 method is used for this work. Highly skilled neurologists
are required to analyze EEG readings; still, the wrong prediction is probable. So, an automated
system to assist clinicians is high in demand. Observing the dreadful situation of this disease,
researchers have done a lot of work in the last decade.

1.1 Related work

Researchers have proposed many hand-engineered feature extraction techniques for epileptic
seizure detection systems in the last twenty years. Time analysis [13], frequency analysis [41],
and time-frequency(t-f) analysis [32] have been used to extract features followed by machine
learning classifier. Discrete wavelet transform (DWT) is one of the most widely used tech-
niques for this purpose [25]. Different variants of entropy [26], hurst exponent [24], Djorth
parameters, statistical averages, average frequency, relative spike amplitude are the most
important features calculated in previous works. Support vector machine(SVM) [28], K-
Nearest Neighbour (KNN), Naïve Bayes, Random Forest [40], artificial neural network
(ANN) [38] are some of the most important classifiers used for the detection purpose. The
major disadvantage of these automated systems is they require a specialist to select the
optimum set of features.

After the advent of deep learning, various groups have started working on it. Deep learning
has the advantage of automatic feature selection. Ulah et al. [39] presented a pyramidal
structure of CNN and used a large number of epochs to reach acceptable accuracy. As well
as data augmentation has also been done in their work to increase the number of instances
which is an additional stage in the automated system. In [23], authors have used a combination
of 1D and 2D CNN network followed by autoencoder for detection in mobile multimedia
framework. They have achieved 99.02% accuracy on CHB-MIT dataset and the total training
time reported is around 7 h. Zhou, Tian, and Cao have fed time domain and frequency domain
signals in the CNN network for seizure classification purposes [44]. In [11], authors have used
plot images of EEG as input, to CNN to classify seizures and non-seizures. The model took
approximately 11 h to train on GPU system for 50 epochs. In another study, the authors have
incorporated three convolutional layers to learn the seizure properties from data then fed into
the Nested Long Short Term Memory (NLSTM) to predict the output label [20]. San-Segundo
et al. [35] introduced an algorithm where the outputs of Fourier transform, wavelet transform,
and empirical mode decomposition are fed to CNN, which comprises two convolutional layers
and three fully connected layers. A hybrid model of CNN and LSTM is used for seizure
detection and tumor as well as identification of eye status [21]. In [5], authors have converted
EEG data into saliency encoded spectrograms and uses an ensemble of CNN for classification.
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However, all the above-mentioned deep learning methodologies give good accuracy; still,
complexity is increased in terms of the number of layers, number of stages, number of epochs,
and hybrid approach. The high complexity of the model burdens the computational require-
ments. In addition to that, all deep learning networks are very time-consuming in the training
process, and usually, a GPU is required [15]. Also, some methodologies convert 1-D EEG
signals to 2-D images to fed into CNN which may result in loss of important information. So,
real-time implementation would be a little cumbersome task. Hence, there is a need for a useful
model to overcome these issues.

1.2 Contribution of the work

This main objective of this work is to make an automated seizure detection system using the
CNN framework having the least computational requirements and training time. Along with
that, the authors have also focused on the robustness of the extracted features. The main
challenge is getting a high detection rate in terms of less complexity and reduced training time.
The proposed 1D CNN model directly takes raw data; it doesn’t require any data splitting or
augmentation steps, and fewer epochs are needed to extract features from the model. These
things reduce the complexity of the model and make it suitable for real-time clinical monitor-
ing. The features extracted from the proposed CNN model in this paper are merged with
Logistic Regression (LR), Support vector machine (SVM), Random Forest (RF), K-Nearest
Neighbour (KNN), Gaussian Naïve Bayes (GNB), Decision Tree (DT), Adaboost. The
performance comparison depicts the sturdiness of the proposed CNN model.

The rest of the paper is structured as follows. Section 2 presents the dataset used, and
Section 3 describes the proposed model. Results have been shown in Section 4 and discussion
in Section 5. Finally, the conclusion has been presented in Section 6. Figure 1 shows the
schematic of the proposed methodology. The detailed description of each block is described in
the methodology section.

2 Dataset description

The experiments have been performed on a publicly available EEG dataset of the University of
Bonn, Germany [3]. The EEG dataset has five different groups, namely Z, O, N, F and S, and

Fig. 1 Proposed methodology using 1D CNN framework and ML classifier
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it is collected with the help of 128 channels. Each group of the dataset has 100 segments. The
duration of each segment is 23.6 s and has the sampling frequency of 173.61 Hz.

