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Abstract
Malware classification continues to be exceedingly difficult due to the exponential growth
in the number and variants of malicious files. It is crucial to classify malicious files based on
their intent, activity, and threat to have a robust malware protection and post-attack recovery
system in place. This paper proposes a novel deep learning-based model, S-DCNN, to clas-
sify malware binary files into their respective malware families efficiently. S-DCNN uses
the image-based representation of the malware binaries and leverages the concepts of trans-
fer learning and ensemble learning. The model incorporates three deep convolutional neural
networks, namely ResNet50, Xception, and EfficientNet-B4. The ensemble technique is
used to combine these component models’ predictions and a multilayered perceptron is used
as a meta classifier. The ensemble technique fuses the diverse knowledge of the compo-
nent models, resulting in high generalizability and low variance of the S-DCNN. Further,
it eliminates the use of feature engineering, reverse engineering, disassembly, and other
domain-specific techniques earlier used for malware classification. To establish S-DCNN’s
robustness and generalizability, the performance of proposed model is evaluated on the Mal-
img dataset, a dataset collected from VirusShare, and packed malware dataset counterparts
of both Malimg and VirusShare datasets. The proposed method achieves a state-of-the-
art 10-fold accuracy of 99.43% on the Malimg dataset and an accuracy of 99.65% on the
VirusShare dataset.

Keywords Deep convolutional neural networks · Ensemble model ·
Malware classification · Pattern recognition · Security · Transfer learning

1 Introduction

The software that aims to harm a system without the user’s knowledge or consent is mali-
cious software (abbreviated as malware). Malware typically performs harmful actions that
violate the system’s confidentiality, integrity, and availability. Such harmful actions make
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the system prone to unauthorized access and modification of sensitive information. The
ongoing research in this field revealed the staggering growth rate of malware (i.e., mali-
cious) attacks and the pressing need to alleviate them. For instance, McAfee Labs reported
[2] that in the first quarter of 2019, Ransomware attacks increased by 118%, and new classes
of the same are also identified. Similarly, Kaspersky Security Network (KSN) published a
report [16] showing that malware attacked more than 70% of the users, which is devised to
collect users’ data without their knowledge. With the increasing dependency of individuals,
institutions, and organizations on computers and databases for their several services, such
as the ability to store important and, perhaps, sensitive information, there is an evident need
to restrain the ever-increasing rate of malware attacks.

In literature, Signature-based methods and Heuristic-based methods are two conventional
techniques for malware classification. The signature-based malware classification method
compares the suspected file with the database (a blocklist) containing the signatures of
already known malicious software. It detects and classifies the dubious file if a minimum
of 8-bit code pattern matches the signatures database. However, this method poses a critical
drawback. Since the signature database is extracted from already known malicious software,
all the signatures are well-known to the malware authors. Thus, malware authors can eas-
ily elude this technique by using basic obfuscation methods. Another drawback lies in its
inability to classify malware files that are variants of already known malware. Hence, this
anti-malware approach proves futile and limiting when dealing with new and updated mal-
ware programs. Heuristic-based methods are dependent on comparing suspected malware’s
code with already known malware present in the heuristic database. The system marks the
suspected file as a potential threat if the comparison is similar to the database. However,
the size of the required database is increasing exponentially with the increasing number of
malicious software.

As the dependency on technology is increasing, thus malware analysis becomes essen-
tial. Malware analysis involves learning the source, operation, intent, and likely outcomes
of malicious software. Static analysis and dynamic analysis are two techniques for mal-
ware analysis. The static analysis is a signature-based method that analyses the suspicious
file by dismantling it without any execution. The static analysis method performs reverse-
engineering on an executable version of the malware to gather the human interpretable code.
The static analysis method carefully investigates the reverse-engineered code to analyze the
program’s intent. The investigation in static analysis is carried out through several tech-
niques involving fingerprints, debugging, memory dumping, and many others. On the other
hand, dynamic analysis is a behavior-based method that executes the malware in a safe, iso-
lated and controlled setting. The dynamic analysis executes the suspicious file and observes
the execution for any suspicious activity. Since this risks harming the system, execution
occurs in an isolated virtual environment, such as a sandbox. A debugger is used to ensure a
proper understanding of the purpose and function of the suspicious file. However, malware
authors can elude these techniques with simple obfuscation techniques.

