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Abstract
Accurate segmentation of brain tumors is an essential stage in treatment planning. Fully
convolutional neural networks, specifically the encoder-decoder architectures such as U-net,
have proven successful in medical image segmentation. However, segmenting brain tumors
with complex structure requires building a deeper and wider model which increases the
computational complexity and may also cause the gradient vanishing problem. Therefore,
in this work, we propose a novel encoder-decoder architecture, called Inception Residual
Dense Nested U-Net (IRDNU-Net). In this model carefully designed Residual and Inception
modules are used in place of standard U-Net convolutional layers to increase the width of
the model without increasing the computational complexity. Additionally, in the proposed
architecture, the encoder and decoder are connected via a sequence of Inception-Residual
densely nested paths to extract more information and increase the depth of the network
while reducing the number of network parameters. The proposed segmentation architecture
was evaluated on two large brain tumor segmentation benchmark datasets; the BraTS’2019
and BraTS’2020. It achieved a mean Dice similarity coefficient of 0.888 for the whole
tumor region, 0.876 for the core region, and 0.819 for the enhancement region. Experimental
results illuminate that IRDNU-Net outperforms U-Net by 1.8%, 11.4%, and 11.7% in the
whole tumor, core tumor, and enhancing tumor, respectively. Moreover, the IRDNU-Net
enables a great improvement on the accuracy compared to comparative approaches, and
its ability in the face of challenging problems, such as small tumor regions, with fewer
parameters.
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1 Introduction

Brain tumors are among the most deadly cancers worldwide [30]. The most prominent
brain tumor [4] are Gliomas. Gliomas are graded into High-Grade (HGG) and Low-Grade
(LGG) gliomas. Based on the tumor’s pathological evaluation gliomas, comprise numer-
ous sub-areas of heterogeneous histology, namely enhancing, edema, and necrotic core
tumors. Magnetic Resonance Imaging (MRI) is one of the most important tools for assess-
ing gliomas as it can provide a lot of information about the tumor structure. The typical
phases of MRI screening [21] include Fluid-attenuated reversal, T1-weighted, T1-weighted
contrast-enhanced, and T2-weighted. Accordingly, brain tumor segmentation from multi-
modality MRI is essential to evaluate the tumor aggressions, and responsiveness to glioma
treatment, and it has beneficial applications for brain tumor diagnosis, tracking, and treat-
ment. However, manual segmentation of certain brain tumors is vulnerable to human
mistakes and it is a time-consuming task. There is also a lack of reproducibility, which harms
patient management’s effectiveness and can result in ineffective therapy [31]. On the other
hand, automatic brain tumor segmentation can provide a more effective solution [29]. The
progress of deep learning in this area in recent years [10, 23] is immense, as it is considered
the state-of-the-art in classification, segmentation, and detection applications [25]. Convo-
lutional neural networks (CNNs) [3] specifically are one of the most popular techniques for
building efficient segmentation approaches as they can automatically learn the most useful
and relevant features. However, accurate tumor segmentation remains a difficult task due
to the heterogeneous appearance and multiple types of brain tumors, as well as the high
variability of brain tumor size, shape, position, and intensity, and contrast in different imag-
ing modalities [34]. Therefor, in this paper we introduce a novel Inception Residual Dense
Nested U-Net (IRDNU-Net) for solving the insufficient precision of small-scale tumors
with fewer numbers of parameters. Experiments on two brain tumor segmentation datasets
demonstrate that IRDNU-Net method enables a significant improvement in accuracy com-
pared to other models, especially for small tumors, with less computational complexity. The
main contributions of this study can be summarized as follows:

• Based on the U-Net architecture, we propose an efficient brain tumor segmentation
approach called IRDNU-Net. It can extract more representative features from brain
tumors which enhances the segmentation accuracy specially for small tumors.

• In IRDNU-Net, to make the network structure wider, the standard convolutional layers
used in the U-Net architecture are replaced by carefully designed Residual Incep-
tion modules. The IRDNU-Net encoder and decoder sub-networks are linked by many
nested dense paths to increase the depth of the network as well.