The Z and O group segments were acquired from healthy person with eyes open and
closed, respectively, using 10–20 system. The data collected in groups N and F are from
hippocampal formation and epileptogenic zone, respectively, during seizure-free periods of
epileptic patients. Segments of group S were taken from epileptic patients during the seizures
period. Figure 2 presents EEG segment of Z, O, N, F and S group.

3 Methodology

3.1 Feature extraction

In this paper, features for epileptic seizure detection system are extracted using CNN. The
advantage of using CNN is there is no need to select features manually. CNN is a type of ANN
whose concept is inspired by the animal visual cortex. It is also known as shift-invariant
artificial neural networks (SIANN). In recent years, handmade feature extraction techniques
have been replaced by deep learning methods. CNN is a subset of deep learning that has
attracted the research community, especially image classification problems. It has been used
for fundus images [8], x-ray [10], CT scan [42], and other medical images in recent years.
Many variants of CNN have also been used in object detection [27, 43]. CNN uses convolu-
tion operation to learn higher-order features from the data. It consists of a convolutional layer,
pooling layer, and activation function. The proposed technique uses CNN on one-dimensional
EEG signals for the best results in the terms of computational complexity, training time, and
feature extraction. Table 1 shows the architecture of the proposed CNN model and the
description of layers is as follows.

One dimensional convolutional layer It comprises kernels (filters) that are convolved with
the input EEG signal. A kernel is a matrix that slides across the EEG signal to perform
convolution operation after the operation feature map is generated.

f m ¼
XN�1

n¼0
xnlm�n ð1Þ

where x is EEG data, l is filter, and N is the number of elements in x: The subscript denotes the
nth element of the vector, and the output vector is f.

Pooling layer There are different types of pooling layers. Maximum pooling, average pooling,
global maximum pooling and global average pooling. In this work, one maximum pooling
layer and one global average pooling layer are explored for better results. Pooling is used for
downsampling operation. Maximum pooling helps in reducing the dimension of output
neurons from the convolutional layer by selecting only the maximum value in each feature
map, which prevents overfitting and reduces computational intensity. Global average pooling
layer calculates the average of the previous layer feature map, and it is used in place of fully
connected layers. Pooling layers do not have any trainable parameters.

Rectified linear activation unit (ReLu) Activation function is used to activate the node’s
summed input after every convolutional layer. In this work, ReLu activation function is used in
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Fig. 2 Signal traces of the five groups (a) Z, (b) O, (c) N, (d) F, (e) S
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which it assigns zero for all negative values and has a linear identity for all positive values. The
advantage of using Relu is the model converges fast and takes less time to train.

Batch Normalization (BN) Each layer of the neural network tries to correct its output due to
an update in weights and biases during the training process. Due to which one has to initialize
the parameters carefully and has to choose a small learning rate. This phenomenon is known as
the internal covariate shift. To overcome this problem, batch normalization has been proposed
[17]. Batch normalization normalizes the activation layer’s value in mini-batches at each
layer’s input, due to which neural network stability increases. It helps in avoiding the special
initialization of parameters yet provides faster convergence. In the proposed model, three BN
layers have been used.

Fully connected layer Fully connected layers connect every neuron in one layer to every
neuron in another layer. It accepts flattened output from the convolutional layers.

3.2 Classification

The end layer of the CNN is replaced by machine learning classifier and seven classification
techniques have been taken into consideration, (a) Random Forest, (b) Support Vector
Machine, (c) K-Nearest Neighbour, (d) Gaussian Naïve Bayes, (e) Decision Tree, (f) Logistic
Regression, and (g) Adaboost. The brief elucidation of these classifiers is as follows:
(a) Random Forest - It is an ensemble learning method made out of various decision trees. In

this classifier, the outputs of all decision trees are aggregated for classification [6]. The
simplicity and flexibility of DT are combined in RF, which results in improvement of
accuracy. The operation of RF algorithm is as follows: It creates bootstrapped dataset by
selecting samples randomly from the original dataset and having the same dimensions as
the original. The same sample can be selected more than once. After that, a DT is build
using bootstrapped dataset but using only a random subset of variables at each step. Now
again, it creates a new bootstrapped dataset and builds a DT in the same manner. It
continues this process a number of times resulting in a wide variety of DT; this makes RF
more effective than individual DT. Predictor values run down to all trees, and it belongs

Table 1 CNN structure for feature extraction

Layer Info Output Shape
Input (4097,1)

Feature Extraction Convolution 1D (4095,128)
Batch Normalization (4095,128)
Convolution 1D (4093,128)
Max Pooling (1364,128)
Batch Normalization (1364,128)
Convolution 1D (1362,256)
Batch Normalization (1362,256)
Convolution 1 D (1360,256)
Global Average Pooling (256)
Dropout (256)
Fully Connected (100)
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to a class that has more votes. The parameters used in the experimental work are: number
of estimators = 300, maximum depth = 100, and minimum sample split = 3.