In the literature, researchers proposed various algorithms for the detection and classifi-
cation of malware. A set of algorithms [27, 29] depend on extensive feature engineering
to build a database of malware features. However, as the adversaries generate new mal-
ware every day, updating the database containing the features with the samples of new
malware files becomes tough. Further, traditional machine learning methods perform well
in a small domain [21, 22] where the dataset is small, and the target classes are relatively
smaller. However, as the complexity increases and the number of target classes grows,
machine learning (ML) methods show their limited performance. The traditional ML meth-
ods require more time to be trained on large datasets and lack the ability to learn the highly
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multidimensional features required for accurate classification. Hence, the traditional meth-
ods become cost-ineffective. Therefore, it is not practical to use traditional approaches to
malware classification in the real-world setup. Recently, researchers [8, 15, 32] proposed
deep learning-based techniques for malware classification. These techniques have shown
considerable improvement in malware detection and classification tasks.

In this paper, a deep learning-based method (S-DCNN) is proposed to perform the task
of malware classification. The proposed S-DCNN architecture uses the image-based rep-
resentation of malicious files to train a classifier for malware binaries as shown in Fig. 1.
It can be noted from Fig. 1 that the proposed S-DCNN extracts image based features from
the malware files. The proposed S-DCNN model uses the paradigms of transfer learning to
leverage the capabilities of state-of-the-art computer vision models. By stacking sub-models
having significantly different learning mechanisms, the ensemble yields a robust classifier.
Further, due to the texture-based analysis of malware images, the proposed model is resilient
to obfuscation techniques like section encryption and packing [30]. The main contributions
of this work are as follows:

– A novel ensemble of deep convolutional neural networks is proposed for performing the
task of malware classification. The proposed model is simple, robust, computationally
efficient, and thus, ideal for real-world applications. Further, it does not require feature
engineering and domain expertise.

– The performance of models trained on non-obfuscated malware is evaluated on obfus-
cated malware exhibiting various levels of obfuscation. To our knowledge CNN models
are being evaluated in this setting for the first time.

Fig. 1 Flow-graph of proposed S-DCNN for malware classification
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– A comprehensive evaluation of the proposed model is performed using several evalu-
ation metrics and carry out extensive experimentation for model design to ensure the
adequacy of the model’s architecture. Based on a comparison with recent malware
classification techniques, it is concluded that the proposed model exhibits superior
performance.

The organization of the rest of this article is as follows. Section 2 presents a review of
the recent techniques for malware classification. A detailed discussion of the proposed S-
DCNN model is shown in Section 3. Section 4 demonstrates the results and experiments
to establish the competence of the proposed model. Finally, the conclusion of the proposed
model is shown in Section 5.

2 Related work

Malware detection is the task of identifying whether a given executable file is malicious
or not. Once a file is identified as malicious, malware classification is performed to iden-
tify its malware family. Nowadays, machine learning approaches solve various problems
like event forecasting [20], collision avoidance [37], patient outcome prediction [6] and oth-
ers. Researchers [25, 29, 38, 45] proposed malware detection and classification based on
machine learning techniques, namely SVM, AdaBoost, Decision Trees, and others. Schultz
et al. [38] proposed an algorithm for static malware analysis based on features extracted
from program executables, strings, and byte n-grams. The algorithm uses the Multinomial
Naı̈ve Bayes to classify malware files and achieves an accuracy of 97.11%. Schultz et al.
used the number of unique calls to the system used within DLLs, a list of printable charac-
ters, byte sequence, and others as features for classification. Zhang et al. [45] proposed an
algorithm for ransomware classification. The algorithm uses n-grams of opcodes as input
for static malware analysis. Moskovitch et al. [25] proposed the use of opcode-based n-
grams as features and experimented with various machine learning methods like Decision
Trees, Naı̈ve Bayes, Artificial Neural Networks, and others. Narayanan et al. [29] used PCA
to extract global level features, which are used as input to the nearest neighbor classifier to
classify the input files into one of 8 malware families. Angelo et al. [9] proposed association
rules based malware classification. It uses subsequences of API calls and markov chain to
perform malware classification. These techniques uses handcraft features for malware clas-
sification which restricts the performance of the algorithms. The proposed S-DCNN uses
automatic feature extractor which helps in improving the performance.