• We evaluate the proposed architecture using two brain tumor segmentation datasets,
Brats 2019 and Brats 2020. The experimental results indicate that the proposed
automated segmentation approach is accurate and computationally efficient.

Following this introduction, Section 2 presents a brief survey of the related work.
Section 3 includes the details of the proposed architecture. In Section 4, experiments and
results are introduced in detail. Discussion is provided in Section 5, and conclusion is
summarized in Section 6.
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2 Related work

Utilizing deep learning for brain tumor segmentation has attracted increasing attention.
Perira et al. [32] suggested a 2D CNN network with a deeper layer structure using small 3
x 3 kernels to develop an automated brain tumor segmentation approach, which ranked in
the second position in the BraTS 2015 Challenge. Havaei et al. [16] constructed a cascaded
architecture that combines local and global paths. However, their architectures lose spatial
continuity and requires a large storage space which leads to low segmentation performance.
Zhao et al. [39] presented their solution to the segmentation of brain tumors by combining
fully convolutional (FCN) and Conditional Random Fields (CRFs), which achieved compet-
itive performance with only three imaging modalities, rather than four imaging modalities.
Using FCN architecture, Ronneberger et al. [33] constructed an asymmetric, fully convo-
lutional network called U-Net, comprising a contracting path that extracts spatial image
features and an expanding path that generates a segmentation map from the encoded fea-
tures. U-Net was commonly used for medical image segmentation tasks [17, 28], and brain
tumor segmentation is not an exception. Dong et al. [13] establish a 2D U-Net approach for
automatic tumor segmentation, which utilizes the Dice loss function, they obtained equiv-
alent results for the complete tumor region and better results for the core tumor regions.
Cahall et al. [5] proposed a new image segmentation framework using a U-Net architecture
with Inception modules to perform multi-scale feature extraction. They proposed a new loss
function based on the modified Dice Similarity coefficient. Haichun Li et al. [26] presented
a novel end-to-end approach for brain tumor segmentation, they proposed Inception mod-
ule in each block to learn network, and an efficient cascade training method for segmenting
sub regions however, the proposed approach suffers from a data imbalance. Cheng et al. [7]
introduced a new Memory-Efficient Cascade 3D U-Net which uses fewer down-sampling
channels to achieve high segmentation precision with less memory complexity. Ibtehaz et
al. [20] proposed MultiRes blocks to build a more robust and reliable approach, their pro-
posed approach are not perfect, but in most of the cases, it outperforms the classical U-Net
by a moderate margin. Zhou et al. [41] presented the deep architecture supervision with re-
designed skip pathways. However, the number of parameters, as well as the time to train the
network, is significantly higher. Brain tumors are known to have complex forms and various
sizes that contribute to the presence of small tumors. U-Net continuously reduces the image
dimension during the down-sampling process, resulting in low segmentation accuracy for
small-scale tumors. To further enhance its segmentation performance, several modules, such
as the Multi residual module, Dense module [12], and Inception module [36] are added to
the baseline model, which has facilitated the development of methods for brain tumor seg-
mentation. Parvez et al. [2] introduced approach of residual-dense connections based on
U-Net model, however, the final scores not improved enough. In general, although some
recent models have achieved some level of competitive success, they still have limitations.
For example, 1) they are ineffective at identifying smaller tumors, 2) the most advanced
models need enormous computational resources to achieve high segmentation accuracy. To
address these shortcomings, we developed a novel Inception Residual Dense Nested U-
Net. The Inception-Residual block allows us to make the proposed network substantially
wider, while residual connection makes the network easier to train. Meanwhile, nested
dense paths can increase the depth of the network, optimize the network results, and mini-
mize the computational complexity. In addition, compared to other state-of-the-art methods,
our IRDNU-Net significantly can achieve comparable results for the whole tumor regions,
and superior results for the core tumor regions, and enhancing tumor regions, with fewer
parameters.
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3 Material andmethods

