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Enhanced optical flow-based full reference video
quality assessment algorithm

Sagar Gujjunoori1 ·Madhu Oruganti2 ·Alwyn Roshan Pais3

Abstract
Full reference video quality assessment based on optical flow is emerging. Human Visual
System (HVS) based video quality assessment algorithms are playing an important role in
effectively assessing the distortions in video sequences. There exist very few video quality
assessment algorithms which consider spatio-temporal distortions effectively. To address
the above issues, we present an enhanced optical flow based full reference video quality
algorithm which considers the orientation feature of the optical flow while computing the
temporal distortions as opposed to the use of feature, minimum eigenvalue as in the state
of the art. Further, it presents an interquartile range based comparative weighted closeness
(INT-CWC) measure which aimed to measure the comparative dispersion of video quality
scores of any two video quality assessment algorithms with DMOS scores. Here INT-CWC
measure is a novel attempt. The performance of proposed scheme is evaluated using the
LIVE dataset and scheme is shown to be competitive with, and even out-perform, existing
video quality assessment algorithms.

Keywords Video Qualti assessment · DMOS · Optcial flow · Human visual system (HVS)

1 Introduction and literature

1. Nowadays, video technology and its applications has huge demand in communication
systems. The importance for reliable video quality assessment is also increasing. In
recent past many video quality assessment methods and metrics are came to light with
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variable computational complexity and accuracy. As per recent survey, e.g., [20], 66%
of data traffic is due to video transmission from mobile devices.

2. The traditional video quality metrics, such as signal-to-noise ratio (SNR), peak-signal-
to-noise ratio (PSNR), and mean squared error (MSE), though computationally simple,
are known to disregard the viewing conditions and the characteristics of human visual
perception [11]. Although subjective video quality assessment methods may serve
the purpose, based on the groups of trained/untrained human evaluators. Further, to
meet the standards ITU-T, these evaluation methods must follow straightened condi-
tions such of viewing distance, test duration, room illumination, etc [16, 22] and these
methods are time consuming expensive and laborious.

3. The validation tests, for objective video quality metrics, developed by VQEG is
remarkable in this direction [23].

4. More recently, a full reference video quality metric called MOtion-based Video
Integrity Evaluation (MOVIE) index was proposed by Seshadrinathan and Bovik [8],
FLOSIM [13] and Ortiz-Jaramillo et al. [1]. The MOVIE model, strives to capture the
characteristics of the middle temporal (MT) visual area of the visual cortex in the human
brain for video quality analysis. Neuroscience studies indicate that the visual area MT
is critical for the perception of video quality [2].

5. The response characteristics of the visual area MT are modelled using separable Gabor
filter banks. The model described two indices, namely a Spatial MOVIE index that pri-
marily captures spatial distortions and a Temporal MOVIE index that captures temporal
distortions. However, the MOVIE index is not suitable which is considering the opti-
cal flow baged visual qualities assessment that emphasize on the HVS characteristics.
In [4], proposed a method by considering direction of optical flow in video is used for
video quality assessment scores. In [18] proposed a method for computing video quality
assessment score by considering HVS and optical flow concepts.

Motion detection plays an important role in video analysis. Optical flow based motion
estimation algorithms became more popular in estimation of motion trajectories [5, 6,
12]. There are significant contributions in the state of the art to assess the distorted video
sequences [15, 19, 24, 25]. However, understanding the Human visual system yet an open
area of research. Recently optical flow based video quality assessment algorithms are
emerging which attempt to understand the human visual system characteristics while mea-
suring the distortions in video sequences [13, 20]. Manasa et al. algorithm (FLOSIM) [13]
have proposed an optical flow based full referenced video quality assessment algorithm by
considering the statistical features of optical flow. Manasa et al. have presented the Full
Reference (FR) technique to measure the perceptual annoyance that results from temporal
distortions. The statistical features: mean, standard deviation of the flow magnitudes and
minimum eigenvalue of a flow are considered to quantify the temporal distortions.