Deep Learning (DL) has garnered significant interest in various fields [4, 17, 18, 24]
over the past few years. DL methods provide solutions for most of the challenges better than
the traditional methods. Jain et al. [14] analysed the performance of malware classification
based on CNN and extreme learning machines. Saxe et al. [36] proposed a four-layered
Neural Network for Binary Malware Classification. The method trains four fully connected
layers on features extracted from the processed malware binaries. Pascanu et al. [34] devel-
oped an algorithm that uses Recurrent Neural Networks to capture the relationships across
time in the event streams of API calls encoded into 114 high-level events. Alsulami et al.
[1] proposed to train Convolutional Recurrent Neural Network on the Microsoft Windows
prefetch files. It classifies samples that belong to rare malware families. Further, the model
is capable of tuning on new malware samples. Kolosnjaji et al. [19] proposed an architec-
ture consisting of CNN and LSTM as components. The CNN component captured the local
relationships, while the LSTM layers captured the long-term dependencies. The input data
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consisted of sequences of API calls made to the system. Yuan et al. [44] proposed a byte-
level malware classifier using the markov images. The algorithm generates markov images
from the binary files and then performs the classification of the sample. These algorithms
uses the processed binary files as the features that limits the capabilities of classifiers and
sometimes require larger amount of time.

Nataraj et al. [30] proposed a new type of feature extraction method. Nataraj et al. pro-
posed transforming binary samples into grayscale images, which helps in classification
using any general image classification pipeline. In another work, Nataraj et al. [31] demon-
strated the superiority of binary texture analysis over other feature extraction methods for
malware classification. GIST feature [33] is used for extracting a texture-based feature from
the generated malware images. Nataraj et al. performed k-Nearest Neighbors-based classi-
fication on the extracted features. Naeem et al. [27] proposed an efficient framework named
Malware Image Classification System for IoT infrastructure. The system first converts the
incoming malware files into grayscale images and then extracts the global and local features
for classification from the grayscale image. Gibert et al. [11, 12] developed a file-agnostic
method for malware classification using a CNN-SVM architecture. The output features of
the CNN are given as input to an SVM to classify the malware files into their respective
families. Cui et al. [8] proposed the use of bat algorithm for data balancing and employed
CNN-based architecture to achieve an accuracy of 94.50% on Malimg Dataset[30]. Nisa et
al. [32] proposed a distinguished feature extraction method from an input image. The feature
extractor [32] combines the Scale Feature Texture Analyzer (SFTA) and features from deep
learning architectures (like InceptionV3 and AlexNet, pre-trained on the ImageNet dataset).
The combined features are used for training of different variants of Decision Trees, SVM,
KNN, and other classifiers. These methods uses machine learning based classifiers which
limits the performance of the algorithm by sometimes avoiding the relationship among the
features.