3.1 Datasets

The proposed segmentation approach is evaluated using two benchmark datasets; the BraTS
2019, and BraTS 2020 brain tumor MRI datasets which were published by the Multi-Modal
Brain Tumor Segmentation Challenge (BraTS) [11]. BraTS 2019 train dataset contains 335
cases, 259 cases of HGG, and 76 cases of LGG while the BraTS 2019 validation dataset
has 125 unlabeled cases. The BraTS2020 dataset is larger than the BraTS2019 dataset with
a training set of 367 cases. The datasets are co-registered, re-sampled, and skull-stripped to
1 mm3. The size of each MRI image is 240 × 240 × 155, and each case has FLAIR, T1-,
T1-enhanced (T1c), and T2 volumes. Where the whole tumor (WT) region includes all intra-
tumor regions, i.e., necrosis non-enhancing tumor, edema, and enhancing tumor, Tumor
core (TC) region that incorporates non-enhancing tumor necrosis and enhancing tumor (ET)
region. For training, 25,000 2D patches of size 128 × 128 × 4 are randomly sampled from
each case that represents the four modalities. From the training dataset of BraTS 2019, 205
cases are used to form the 5,125,000 patches training set, and from BraTS 2020 we use 160
cases from the training dataset to form the 4,000,000 patches as shown in Table 1.

3.2 Methods

The proposed IRDNU-Net model for brain tumor segmentation depends on the same
encoder-decoder architecture like the U-Net model. However, as shown in Fig. 1, we deepen
and widen the encoder-decoder architecture by combining Inception-Residual modules and
re-designing the skip pathways, namely dense skip connections are presented. This architec-
ture will be used for brain tumor segmentation from four MRI modalities, namely; FLAIR,
T1, T2, and T1c.

3.2.1 Inception Residual Dense Nested U-Net(IRDNU-Net)

U-Net structures are Encoder-Decoder architecture. The Encoder tries to gradually lower the
spatial dimension of feature maps while capturing more high-level semantic characteristics.
While The goal of the decoder is to restore object characteristics and spatial dimensions.
Therefore, capturing more high-level characteristics in the encoder is important, and pre-
serving more spatial information in the decoder to increase segmentation performance.

Table 1 Training data partitioning

BraTS 2019 BraTS 2020

Training 164 128

Validation 41 32

Testing – 56

Number of training cases 205 160

Numbers of patches for training 4,100,000 3,200,000

Numbers of patches for validation 1,025,000 800,000

Numbers of patches for testing – –

Total numbers of patches 5,125,000 4,000,000
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Fig. 1 (a) The proposed IRDNU-Net architecture. (b) Illustration of the first skip pathway with Details. (c)
The schema for the Inception- Residual module

Based on the encoder-decoder architecture, Inception-Residual module, and the Dense
model, Fig. 1a demonstrates the proposed architecture denoted as IRDNU-Net. The pro-
posed network structure is composed of an encoding branch and a decoding branch. In each
encoder block we substitute the two convolution layers in the original U-Net model with
the proposed Inception-Residual block, as it will be described in the next section, followed
by a 2 × 2 max-pooling operation for down-sampling. At each down-sampling step we
double the number of feature channels. Correspondingly, the same number of up-sampling
processes is performed in the decoding branch to restore the spatial size of the segmented
output. Each up-sampling is implemented by a 2 × 2 transposed convolution, and the num-
ber of feature channels is halved. In U-Net, the feature maps of the encoder are directly
received in the decoder; however, in our proposed model dense nested paths in addition to
Inception-Residual blocks connect the encoder to the decoder. We allocate a parameter P

for each of the Inception-Residual blocks to control the number of convolution layer filters
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in these blocks to ensure a clear relation between the number of parameters of the baseline
U-Net model and the proposed one. The value of P is calculated as follows:

P = F × α (1)

Where F represents the number of the filters in the U-Net layer, and α represents a scalar
coefficient.

Similar to the baseline U-Net, we set the number of filters, F , to 32, 64, 128, 256, and
512. To minimize the number of parameters in our model, we assign α = 1.8 inside the
Inception-Residual block, we assign

[
P
12

]
,
[

P
6

]
,
[

P
4

]
, and

[
P
2

]
to the four consecutive convo-

lutional layers, respectively. In our experiments, we found that this mixture produced good
results: to balance between the parameters numbers reduction and improving segmentation
accuracy. Like the U-Net architecture, it is also noted that P doubles or halves after each
pooling or deconvolution process.