(b) Support Vector Machine - This algorithm classifies the data points by finding a hyper-
plane in an N-dimensional space, where N is the number of features. To maximize the
margin between data points of different classes is the main aim of this classifier so that
future data points can be classified with more confidence.

(c) K-Nearest Neighbour - It is a non-linear, non-parametric, and one of the simplest
classifiers. It classifies the data based on the similarities between the sample [19].
Similarity can be termed as closeness, proximity, or distance. The most popular method
of calculating distance is Euclidian distance (ED).

ED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
y1i � y2ið Þ2

q
ð2Þ

where, y1i ¼ y11; y12y1nð Þ and y2i ¼ y21; y22y12ð Þ are the data points, while n is the
number of dimensions. The value of K decides the performance of this classifier. It is one
of the widely used classifiers in the industry due to its less calculation time. K is set to be
5 in this work.

(d) Gaussian Naïve Bayes - This classifier has a simple probabilistic model which utilizes
Bayes theorem for classification purpose. It works on the theory of class conditional
independence, which assumes that a particular class’s attribute is entirely independent of
others [22]. The main advantage of GNB classifier is it needs less amount of training data
compared to other classifiers. In this work, it is assumed that the data has a normal
(Gaussian) distribution.

(e) Decision Tree - It is a tree-structured classifier. It has two types of nodes: a decision node
and another is a leaf node. The decision node performs a test or takes the decision based
on specific rules applied to features, and each leaf node shows the outcome of this test
[30]. It is simple to understand, interpret, and visualize. In this study, gini index is used
for the selection of features at each level selection. The main disadvantage of DT is there
is a high probability of overfitting.

Gini ¼ 1�
X

i
P2
i ð3Þ

where Pi is the probability of ith class.
(f) Logistic Regression - It is a special case of ordinary linear regression (OLR) models. It

imposes less strict requirements than OLR. LR shows a non-linear relationship between
the explanatory variables and response. LR determines the changes in the logarithm of
odds of the response variable, and it utilizes the sigmoid function for classification.

(g) Adaboost - It is a sequential ensemble classifier that focuses on combining results of
weak classifiers to get a strong output. [12]. It assigns proper weights to weak classifiers
at any level during training to get a high classification rate. Misclassified data is assigned
to higher weights to be adequately classified by the next classifier, and the number of
estimators in this experiment is set to 3.
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4 Results

Raw EEG data has been directly fed into the proposed model, and the dataset is split randomly
ten times into 70:30 ratios for training and testing, respectively. In Table 2, the average results
have been reported, and nine experiments have been performed in the experimental setup.
Classification accuracy, sensitivity, and specificity are calculated to check the performance of
the proposed model. The metrics are given as

Accuracy ¼ TP þ TN
TP þ FN þ TN þ FP

� 100% ð4Þ

Sensitivity ¼ TP
TP þ FN

� 100% ð5Þ

Specificity ¼ TN
TN þ FP

� 100% ð6Þ

where TP = True Positive, TN = True Negative, FP = False Positive, FN = False Negative

Table 2 Results obtained for different machine learning classifiers

Data Cluster Metrics RF SVM KNN GNB DT LR Adaboost

Z-S Accuracy 99.83 99.83 99.83 98.67 99.67 99.83 99.67
Sensitivity 100 100 100 97.65 100 100 100
Specificity 99.70 99.70 99.70 99.70 99.35 99.70 99.39

O-S Accuracy 98.67 98.67 98.67 98.67 98.83 98.83 98.67
Sensitivity 98.66 98.63 99.67 99.65 98.98 99.32 98.68
Specificity 98.64 98.64 97.72 97.72 98.75 98.69 98.75

ZO-S Accuracy 99.78 99.67 99.67 99.22 99.67 99.67 99.67
Sensitivity 99.84 99.84 99.68 99.03 99.68 99.84 99.68
Specificity 99.71 99.35 99.71 99.71 99.71 99.35 99.71