Vasan et al. [40] proposed IMCFN, a CNN-based model for malware classification. The
method converts malware binaries into colored images and uses data augmentation tech-
niques to fine-tune a deep convolutional neural network previously trained on the ImageNet
dataset. In another work, Vasan et al. [41] proposed an ensemble of deep learning models for
classifying malware files. The architecture comprises Resnet50 and VGG16 fine-tuned on
the malware images. The three one-vs-all SVMs trained on the features extracted from the
models. The k-fold cross-validation for the model is not given to support the generalizability.
Saadat et al. [35] proposed a CNN-XGBoost model that uses CNN for feature extraction and
XGBoost for classification. Saadat et al. demonstrated that CNN-XGBoost architecture per-
forms better than CNN-SVM, CNN-Softmax, and other configurations. Venkatraman et al.
[42] proposed a unified hybrid deep learning and visualization technique for malware detec-
tion and classification. For classification purposes, the application of hybrid image-based
approaches with deep learning architectures is investigated. Verma et al. [43] proposed a
first and second-order texture statistics for multiclass malware classification. The algorithm
analyses the texture of the file to classify the malware. Transfer learning enables the meth-
ods to solve the problems of other domains [3]. Gao et al. [10] use transfer learning based
semi-supervised method for malware classification. Gao et al. proposed an RNN-based byte
classifier and an asm classifier. Çayır et al. [5] introduced an ensemble of Capsule Networks
(CapsNet) for malware classification. Treating the CapsNet as weak classifiers, an ensem-
ble using the bootstrap aggregation is developed. The CNNs extract a 128-dimensional
feature vector from the input malware images, then fed the features to the capsule
network.
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Most of the existing works concentrate on extracting features from the image-based rep-
resentations of the malware files and then classifying them using different machine learning
techniques. Many researchers used CNN-based architectures for feature extraction from
malware images. The techniques like Capsule Networks, CNN-SVM, and CNN-XGBoost
give modest results only. As per observation, the methods that perform very well use a com-
bination of multiple feature extractors to generate feature representations for malware files
and then use convoluted machine learning models to perform classification from these fea-
tures. However, the lack of explanation behind the choice of models used for the feature
extraction and the rationale behind the particular combination leaves a knowledge gap. A
diverse and comprehensive set of feature representations from the input images with even a
simple classifier can achieve very high accuracy. To this end, This paper presents S-DCNN,
an ensemble of carefully chosen CNN-based models that generates a robust feature rep-
resentation of the input so that even a simple ANN classifier can achieve state-of-the-art
results using these features.

3 Methodology

This section contains a detailed discussion of the proposed method and architecture. Three
deep convolutional networks, namely ResNet50, Xception, and EfficientNet-B4, are trained
for the concerned task. Their concatenated outputs are used as features for a multilay-
ered perceptron, which gives the final output. The proposed method is capable of tackling
standard obfuscation techniques such as section encryption and packing due to the use of
texture-based analysis of the malware. Moreover, since the proposed model is an ensemble
of models of considerably different learning mechanisms, it forms a good representation of
the malware images. Consequently, it is robust and generalizable (the ablation experiments
in Section 4 further substantiate this).

The upcoming subsection explains the dataset, the sub-models, the fine-tuning process
and the training of the final model.

3.1 Dataset

The proposed method in this paper uses the Malimg Dataset [30]. The dataset contains 9339
data points corresponding to 25 classes. These data points are image-based representations
of malware binaries, and the classes are their respective malware families.

Further, the 343 samples corresponding to 5 malware families from VirusShare.com are
scrapped to test the generalizability of the proposed model. Table 1 gives the collected
data’s statistics. To test the robustness of the proposed model against obfuscation, a packed

Table 1 Dataset downloaded
from VirusShare Family Number of samples

Lolyda.BF 100

VB 116

Prepscram 39

Eksor.A 40

Wintrim.BF 48
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malware dataset is generated from the VirusShare dataset for testing purposes. The images
are generated for the packed and unpacked dataset by combining the bits of malware binaries
into 8-bit vectors and organizing these vectors into a two-dimensional array. The 2D array
is then rendered as a grayscale image.

Figure 2 shows a sample of image-based representation for each malware family, and
Fig. 3 shows the data distribution. The resized images of uniform shape 224 × 224 are
considered for the use case.

3.2 Transfer learning

Transfer Learning is a learning paradigm in which a model trained for one task is used as
an initialization point for a different task. Transfer learning is extremely useful as it saves
training time, leads to better-performing models, and solves the issue of data deficiency.
The pre-trained models on the ImageNet dataset as the starting point are used for leverag-
ing the concept of transfer learning. Then, the fine-tuning of these models for the task of
malware classification is performed. Once fine-tuned, the models act as feature extractors
for the malware images. The sub-models that form a part of the ensemble architecture are
ResNet50, Xception, and EfficientNet-B4.

Fig. 2 Image-based representation of malware binaries
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Fig. 3 Data distribution

3.2.1 ResNet50

Residual Network [13], or ResNet for short, is a deep convolutional neural network that
deploys a series of residual blocks containing skip connections. These skip connections
address the issue of diminishing accuracy with an increasing number of layers in the model.
Thus, it facilitates the formulation of profound neural networks. ResNet50 is a Residual
Network having 50 layers. This model has led to a series of breakthroughs in the domain
of image classification. Consequently, it is a prevalent choice for building transfer-learning-
based models.