The Rectified Linear Unit (ReLU) function [15] is used for all covolutional layers in this
network. The output layer is activated with the same sigmoid activation function as with
the U-Net model. In Fig. 1, we show a diagram of the proposed Inception-Residual Dense
Nested U-Net model. The details of our architecture are listed in Table 2.

Inception-Residual Block The Inception module [37] can experimentally enhance the
visual representation. To increase the segmentation network’s ability, we use a residual con-
nection, due to its effectiveness in the segmentation of medical images [14]. The goal is to
add feature maps from various kernels of different sizes that can expand the network and
allow it to learn multi-scale features. Based on Inception-Residual module [36] the modi-
fied Inception-Residual U-Net denoted as (IResU-Net) is proposed in this work. Figure 1c
shows the modified Inception-Residual block. The modified Inception-Residual module
includes multiple sets of 1 × 1 convolutions, 7 × 1 convolutions, and 1 × 7 convolutions.
Compared with the original Inception-Residual module. We first add a Batch normalization
(BN) [22] layer after each convolutional layer to alleviate the gradient vanishing problem.
Consequently, 1 × 1 convolutions are applied on the identity skip connections to preserve
a similar relationship between the base U-Net number of filters and our suggested model.
As it can be noticed from Fig. 1c, the output filters generated from the convolution layers
in the right branch, 1 × 1, 1 × 7, 7 × 1, are concatenated with convolution layers in the
middle branch, 1 × 1, then this output added with the convolution layers in the left branch,
1 × 1. Suppose that yl is the lth layer output. The hn×n(·)is a n × n kernel convolutional
layer and hb(·) indicates the BN layer. Where fr(·) denotes the ReLU activation function,
concatenation function is denoted by ◦, the output of each Inception-Residual module can
be calculated as in (2):

yl+1 = hb(fr(hb(h1×1(hb(h1×1(yl) ◦ hb(h7×1(h1×7(h1×1(yl)))))) + hb(h1×1(yl)))) (2)

Dense Nested Paths The encoder feature maps are directly obtained from the decoder in
the original U-Net. While the main purpose of dense connection is making the network
deeper and wider without causing the gradient vanishing problem. So, in IRDNU-Net, we
also re-modeled skip pathways to enhance encoder-decoder network connectivity by using
dense nested paths denoted as (DNU-Net) with Inception-Residual blocks. To facilitate and
increase the model capacity for accurate brain tumor segmentation. We use three, two, and
one Inception-Residual blocks in the four Dense Nesting paths, respectively; in the blocks
of the four Nested paths, we use 32, 64, 128, and 256 filters, respectively as seen in Fig. 1a.
Figure 1b shows the skip pathway between Inception-Residual Block0,0 and Inception-
Residual Block0,4 which comprises a dense block of three Inception-Residual blocks. A
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Table 2 Inception-residual dense nested U-Net architectural details

Inception-Residual Dense Nested U-Net

Block Filter size Number of filters

Inception-Residual Block0,0 Conv2D(1,1) 4

Conv2D(1,1) 9

Conv2D(1,7) 14

Inception-Residual Block0,4 Conv2D(7,1) 28

Conv2D(1,1) 55

Inception-Residual Block1,0 Conv2D(1,1) 9

Conv2D(1,1) 19

Conv2D(1,7) 28

Inception-Residual Block1,3 Conv2D(7,1) 57

Conv2D(1,1) 113

Inception-Residual Block2,0 Conv2D(1,1) 19

Conv2D(1,1) 38

Conv2D(1,7) 57

Inception-Residual Block2,2 Conv2D(7,1) 115

Conv2D(1,1) 229

Inception-Residual Block3,0 Conv2D(1,1) 38

Conv2D(1,1) 76

Conv2D(1,7) 115

Inception-Residual Block3,1 Conv2D(7,1) 230

Conv2D(1,1) 459

Conv2D(1,1) 76

Conv2D(1,1) 153

Inception-Residual Block4,0 Conv2D(1,7) 230

Conv2D(7,1) 460

Conv2D(1,1) 919

concatenation process merges the preceding Inception-Residual block production with the
equivalent up-sampled output of the lower dense block in the same dense block before each
Inception-Residual block. The skip pathway is formulated as follows: bi,j represent the
Inception-Residual output. Considering i as the down-sampling layer on the encoder, and j

as the dense block’s Inception-Residual layer along the skip pathway, the bi,j is calculated
according to:

bi,j =
{

IR(bi−1,j ) , j = 0.