In the paper we claim that the consideration of the statistical feature, minimum eigen-
value, for measuring the randomness in the optical flow be improved. We can observe for
certain videos, as in Fig. 1, that the video quality scores are far away from the DMOS scores.
In Fig. 1, the x- axis represents various test video sequences and y- axis represents video
quality scores in terms of DMOS and FLOSIM values. This motivated us to propose another
model to capture the temporal distortions that results from random flow. We proposed to
use the orientation feature of the optical flow which effectively quantifies the randomness
in flow, as opposed to the use of minimum eigenvalue as in [13].

From the Fig. 2, we can observe that though the video quality scores we obtained
using our proposed algorithm are more closer to the DMOS score when compared to the
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Fig. 1 Comparison of FLOSIM video quality scores with DMOS scores

FLOSIM, the correlation coefficient with DMOS are lower. This motivated us to propose yet
another measure, referred as INT-CWC measure, aimed to provide a comparative closeness
score with DMOS for any two video quality assessment algorithms. We hypothesize that if
majority of the video quality scores of an algorithm are closer to the profile of DMOS scores,
its performance should be appreciated even few extreme deviations from DMOS exist.

The summary of our contributions are as follows. The article aims at addressing the
issue of video quality assessment, emphasizing on human visual system. It first propose
a full reference optical flow based video quality assessment algorithm by considering
orientation features and then propose interquartile based comparative weighted closeness
measure(INT-CWC). Our experimental results demonstrate that the first video quality
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assessment algorithm achieves much closer video video quality scores to DMOS scores and
the INT-CWC measure is highly correlated with the video quality score profiles.

The rest of the article is organized as follows. In Section 2, we present our two proposed
contributions. Section 3 presents the experimental results. In Section 4, we conclude the
article.

2 Proposed work andmethodology

The proposed work is presented in the following two sections. In Section 2.1, we present
the enhanced optical flow based full reference video quality assessment algorithm. In
Section 2.2, we present the INT-CWC: Interquartile based comparative weighted closeness
measure.

2.1 Enhanced video quality assessment algorithm

We propose an HVS based full reference video quality assessment model which aimed to
enhance that of Manasa et al. algorithm (FLOSIM) [13]. Manasa et al. algorithm at first
computes temporal distortions and spatial distortions separately and then computes the com-
bined final video quality score by their proposed pooling strategy. We follow the same
approach, however the proposed model differs in computation of temporal features. Please
refer the figure captioned overview of the proposed approach in Manasa et al. algorithm
[13] and its overview can be seen in Fig. 3.

To obtain the spatial distortion features the MS-SSIM index [26] is used. To extract
the temporal features any optical flow estimation algorithm can be used. The idea behind
temporal distortion features computation is that there exist a deviation in local statistical
properties of optical flow due to distortions when compared to the undistorted optical flow
statistics [13]. Further, Manasa et al. [13] algorithm claim that local mean μ|.| and local
standard deviations σ|.| are well capable of capturing the local flow inconsistencies and
randomness of optical flow can be represented by the minimum eigenvalue λ|.|. We claim
that the use of feature minimum eigenvalue, to represent the randomness is not well capable.
Due to the use of this feature for some video sequences such as Mobile and Calendar and
Park run [21, 22] as in Fig. 1, the distortion scores of FLOSIM are higher than the DMOS
values.

2.1.1 Notations andmodels

Let Vi
x and Vi

y , be the x and y components of ith velocity matrices of size M × N respec-
tively, can be computed using any optical flow estimation algorithm, [5, 6, 12], between two
consecutive video frames Fj and Fj+1, each of sizeM×N , respectively. LetVi = (Vi

x ,V
i
y).

In the proposed model, we used Gunnar Farneback optical flow algorithm [5], and its the
implementation is available in Matlab R2018a. From the velocity matrices obtained using
Gunnar Farneback optical flow estimation algorithm, the magnitudes and scaled phase
angles (in radians) can be defined as in (1) and (2) respectively.

mi
xy =

√
vi
x + vi

y (1)

where vi
x and vi

y are the elements of Vi
x and Vi

y respectively. Let Mi be the ith magnitude

matrix of size M × N , which contain all the magnitude values, mi
xy as in (1), computed
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between the Vi
x and Vi

y . Similarly the phase angle (orientation) between vi
x and vi

y is
computed as in (2)

θi
yx = atan2(vi

y, v
i
x) × (

360

π
) (2)

Let Ai be the ith phase angle matrix of size M × N , which contain the elements, θi
yx ,

computed between the matrices Vi
x and Vi

y . And Ai (x, y) = θi
yx denotes an element at

coordinate (x, y).