3.2.2 Xception

Xception [7] is a type of convolutional neural network that uses the concept of modi-
fied depthwise separable convolutions. In general, depthwise separable convolution uses
depthwise convolution (channel-wise spatial convolution) followed by pointwise convolu-
tion (1 × 1 convolution). The modified depthwise separable convolutions used in Xception
perform these operations in reverse order; i.e., pointwise convolution is followed by depth-
wise convolution. These modified depthwise separable convolutions are used throughout
the architecture as inception modules. Further, Xception deploys residual connections like
ResNet to give an accuracy boost to the deep learning architecture.

3.2.3 EfficientNet-B4

Tan and Le proposed EfficientNet [39] that puts forward a systematic way of scaling up con-
volutional neural networks. It explores scaling across three dimensions - width (the number
of channels), depth (the number of layers), and resolution (resolution of the input image).
It proposes compound scaling wherein these three dimensions are systematically scaled to
ensure optimal performance (accuracy) and efficiency (FLOPS). EfficientNet establishes
its efficacy in the domain of transfer learning as it achieves state-of-the-art accuracy in 5
out of the eight standard transfer learning datasets. EfficientNet-B4 is used in the proposed
ensemble model.

31004 Multimedia Tools and Applications (2022) 81:30997–31015



3.2.4 Fine-tuning

Each of the models mentioned earlier is fine-tuned to perform malware classification on the
Malimg dataset. These models are initialized with the pre-trained ImageNet weights, and
the top-most layer of 1000 neurons is removed. While fine-tuning, the batch normalization
layers are kept non-trainable, and a dropout is applied on the final feature map of the sub-
models. Finally, a fully connected layer containing 25 classes is appended to generate the
final output. The customized models are then trained using the categorical cross-entropy
loss given by (1).

Lcce =
∑

i

yi · log(pi) (1)

Here, Lcce represents the categorical cross-entropy loss, yi represents the true class label
of ith data sample, and pi denotes the model’s prediction for ith sample.

3.3 Ensemble learning

Figure 4 shows the complete model architecture of S-DCNN. Three models, viz. ResNet50,
Xception, and EfficientNet-B4 are stacked together to form the ensemble. The feature vec-
tors derived from these models are concatenated to form a single input feature vector. The
concatenated feature vector is fed as input to a multilayered perceptron (MLP). While train-
ing the final ensemble model, the three fine-tuned sub-models act as feature extractors and
are not further trained. In contrast, the MLP is trained using the categorical cross-entropy
loss as given by (1).

4 Results and experiments

This section shows a discussion about the implementation details, results and ablation
experiments.

Fig. 4 S-DCNN model architecture
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4.1 Implementation details

4.1.1 Model design and parameters

After trying out several different deep convolutional models, It is observed that the ensemble
of ResNet50, Xception, and EfficientNet-B4 performed the best for our use case. The input
size of the grayscale image is fixed to 224 × 224 for all models.

For the models mentioned above, the model uses the ImageNet weights as the starting
point. The topmost fully connected layer containing 1000 neurons is removed and the rest
of the model is used as a feature extractor (as highlighted in Fig. 4). After removing the
top layer, the dropout is applied on the extracted output having a dropout rate of 0.1. The
method flattens the feature map and appends a fully connected layer containing 25 neurons
to generate the output. These models are trained using Adam optimizer. Further, the training
uses a learning rate scheduler with a polynomial decay factor of 0.01 and an early stopping
mechanism. The initial learning rate is 5e-5, and the batch size is 32.

The 25-dimensional outputs from the three models are concatenated for the ensemble
model to form a 75-dimensional feature vector. This feature vector is used as the input to
a multilayered perceptron (MLP). The hidden layer of MLP is a fully connected layer of
75 neurons and a dropout with a rate of 0.5. The output layer is a fully connected layer
of 25 neurons, which generates the final output. The model uses ReLU activation on the
hidden layer and SoftMax classifier on the output layer. The ensemble is trained using Adam
optimizer and a batch size of 32. Again, the learning rate scheduler with a polynomial decay
factor as 0.01 and an early stopping mechanism to train the MLP is used. The initial learning
rate is 1e-3. A single Nvidia Tesla T4 GPU is used for all the experiments.