IR
([[

bi,k
]j−1
k=0 , U(bi+1,j−1)

])
, j > 0.

(3)

Where the function IR(·) is the Inception-Residual operation, U(·) represents the layer of
up-sampling, and [ ] represents the layer of concatenation. The blocks at j = 0 only obtain
one entry from the last encoder layer. Blocks receive two inputs at level j = 1, both from
the two-succession level encoder network and blocks at j > 1 obtain j+1 inputs, which
obtained from the previous j blocks on the same skip path, and the last input is the up-
sampled output from the bottom skip path. Figure 1b illustrates (3) by displaying how the
feature maps move along the top skip path of our proposed architecture.
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3.3 Combined loss function

In a deep learning system, the loss function is crucial when we are dealing with extremely
imbalanced data. A proper selection of the loss function may also improve the model accu-
racy. In this study, we utilize a combined loss function, defined in (4), that integrates the
weighted Cross-Entropy loss (WCE), defined in (5) and Generalized Dice Loss (GDL) [35],
defined in (6), to alleviate the effect of the class imbalance problem.

CL = WCE + GDL (4)

WEC = −1

k

∑

k

L∑

i

wigiklog(pik) (5)

GDL = 1 − 2

(
L∑

i

wi

∑

i

gik pik

)

L∑

i

wi

∑

i

( gik + pik )

(6)

Where L represents the total number of labels, k is the size of a batch, wi is the weight of
the label ith. For the generalized dice loss, gi and pi represent the value of the pixel of the
binary ground truth image and the binary segmented image.

4 Experiments and results

4.1 Experimental setup

All experiments were performed using the Keras framework with the TensorFlow back-end.
We used the stochastic gradient-based (SGD) [9] as optimizer. A batch of size 8 is used. For
20 epochs, we have trained our model because the loss of validity did not change afterward.
The momentum = 0.8, the initial learning rate = 0.0001 decay with a decay factor of 0.1.
The training was carried out on an Intel Corei7 3.5GHz machine using NVIDIA GeForce
GTX 1070.

4.2 Evaluationmetrics

In this work, we utilized the Dice score, Sensitivity, and Specificity metrics to assess the seg-
mentation results. The Dice similarity score primarily measures the overlap region between
the segmented lesion and the ground truth segmentation. Sensitivity is often referred to as a
true positive rate, and the Specificity is utilized to define the true negative rate, which can
be calculated using the next Equations, respectively:

DSC = 2T P

(FP + 2T P + FN)
(7)

Sensitivity = T P

T P + FN
(8)

Specif icity = T P

T P + FP
(9)

Where T P , FN , and FP denote true positive, false negative, and false positive.
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Table 3 Segmentation results on Training BraTS 2019 Dataset

DSC Sensitivity Specificity

Whole Core Enhancing Whole Core Enhancing Whole Core Enhancing

Mean 0.888 0.876 0.819 0. 883 0.869 0.857 0.994 0.998 0.997

Std.Dev. 0.091 0.154 0.171 0.130 0.169 0.152 0.005 0.003 0.005

Median 0.92 0.918 0.869 0.926 0.920 0.903 0.997 0.999 0.998

25 quantile 0.877 0.874 0.788 0.864 0.861 0.814 0.994 0.997 0.997

75quantile 0.947 0.939 0.911 0.960 0.957 0.943 0.999 0.998 0.963

4.3 Experimental results

Our experiments are divided into three parts, which are carried out on the BraTS 2019
training dataset, the BraTS 2019 validation dataset, and the BraTS 2020 testing dataset.
Evaluation results of BraTS2019 training and validation dataset are disseminated on the
challenge leaderboard website.1 Meanwhile, the BraTS2020 testing dataset is individual
runs.