2.1.2 Description

In Manasa et al. [13] algorithm, the temporal local statistical features are computed using the
optical flow components. These local statistical features are computed frame-by-frame basis
and each feature is computed on 7×7 optical flow patches. The three features computed on
optical flow components are given in (3), (4), (5).

fi1 = [μi
1, μ

i
2, μ

i
3, . . . , μ

i
K×L]T , (3)

fi2 = [σ i
1, σ

i
2, σ

i
3, . . . , σ

i
K×L]T , (4)

fi3 = [λi
1, λ

i
2, λ

i
3, . . . , λ

i
K×L]T , (5)

Where fi1 denotes the per frame feature vector ofVi , andμ|.| denotes the mean of the flow
magnitudes, mi

xy as in (1), that are present in a local patch of size 7 × 7. Similarly, fi2 is the
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second per frame feature vector of Vi , and σ|.| is the standard deviation of flow magnitudes,
mi

xy as in (1), that are present in the local patch of size 7 × 7. Whereas fi3 is the third per

frame feature vector of Vi , and λ|.| denotes that minimum eigenvalue of flow patches of
covariance matrix. There are K × L number of non-overlapping patches in a frame.

In the proposed model, the computation of first feature fi1 vector and second feature vec-
tor fi2 is same as Manasa et al. algorithm [13], but the computation of third feature fi3 differs.
In Manasa et al. algorithm, it is stated that the perceivable distortion can be effectively char-
acterized by the measure of dispersion of the features. The measure of dispersion of data is
given in (5), where CV (.) denotes the coefficient of variation, z denotes the data vector, μz
is the mean of z, σz denotes the standard deviation of z.

CV (z) = σz

μz
(6)

Once the CV (fi1) and CV (fi2) are computed and pooled, the difference in dispersion is
computed as follows in (7).

D(zr , zt ) = CV (zr ) − CV (zt ) (7)

Where zr is the reference data vector and zt is the test data vector. The definition in (7)
is applied to fi1, f

i
2, i.e, we can be obtain D(fi1r, f

i
1t) and D(fi2r, f

i
2t) from (7).

We propose a different way of computing the third feature fi3, which effectively computes
the randomness of the optical flow that effectively quantifies the temporal distortions. The
proposed method of computing the fi3, is presented from (8)-(14).

Ai
1(x, y) =

{ − 1, if θi
yx < 0

1, otherwise
(8)

Ai
2(x, y) = |θi

yx | (9)

ai
1 = [σAi

1
1 , σ

Ai
1

2 , σ
Ai
1

3 , . . . , σ
Ai
1

K×L]T , (10)

ai
2 = [σAi

2
1 , σ

Ai
2

2 , σ
Ai
2

3 , . . . , σ
Ai
2

K×L]T , (11)

ηi
l =

⎧
⎨
⎩

σ
Ai
1

l × σ
Ai
2

l , if σ
Ai
1

l �= 0 ∧ σ
Ai
2

l �= 0

ψi
l , otherwise

(12)

where,

ψi
l =

⎧
⎨
⎩

σ
Ai
1

l , if σ
Ai
2

l = 0

σ
Ai
2

l , otherwise
(13)

for l = 1, 2, 3, . . . , K × L.

fi3 = [ηi
1, η

i
2, η

i
3, . . . , η

i
K×L]T , (14)

The deviation in overall values of fi3 in (14) of the distorted patch from the reference
patch is quantified as below in (15).

C(fi3r , f
i
3t ) = 1 − corr(fi3r , f

i
3t ) (15)

where the subscript r denotes reference and t denotes test sets, and corr(x, y) is the correla-
tion coefficient computed between two data vectors x and y. The pooling strategy and final
video score computation is same as that of Manasa et al. algorithm [13]. Readers have been
directed to refer [13] for more details on pooling strategy and final video score computation.
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2.2 INT-CWC: Interquartile based comparative weighted closeness measure

We propose INT-CWC measure which aimed to measure the quantitative closeness of any
two video quality assessment algorithms to be compared with DMOS. When majority of
the video quality scores in the first algorithm are closer to DMOS when compare to sec-
ond algorithm, the first algorithm performance is superior and similarly when majority of
video quality scores in the second algorithm are closed to DMOS when compared to first
algorithm, the second algorithm performance is superior.