4.1.2 Evaluation metrics

Since the size of the dataset is small and there is no pre-defined train-test split, it would
be inappropriate to randomly divide the dataset into a fixed training and testing sets and
then evaluate the model’s performance. Thus, the stratified 10-fold cross-validation is per-
formed to evaluate the performance of S-DCNN. The 10-fold cross-validation ensures that
the proposed model is robust and has a good generalization ability.

The statistical measures used to evaluate the performance of proposed model are accu-
racy, precision, recall, and F1-score. Taking T P , T N , FP , and FN as the number
of true-positive, true-negative, false-positive, and false-negative predictions respectively.
Equations (2), (3), (4), and (5) are the formulae of the concerned evaluation metrics:

Accuracy (A) = T P + T N

T P + T N + FP + FN
(2)

Precision (P ) = T P

T P + FP
(3)

Recall (R) = T P

T P + FN
(4)

F1 − score (F ) = 2 × P × R

P + R
(5)
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For 10-fold cross-validation scores, the dataset is randomly shuffled and divided into ten
groups. Then the model was trained and evaluated ten times such that each group got to be
the testing set once while the other nine combined to form the training set. Equation (6) gives
the generic form of 10-fold evaluation metrics used to evaluate the model’s performance.

E = 1

10
×

10∑

i=1

Ei (6)

Here, E represents the evaluation metrics i.e., E ∈ {A,P,R, F }, and Ei is the value of
the evaluation metric for ith fold.

4.2 Results

Table 2 shows the 10-fold cross-validation results of the proposed model and the sub-
models. One may observe that the ensemble of ResNet50, Xception, and EfficientNet-B4
performs better than the three models individually. For example, the ensemble performs
0.52 percentage points better in 10-fold accuracy and 0.53 percentage points better in 10-
fold F1-score from the best performing sub-model. Highlighted values show the results of
the proposed method.

Further, the box plot in Fig. 5 compares the distribution of accuracies achieved by S-
DCNN and the constituent models in different folds. It can be observed that the ensemble
model achieves very stable and high accuracy across folds while achieving a fold-wise
maximum accuracy of 99.78%. The mean accuracy achieved by the S-DCNN (99.43%) is
far above the maximum accuracy achieved by any base model in any fold. This observa-
tion establishes a clear advantage of the S-DCNN over Resnet-50, EfficientNet-B4, and
Xception.

In literature, 10-fold accuracy is widely used as the evaluation metric for the malware
classification task on the Malimg dataset. Table 3 compares the performance of S-DCNN
with other recent models. One may note from the table that S-DCNN gives the best accuracy
values. Further, S-DCNN demonstrates excellent efficiency with the prediction time per
sample of 0.062 seconds on the NVIDIA Tesla T4 GPU. Highlighted values indicate the
results of the proposed method.

Figure 6 shows the performance of S-DCNN using a confusion matrix. Due to the 10-
fold cross-validation, ten confusion matrices are generated (one for every fold) and then
added to give the final matrix. As can be seen, the model got a little confused between
swizzor.gen!i and swizzor.gen!i. The confusion is because of a high level of similarity
between samples of these classes. Further, it misclassified some samples from swizzor.gen!i
class as c2lop.p and some samples of c2lop.gen!g class as c2lop.p. Other than these, the
model performed well for all other classes. These results also demonstrate that S-DCNN
is resilient to obfuscation. For example, despite the multilayered encryption of the code
section in for allaple.l and allaple.a, the model is able to classify all samples of these

Table 2 Classification performance of S-DCNN and the sub-models

Model Accuracy Precision Recall F1-score

ResNet50 98.80% 98.87% 98.75% 98.81%

Xception 98.91% 98.95% 98.85% 98.90%

EfficientNet-B4 98.80% 98.90% 98.72% 98.81%

S-DCNN 99.43% 99.44% 99.43% 99.43%
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Fig. 5 Box Plot of the sub-models and the ensemble model

classes correctly, thereby demonstrating that it can handle sectional encryption in mal-
ware files. Similarly, S-DCNN is able to classify all samples of the obfuscator.ad class
correctly.