4.3.1 Evaluation results on BraTS2019 training dataset

205 cases from the BraTS 2019 datasets are used in this experiment. 80% of the dataset
(164 subjects) are used for model training and the remaining 20% (41 subjects) are used
for validation as mentioned in Table 1. The evaluation results of the proposed IRDNU-Net
on the BraTS 2019 training dataset are presented in Table 3. Quantitatively the proposed
network achieved a DSC of 0.888 for the whole tumor, 0.876 for core tumor, and 0.819 for
the enhancing tumor. The mean, standard deviation, the median, 25th and 75th percentiles
for all metrics are shown in the Table 3. The proposed approach has been evaluated by DSC,
Specificity, and Sensitivity, which are measured using the online evaluation system on the
leaderboard BraTS 2019 online website.2

Ablation Study To study the effect of different modules and enhanced architectures, we
perform an ablation study for the DNU-Net, IRU-Net, and IRDNU-Net models. The abla-
tion study results are summarized in Table 4 for the dice similarity coefficient (DSC), where
(DNU-Net), (IRU-Net), and (IRDNU-Net) are our enhanced models on U-Net. As can be
noticed from Table 4, IRDNU-Net produces the most accurate segmentation results among
the four models with an improvement of 1.8% on the whole tumor, 11.4% for core tumor,
and 11.7% on enhancing tumor over the standard U-Net. It outperforms the DNU-Net by
a ratio of 1.2% for the whole tumor, 4.3% for the core tumor, and 7.8% for enhancing
tumor. Compared with IRU-Net, IRDNU-Net outperforms IRU-Net with gains of 0.6% on
the whole tumor, 6.7%, and 5% accuracy improvement on the core tumor, and enhancing
tumor, respectively.

Comparative Study The proposed IRDNU-Net is also compared to other related brain
tumor segmentation approaches to assess its efficiency. This comparison is presented in

1https://ipp.cbica.upenn.edu
2https://www.cbica.upenn.edu/BraTS19/lboardTraining.html
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Table 4 Ablation study on the training BraTS 2019 Dataset and comparison segmentation results with
baselines

Methods Whole Core Enhancing

U − Net∗ 0.87 0.762 0.703

DNU-Net(our) 0.876 0.833 0.742

IRU-Net(our) 0.882 0.809 0.77

IRDNU-Net (our) 0.888 0.876 0.82

Table 5, IRDNU-Net outperforms other top networks in the DSC value for the core tumor
and enhancing tumor but it is slightly lower than the approach proposed by li et al. [26],
and Hu et al. [18] for the whole tumor. In li et al. [26], the network structure is optimized
by designing and refining the U-Net architecture. K.Hu et al. [18] authors apply fully con-
nected conditional random fields and multi-cascaded. In comparison to Zhang et al. [38]
and Chen et al. [8] methods, the proposed IRDNU-Net model achieves enhanced segmen-
tation efficiency. Zhao et al. [39] utilized conditional random field to increase efficiency.
However, our IRDNU-Net achieves 0.8% on the whole tumor, 2.7%, on core tumor, and
4.9% for enhancing tumor achieving gains over them , without applying any post-processing
strategy. Compared to the network developed in Memory Efficient Cascade 3D U-Net [7],
Our IRDNU-Net outperforms this network for core tumor and enhanced tumor by a large
margin of 5.6% and 5.4%.

By comparing the sensitivity metric, our IRDN U-Net achieves a sensitivity score
of 0.883 for the whole tumor, 0.869 for the core tumor, and 0.857 for enhancing
tumor segmentation. In particular, an optimum sensitivity score for core tumor segmen-
tation is obtained. While the best sensitivity score for the whole and Enhancing tumor
obtained by Hu et al. [18], the comparative sensitivity results, to a certain extent, indi-
cate the efficacy of IRDNU-Net in the segmentation of small tumors. By comparing the
specificity score, our IRDNU-Net achieved a specificity of 0.994 for the whole tumor,
0.998 for the core tumor, and 0.997 for the enhancing tumor. In general, the IRDNU-
Net model can achieve competitive efficiency and outperforming other state-of-the-art
techniques.