N-S Accuracy 99.17 98.99 99.17 99.00 98.67 99.17 98.33
Sensitivity 99.00 99.00 99.00 98.69 98.35 99.00 98.35
Specificity 99.35 98.99 99.35 99.35 99.03 99.35 98.35

F-S Accuracy 98.17 98.00 98.17 97.45 98.50 98.00 97.50
Sensitivity 96.92 97.17 97.87 96.54 98.55 97.23 96.59
Specificity 99.35 98.70 98.41 98.41 98.39 98.70 98.74

NF-S Accuracy 98.77 98.88 98.44 98.44 98.99 98.88 98.77
Sensitivity 99.50 99.68 98.35 98.33 99.49 99.68 99.50
Specificity 98.05 98.05 98.72 99.08 98.04 98.05 98.05

ZONF-S Accuracy 98.33 98.13 98.06 97.73 97.93 98.47 98.07
Sensitivity 98.68 98.62 98.02 97.52 98.53 98.77 98.36
Specificity 96.83 96.03 98.36 98.48 95.49 97.29 96.89

ZO-NFS Accuracy 98.73 98.47 98.33 92.80 98.40 98.67 98.40
Sensitivity 99.30 99.30 99.82 98.80 98.77 99.30 98.39
Specificity 98.38 98.57 97.38 89.13 98.16 98.29 98.37

ZO-NF Accuracy 98.25 98.75 98.16 94.83 97.17 98.58 96.91
Sensitivity 98.26 99.31 99.27 93.88 97.06 98.96 97.80
Specificity 98.14 98.14 97.05 95.88 97.13 98.14 95.82

ZO-NF-S Accuracy 97.07 97.87 95.73 93.47 95.87 97.93 86.73
Sensitivity 97.03 97.94 95.22 92.15 95.71 98.01 84.06
Specificity 97.15 97.55 97.77 98.88 96.43 97.55 98.72

The bold symbols signifies the highest value among different classifiers
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LR, RF, SVM, and KNN show an accuracy of 99.83% between Z (healthy person- eyes
open) and S (seizures). All classifiers have achieved 100% sensitivity except GNB. To balance
the imbalanced data clusters ZO-S, NF-S, ZONF-S, ZO-NFS, and ZO-NF-S Adaptive Syn-
thetic (ADASYN) sampling method is used [16]. Among the three classes, maximum accuracy
of 97.93% is achieved by LR classifier. Tables 3 and 4 show the comparison of metrics for
different classifiers. It can be seen from both tables that there is a maximum 1.18% difference
among different classifiers for detection between seizures and non-seizures. This shows the
robustness of the extracted features using the proposed CNN model.

To compare our CNN-based framework, we have removed the last fully connected layer
with 100 neurons and passed it through softmax function for classification. It is a type of
activation function and usually the last layer in the deep learning classification model. This
function gives the probability distribution of different output classes. For testing and training
purposes K-fold cross-validation scheme has been used. In this method, data has been split into
K folds, and at some point, each part is used as a testing set. K is set to 10 in this experimental
setup; hence the data cluster is divided into 10 folds. 10 iterations took place, and in each one,
different folds are carried as test data. The final output is taken as an average of the results
obtained from each iteration. Training of the model is done using Tensorflow, a deep learning
library on Anaconda Software. Cross-entropy loss function and Adam as optimizer have been
used in this paper. Learning rate in adam optimizer is taken 0.00000001, and the other five
parameters are set to their default values. A small learning rate is taken to avoid local minima
and control the oscillation of the network. Batch size of 10 has been selected, and different data
clusters have been trained using different number of epochs. Minimum epoch is 200 for O-S,
F-S, ZO-NF-S. It can be seen from Table 5 in classification between normal and ictal, data
cluster O-S shows the highest classification accuracy of 99.5% and 100% sensitivity and
specificity while Z-S gives 99% and ZO-S gives 98% accuracy. The classification between
interictal and ictal groups shows a maximum of 98.5% accuracy and a minimum of 98%.