Let, sd = [sd
1 , sd

2 , sd
3 , . . . , sd

N ]T ,

sm1 = [sm1
1 , s

m1
2 , s

m1
3 , . . . , s

m1
N ]T and

sm2 = [sm2
1 , s

m2
2 , s

m2
3 , . . . , s

m2
N ]T

denotes the DMOS score, video quality scores of first algorithm and second algorithms
respectively and N is the total number of video scores. The absolute difference between the
DMOS scores and video quality scores of first algorithm are given in (16).

�m1 = [�m1
1 ,�

m1
2 ,�

m1
3 , . . . , �

m1
N ]T (16)

where �
m1
i = |sd

i − s
m1
i | and for i = 1, 2, 3, . . . , N . Similarly, the absolute difference

between the DMOS scores and video quality scores of second algorithm are given in (17).

�m2 = [�m2
1 ,�

m2
2 ,�

m2
3 , . . . , �

m2
N ]T (17)

where �
m2
i = |sd

i − s
m2
i | and for i = 1, 2, 3, . . . , N . We propose to use upper whisker

of interquartile range (IQR) statistical dispersion measure [27] in designing the INT-CWC
measure. To compute the upper whisker, Q1 is computed as follows in (18).

Q1 = median(�z) (18)

Let �ẑ = [�ẑ
1,�

ẑ
2, �

ẑ
3, . . . , �

ẑ
n]T denotes all the remaining terms in �z which are

greater than Q1. Then compute Q3 as in (19).

Q3 = median(�ẑ) (19)

The upper whisker is given below in (20).

I = Q3 + 1.5 × IQR (20)

where IQR = Q3 − Q1.
Let I�m1 be the upper whisker threshold for �m1 which can be computed using (20)

and I�m2 be the upper whisker threshold for �m2 which can be computed using (20). We
compute the updated �z into �z1 and compute Nz as below in (21), where Nz denotes the
number of times z is updated and initially Nz = 0.

(�z1(i), Nz) =

⎧
⎪⎨
⎪⎩

(I,Nz = Nz + 1), if �z(i) > I,

for i = 1, 2, 3, . . . , N

(�z(i), Nz), otherwise

(21)

Let N�m1 denotes the number of times �m1 is updated using (21) and T�m1 be the
summation of updated values of �m1 computed using (21) and (22). Similarly, N�m2 be the
number of times �m2 is updated using (21) and T�m2 be the summation of updated values
of �m2 computed using (21) and (22).

Tz1 =
N∑

i=1

�z1(i) (22)
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Table 1 Correlation between
FLOSIM and proposed algorithm Video Correlation

Sequence Coefficient

Riverbed 0.9678

Tractor 0.9430

Sunflower 0.8482

Pedestrian Area 0.8368

Shields 0.7556

Rushhour 0.6917

Later compute the (n�m1 , n�m2 ) as in (23).

(n�m1 , n�m2 ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

n�m1 = n�m1 + 1, if �
m1
i < �

m2
i ,

for i = 1, 2, 3, . . . , N

n�m2 = n�m2 + 1 if �
m1
i > �

m2
i ,

for i = 1, 2, 3, . . . , N

(n�m1 = n�m1 + 1,

n�m2 = n�m2 + 1), otherwise

(23)

where n�m1 and n�m2 are initially assigned with 0.
Using n�m1 , N�m1 and T�m1 , and n�m2 , N�m2 and T�m2 , we compute the S1 and S2 as

follows in (24) and (26) respectively.

S1 =
{

X, if n�m1 �= 0

T�m1 , otherwise
(24)

X =
⎧
⎨
⎩

n�m1 × T�m1 × 1

N�m1
, if N�m1 �= 0

n�m1 × T�m1 , otherwise
(25)

S2 =
{

Y, if n�m2 �= 0

T�m2 , otherwise
(26)

Y =
⎧
⎨
⎩

n�m2 × T�m2 × 1

N�m2
, if N�m2 �= 0

n�m2 × T�m2 , otherwise
(27)

Using (24) and (26) we compute the final comparative scores as below in (28) and (29)
for the first algorithm and second algorithm respectively.