S-DCNN achieves a 3-fold cross-validation accuracy of 99.65% on the malware executa-
bles collected from VirusShare.com. Further, to demonstrate the robustness of the proposed
ensemble model against obfuscation, The testing is performed on packed malware files after
training them on unpacked malware files. UPX packer is used for packing the executable
files collected from VirusShare.com. Table 4 shows the accuracies achieved by S-DCNN
and its component models. It can be observed that S-DCNN outperforms the component
models, which establishes a clear advantage. The results of the proposed method are shown
in bold.

Table 3 Comparative study of
different malware classification
models

Model Accuracy

Nataraj et al. [30] 97.18%

Liu et al. [23] 98.90%

Kalash et al. [15] 98.50%

Naeem et al. [28] 98.00%

Cui et al. [8] 94.50%

Gibert et al. [11] 98.48%

Naeem et al. [26] 98.18%

Nisa et al. [32] 99.30%

Yuan et al. [44] 97.30%

Verma et al. [43] 98.97%

S-DCNN 99.43%
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Fig. 6 Confusion Matrix for S-DCNN

4.3 Ablation experiments

4.3.1 Model selection

In computer vision, some of the most recent advances are made by leveraging the ideas
of residual connections, inception modules, and developing efficiently scaled model archi-
tectures. It is hypothesized that an ensemble comprising of all the techniques mentioned
above is capable of learning robust and diverse features from any given input. Thus, the

Table 4 Classification
performance of S-DCNN on
packed malware executables

Model Accuracy

ResNet50 85.40

Xception 86.30

EfficientNet-B4 86.40

S-DCNN 89.70%
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Table 5 Performance comparison of different deep convolution networks

Model Accuracy Precision Recall F1-score

VGG16 98.17% 98.17% 98.06% 98.11%

ResNet50 98.80% 98.87% 98.75% 98.81%

InceptionV3 97.63% 97.69% 97.56% 97.63%

Xception 98.91% 98.95% 98.85% 98.90%

EfficientNet-B3 98.74% 98.80% 98.69% 98.74%

EfficientNet-B4 98.80% 98.90% 98.72% 98.81%

Fig. 7 Validation accuracy vs Epochs for the 10 folds of the models
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Table 6 Performance comparison of different ensemble models

Ensemble Accuracy Precision Recall F1-score

V + R + X 99.11% 99.38% 98.38% 98.87%

V + R + E4 99.19% 99.33% 97.70% 98.48%

V + X + E4 98.99% 99.01% 98.91% 98.95%

R + X + E4 99.43% 99.44% 99.43% 99.43%

V + X + R + E4 99.26% 99.42% 98.69% 99.05%

experimentation with six different deep convolutional networks viz., VGG16, ResNet50,
InceptionV3, Xception, EfficientNet-B3, and EfficientNet-B4 is performed to ensure that
the ensemble model is built using the appropriate combination of sub-models. These partic-
ular models are considered from their respective families to ensure an appropriate trade-off
between the model’s performance and its inference time. Further, these models are well-
understood and well-established in the field of transfer learning. Table 5 encapsulates the
results for these models. As can be seen from the table, on average, Xception, ResNet50,
and EfficientNet-B4 give the best results (10-fold cross-validation scores). Figure 7 shows
the graph for validation accuracy vs. epochs for the 10-folds of models. The results of the
proposed method are shown in bold.

Further experimentations reveal that even though the individual models achieve great
results, the models individually are not capable of state-of-the-art performance. Thus, The
different combinations of ensemble architectures are formulated for evaluating the perfor-
mance of the possible sub-models. Since InceptionV3 and Xception are quite similar and
the former’s results are considerably lower than the latter model, InceptionV3 is excluded
from the choice of sub-model. Similarly, EfficientNet-B3 and EfficientNet-B4 essentially
belong to the same family. Thus, based on their stand-alone performance, the model selec-
tion for the ensemble is restricted to only EfficientNet-B4. Different possible combinations
of ensemble architectures from VGG16, ResNet50, Xception, and EfficientNet-B4 are eval-
uated. These models employ very different learning techniques. Consequently, the models
learn different representations of malware images, which help the final ensemble model
make sound decisions. Table 6 summarizes the results of different combinations of ensemble
architectures. This paper uses V, R, X, and E4 as placeholders for VGG16, ResNet50, Xcep-
tion, and EfficientNet-B4, respectively. As shown in the table, the combination of ResNet50,
Xception, and EfficientNet-B4 performs significantly better than the other combinations.
The model configuration used in the proposed method is highlighted in bold

4.3.2 Ensemble technique

Using ResNet50, Xception, and EfficientNet-B4 as sub-models, The experimentation is per-
formed with three ensemble techniques - hard-voting ensemble, soft-voting ensemble, and
stacking generalization ensemble. Table 7 encapsulates the results obtained with each of
these techniques. The results of the proposed method are indicated in bold.