Table 3 Comparison of metrics for data cluster Z-S

RF SVM KNN GNB DT LR Adaboost

Accuracy - 0.00 0.00 -1.18 -0.16 0.00 -0.16
RF Sensitivity - 0.00 0.00 -2.41 0.00 0.00 0.00

Specificity - 0.00 0.00 0.00 -0.35 0.00 -0.31
Accuracy 0.00 - 0.00 -1.18 -0.16 0.00 -0.16

SVM Sensitivity 0.00 - 0.00 -2.41 0.00 0.00 0.00
Specificity 0.00 - 0.00 0.00 -0.35 0.00 -0.31
Accuracy 0.00 0.00 - -1.18 -0.16 0.00 -0.16

KNN Sensitivity 0.00 0.00 - -2.41 0.00 0.00 0.00
Specificity 0.00 0.00 - 0.00 -0.35 0.00 -0.31
Accuracy 1.16 1.16 1.16 - 1.00 1.16 1.00

GNB Sensitivity 2.35 2.35 2.35 - 2.35 2.35 2.35
Specificity 0.00 0.00 0.00 - -0.35 0.00 -0.31
Accuracy 0.16 0.16 0.16 -1.01 - 0.16 0.00

DT Sensitivity 0.00 0.00 0.00 -2.41 - 0.00 0.00
Specificity 0.35 0.35 0.35 0.35 - 0.35 0.04
Accuracy 0.00 0.00 0.00 -1.18 -0.16 - -0.16

LR Sensitivity 0.00 0.00 0.00 -2.41 0.00 - 0.00
Specificity 0.00 0.00 0.00 0.00 -0.35 - -0.31
Accuracy 0.16 0.16 0.16 -1.01 0.00 0.16 -

Adaboost Sensitivity 0.00 0.00 0.00 -2.41 0.00 0.00 -
Specificity 0.31 0.31 0.31 0.31 -0.04 0.31 -
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5 Discussion

Many feature extraction techniques followed by different classifiers have been proposed for
epileptic seizure detection. A comparison of different methodologies has been represented in
Table 6. In previous work, authors used only alpha band to detect seizures and achieved
maximum accuracy of 98%. Short-time Fourier transform (STFT) was used to extract features,
and four time-frequency statistical features were fed to different classifiers to analyze the
performance [31]. In another work, Haralick features were extracted from the gamma band,
followed by a decision tree classifier and 96% success rate to distinguish between seizures and
healthy persons [33]. There is always a possibility that some important information is partially
or fully missed in selecting the features in classic feature detectors. However, in the proposed
method, since the features are extracted directly from EEG data, no preprocessing steps,
transformations, or any feature selection technique are involved, so the maximum information
is potentially extracted.

Table 4 Comparison of metrics for data cluster N-S

RF SVM KNN GNB DT LR Adaboost

Accuracy - -0.18 0.00 -0.17 -0.51 0.00 -0.85
RF Sensitivity - 0.00 0.00 -0.31 -0.66 0.00 -0.66

Specificity - -0.36 0.00 0.00 -0.32 0.00 -1.02
Accuracy 0.18 - 0.18 0.01 -0.32 0.18 -0.67

SVM Sensitivity 0.00 - 0.00 -0.31 -0.66 0.00 -0.66
Specificity 0.36 - 0.36 0.36 0.04 0.36 -0.65
Accuracy 0.00 -0.18 - -0.17 -0.51 0.00 -0.85

KNN Sensitivity 0.00 0.00 - -0.31 -0.66 0.00 -0.66
Specificity 0.00 -0.36 - 0.00 -0.32 0.00 -1.02
Accuracy 0.17 -0.01 0.17 - -0.33 0.17 -0.68

GNB Sensitivity 0.31 0.31 0.31 - -0.35 0.31 -0.35
Specificity 0.00 -0.36 0.00 - -0.32 0.00 -1.02
Accuracy 0.50 0.32 0.50 0.33 - 0.50 -0.35

DT Sensitivity 0.66 0.66 0.66 0.34 - 0.66 0.00
Specificity 0.32 -0.04 0.32 0.32 - 0.32 -0.69
Accuracy 0.00 -0.18 0.00 -0.17 -0.51 - -0.85

LR Sensitivity 0.00 0.00 0.00 -0.31 -0.66 - -0.66
Specificity 0.00 -0.36 0.00 0.00 -0.32 - -1.02
Accuracy 0.85 0.67 0.85 0.68 0.34 0.85 -

Adaboost Sensitivity 0.66 0.66 0.66 0.34 0.00 0.66 -
Specificity 1.01 0.65 1.01 1.01 0.69 1.01 -

Table 5 Results obtained for softmax classification

Data cluster Accuracy (%) Sensitivity (%) Specificity (%)