Sm1 = S1

S2
(28)

Sm2 = S2

S1
(29)

We refer Sm1 and Sm2 as INT-CWC measures for first algorithm and second algorithms
to be compared with DMOS.
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Fig. 4 Performance improvement

3 Experimental results and discussion

In the proposed full reference video quality assessment algorithm, we used the LIVE
video dataset [21, 22]. This database consists of ten original and 150 distorted
videos. The distorted videos are generated from a set of original videos by using
standard distortions like H.264 compression, MPEG-2 compression, transmission of
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H.264 compressed bit streams through error-prone IP networks and through error-
prone wireless networks. These distortions are applied at different levels such that
by using original video, 15 corresponding distorted videos are produced. Experimen-
tal results are shown in Table 1. We compare the experimental results with Manasa
et al. algorithm FLOSIM [13]. We used FLOSIM code available at [3]. The proposed opti-
cal flow based full reference video quality assessment algorithm is implemented using the
Gunnar Farneback optical flow estimation algorithm available in Matlab R2018a. The pro-
posed video quality scores for Riverbed (rb), Tractor (tr), Sunflower (sf), Pedestrian Area
(pa), Shields (sh), Rushhour (rh) are highly correlated with that of the FLOSIM scores.
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Fig. 7 FLOSIM and Proposed
video quality scores profile
compared to DMOS
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Further, from Fig. 4, we can observe that the video quality scores obtained for the video
sequences Mobile and Calender(mc), Park run(pr) and Blue sky(bs) using the proposed
algorithm are more nearer to the DMOS scores. Note that in Figs. 2, 4, 5, 6, 7, 8 and 9
the x-axis represents the test video sequences and y-axis represents video quality scores
in terms of DMOS, FLOSIM, and proposed algorithms. The scatter plot of video quality
scores for all the 150 video sequences can be observed in Fig. 2 and We can note that the
video quality scores obtained using the proposed algorithm are much nearer to the DMOS
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Fig. 8 FLOSIM and Proposed video quality scores profile compared to DMOS
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Fig. 9 FLOSIM and Proposed
video quality scores profile
compared to DMOS
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Table 2 Closeness score to DMOS

FLOSIM Proposed

Video Sequence INT-CWC Correlation INT-CWC Correlation

(Sm1 ) Score with DMOS (Sm2 ) Score with DMOS

Mobile and Calendar 0.1012 0.8728 9.8833 0.2985

Park run 0.1846 0.7879 5.4172 0.5990

Blue sky 0.2678 0.3713 3.7344 -0.1073

Pedestrian Area 0.5085 0.8974 1.9667 -0.0992

Riverbed 0.8991 0.6073 1.1123 0.4333

Sunflower 0.5404 0.7368 1.8506 0.6358

Rushhour 0.6286 0.4909 1.5908 -0.1864

Tractor 1.0411 0.8850 0.9605 0.4958

Shields 1.4863 0.5276 0.6728 0.1371

Station 2.0428 0.7746 0.4895 0.6451

scores. The video quality score profiles for video sequences with wireless distortions, IP
distortions, H.264 compression, MPEG-2 compression can be seen in Fig. 7. And also all
the individual video sequence video quality score profiles can be seen in Figs. 8 and 9.

From Fig. 4 and Table 2, we can observe that though the correlation coefficient is lower,
for the video sequences Mobile and calendar, Park run and Blue sky(in Table 2), when
compared to FLOSIM, the video quality scores obtained using the proposed algorithm are
much closer to the DMOS scores. This motivates us to design the INT-CWCmeasure. From
Table 2, Figs. 5 and 6 , we can observe that though the correlation coefficient is lower,
the proposed algorithm out performs in terms of INT-CWC score when compared to the
FLOSIM algorithm by Manasa et al.

4 Conclusion

Instead of using minimum eigenvalue to capture the randomness features, we used orienta-
tion feature of optical flow to improve the distortion computation. The proposed INT-CWC
measure, which aimed to measure the quantitative closeness of any two video quality
assessement algorithms to be compared with DMOS, is novel attempt. However, there is
further scope to improve the orientation feature computation for better understanding the
randomness.
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