In a hard-voting ensemble, predictions are made using each sub-model. For each data
point, each prediction is considered as a vote for the predicted class, and the class that
received the maximum sum of votes is reported as the final prediction. In a soft-voting
ensemble, each sub-model gives the class probability. These probabilities are added, and
the class that received the maximum sum of probabilities is reported as the final predic-
tion. A drawback of this technique is that each model contributes equally to the prediction
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Table 7 Comparative study of different ensemble techniques

Ensemble technique Accuracy Precision Recall F1-score

Hard-voting 98.92% 97.39% 97.13% 97.26%

Soft-voting 99.03% 97.53% 97.38% 97.45%

Stacked 99.43% 99.44% 99.43% 99.43%

irrespective of its performance. Thus, the results obtained with this technique are a little
sub-optimal.

Further, a stacked generalization ensemble is used for the experiments. In this technique,
a learning algorithm is used to combine the predictions of the sub-models. In particular,
a multilayered perceptron (MLP) is used as a meta classifier that took the concatenated
output of the sub-models as input and learned the best possible way to combine the input
predictions to form the output predictions. One may notice from Table 7 that the stacked
generalization ensemble yields significantly better results as compared to the hard-voting
ensemble and soft-voting ensemble.

The major findings of the experimentation are as follows:

1. ResNet50, Xception, and EfficientNet-B4 as sub-models performs better feature extrac-
tion than the other deep-learning based models.

2. The multilayered perceptron based classifier shows that the light classifiers can perform
the classification effectively with a robust feature extractor.

3. The performance of the sub-models without ensemble is limited. Further, the ensemble
of sub-models helps in achieving the best performance.

4.4 Computational complexity

The analysis of computational cost for an algorithm is important. This section presents the
average running time analysis to show the relative computational time required per algo-
rithm. The analysis is performed on a system with Tesla T4 GPU. The malware file from
the Malimg and VirusShare datasets are used to analyse the average running time of the
proposed algorithms. The parameters in the code of various algorithms are used as given in

Table 8 Average running time
per sample (in seconds) Model Run time

Nataraj et al. [30] 0.118

Liu et al. [23] 0.097

Kalash et al. [15] 0.091

Naeem et al. [28] 0.081

Cui et al. [8] 0.078

Gibert et al. [11] 0.102

Naeem et al. [26] 0.195

Nisa et al. [32] 0.099

Yuan et al. [44] 0.103

Verma et al. [43] 0.071

S-DCNN 0.062
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the papers. Table 8 shows the average computation time to process a sample malware for
the algorithms. Most of the algorithms uses either CNN-based deep classifiers or complex
machine learning classifiers which requires comparably larger time. The proposed S-DCNN
uses a light Multilayered perceptron based classifier which improves the speed of the pro-
posed method. It can be noticed from Table 8 that the proposed S-DCNN outperforms the
other contemporary algorithms. The results of the proposed method are shown in bold.

5 Conclusion

This paper proposes a stacked deep convolutional model to address malware classification
problem. The proposed method uses the concept of transfer learning and ensemble learn-
ing. It formulates a robust and efficient architecture for malware classification by ensemble
of the sub-models. The ensemble model extracts the features from the malware file to per-
form the multilayered perceptron based classification. The effective ensemble enables a
simple classifier to classify the samples effectively. It is demonstrated that the proposed
model is able to tackle the challenges posed by the unbalanced nature of the real-world
datasets and is resilient to standard obfuscation techniques. Further, it is established that
the proposed model is effective with the help of a comprehensive evaluation using suitable
statistical metrics, extensive result comparison with existing models, and diverse ablation
experiments.
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