Z-S 99 100 99
O-S 99.5 100 100
ZO-S 98.33 100 96
N-S 98.5 100 98
F-S 98.5 96 97
NF-S 98 96.5 94
ZONF-S 96 98.75 83
ZO-NFS 95 96 94
ZO-NF 97.25 97 98.5
ZO-NF-S 94.4 90 93
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Acharya et al. [1] were the first to use CNN for epileptic seizure detection. They presented a
network with 13 layers, which gives 88.7% accuracy for three-class classification on Bonn
EEG dataset. They trained the model using 150 epochs. In [4], the authors presented a CNN
structure having 18 layers for feature extraction followed by an RF classifier to detect neonatal
seizures and achieved 77% accuracy. Raghu et al. [29] used pretrained networks such as
Alexnet, Vgg16, Vgg19, and other landmark models on Temple University dataset. They
presented two approaches: (a) transfer learning and (b) extracting features from pretrained
networks followed by SVM classifier. Transfer learning approach achieved 82.85% accuracy
and 88.30% accuracy using extracting feature approach.

Almost all deep learning networks are very time-consuming in the training process. The
advantages of the proposed methodology regarding other deep learning techniques are that it
does not require any preprocessing step or conversion of 1-D EEG signal to 2-D. On average,

Table 6 Comparison of the proposed algorithm with other studies on Bonn EEG dataset

Reference Classification task Methodology Accuracy (%)

[34] Z-S MT rational DSTFT and MLP 99.80
[37] Hermite transform and LS-SVM 99.50
Proposed work CNN+LR 99.83
[45] O-S weighted horizontal visibility graph and KNN 97
Proposed work CNN+LR 98.83
[9] ZO-S Weighted complex networks and SVM 96.40
[28] Matrix determinant and MLP 97.10
[37] Hermite transform and LS-SVM 98.67
[7] TQWT, entropy features, Hjorth parameter and HMM 99.58
Proposed work CNN+LR 99.67
[34] N-S MT rational DSTFT and MLP 98.50
[37] Hermite transform and LS-SVM 98.50
[14] CEEMDAN and Adaboost 99
Proposed work CNN+LR 99.17
[34] F-S MT rational DSTFT and MLP 94.90
[37] Hermite transform and LS-SVM 97.50
[36] DWT based WL, ZC, SSC and NB&SVM 97.75
Proposed work CNN+LR 98.00
[9] NF-S Weighted complex networks and SVM 94.50
[37] Hermite transform and LS-SVM 98
[18] GModPCA and SVM 95.80
[7] TQWT, entropy features, Hjorth parameter and HMM 97.50
Proposed work CNN+LR 98.88
[34] ZONF-S MT rational DSTFT and MLP 98.10
[37] Hermite transform and LS-SVM 97.60
[7] TQWT, entropy features, Hjorth parameter and HMM 97
[36] DWT based WL, ZC, SSC and NB&SVM 97.90
[2] SEA based DNN 97.17
Proposed work CNN+LR 98.47
[1] S-ZO-NF 13 layer CNN 88.70
[14] CEEMDAN and Adaboost 97.60
Proposed work CNN+LR 97.93

HMM: Hidden Markov Model, TQWT: Tunable Q wavelet transform, CEEMDAN: Complete ensemble
empirical mode decomposition with adaptive noise, MT: Malmquist-Takenaka, DSTFT: Discrete Short-time
Fourier Transform, MLP: Multilayer Perceptron, WL: Waveform length, SSC: Number of slope sign changes,
ZC: Number of zero crossings, LS-SVM: Least square support vector machine

The bold value represents highest value in comparison with other existing studies
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only 7 epochs are required to train the model and per epoch takes approximately 10 s. The
simulations were carried on Intel(R) Core(TM) i7-8700 CPU@ 3.2 GHz having 8GB RAM.
The total training time is less than 2 min. The reduced number of stages and epochs makes this
model suitable for portable/ wearable devices.

The limitations of the proposed methodology need to be acknowledged. The parameters of
the model i.e., the number of filters and number of convolutional layers, etc. have been chosen
using trial and error method. The experiments are performed on a small dataset. To generalize
the results, we will implement them on a large dataset in the future.

6 Conclusions

A CNN-based framework for feature extraction followed by a machine learning classifier was
introduced in this paper. The proposed methodology does not require a hand-engineered
feature extraction process. It automatically extracts the features optimally based on training
data. Few epochs (average seven in the proposed technique) make it faster than other
algorithms, a prime condition for real-time application. All classifiers show almost the same
accuracy to classify among different data clusters, making the extracted features robust in
nature. The model was also compared by terminating the classifier part with the softmax
function. It is concluded that machine learning classifiers give more accuracy in few epochs
than pure deep learning model. The proposed detection system will be helpful for a neurologist
for making decisions correctly. Both cloud-based and standalone systems can be developed
using the proposed model.
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