Table 5 Comparison of segmentation results on the BraTS 2019 Training Dataset with typical methods

DSC Sensitivity Specificity

Methods Whole Core Enhancing Whole Core Enhancing Whole Core Enhancing

Cheng et al. [7] 0.89 0.811 0.765 0.898 0.816 0.769 0.994 0.994 0.997

Li et al. [26] 0.89 0.733 0.726 0.895 0.75 0.743 – – –

K. Hu et al. [18] 0.89 0.82 0.777 0.90 0.84 0.86 – – –

Chen et al. [8] 0.888 0.844 0.739 0.880 0.832 0.786 0.994 997 0.997

Zhao et al. [39] 0.88 0.84 0.77 0.86 0.82 0.80 – – –

Zhang et al. [38] 0.876 0.772 0.72 – – – – – –

IRDNU-Net(our) 0.888 0.867 0.819 0.883 0.869 0.857 0.994 0.998 0.997
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Table 6 Segmentation results on BraTS 2019 validation dataset

DSC Sensitivity Specificity

Whole Core Enhancing Whole Core Enhancing Whole Core Enhancing

Mean 0.865 0.864 0.806 0.885 0.884 0.842 0.992 0.996 0.996

Std.Dev. 0.104 0.119 0.132 0.101 0.093 0.105 0.009 0.007 0.008

Median 0.897 0.907 0.842 0.923 0.906 0.855 0.994 0.999 0.998

25 quantile 0.865 0.843 0.772 0.851 0.849 0.80 0.991 0.997 0.997

75quantile 0.922 0.934 0.89 0.951 0.95 0.917 0.997 0.999 0.999

4.3.2 Evaluation results on BraTS2019 validation dataset

We use 66 validation cases from the validation to take part in the BraTS 2019 competi-
tion. Our algorithm’s segmentation efficiency was calculated by using the online evaluation
system for DSC, Specificity, and Sensitivity in the challenge leaderboard Web site.3 These
results are available on the leader-board section of these challenges under the title “Nag-
wasalim”. The experimental results are shown in Table 6. Quantitatively, DSC is 0.865 for
the whole tumor, 0.864 for the core tumor, and 0.806 for the enhancing tumor. The mean,
standard deviation, the median, 25th and 75th percentiles of all metrics are also shown in
Table 6.

Ablation Study Table 7 demonstrates a comparison of the segmentation results with base-
lines. Also, Table 8 demonstrates the comparative results with other standard approaches.
The comparison results between U-Net, DNU-Net, IRU-Net, and IRDNU-Net has shown
in Table 7 are identical to those in Table 4. In comparison, IRDNU-Net achieves higher
performance than U-Net. While 0.1% and 11.8% increase on U-Net for the whole tumor,
and core tumor segmentation, it increases the enhancing tumor by 11.2%, demonstrating its
good effect on little tumor segmentation. IRDNU-Net outperforms DNU-Net 0.3%, 4.3%,
and 6.5% on the whole, core, and enhancing tumors. It exceeds IRU-Net by 6.1% margin
in core tumor segmentation. These comparative results define the ability of IRDNU-Net to
segment brain tumors.

Comparative Study Table 8 demonstrates the suggested technique’s effectiveness and
other advanced techniques to the 66 validation datasets; IRDNU-Net provides highly com-
petitive performance relative to other advanced brain tumor segmentation approaches.
IRDNU-Net achieves DSC values of 86.5% on the whole tumor, 86.4% on the core tumor,
and 80.6% on the enhancing tumor. In specific, Our approach achieves the highest DSC
values for (core and enhancing) tumor and core tumor sensitivity. Hu et al. [18] achieved
slightly higher on whole tumor segmentation; their approach suggested multi cascaded con-
volutional neural networks. Still, their models cannot achieve good segmentation results
for each view. Our IRDNU-Net achieves superior segmentation efficiency on DSC and
Sensitivity metric than some recent approaches by Hu et al. [19] and Abouelenien et al. [1].

Figure 2 shows a sample results of the standard U-net model compared to the proposed
one. The red regions in this figure refer to necrosis, edema is shown in green areas, and
enhancing tumor is the yellow areas. In the meantime, Flair image, ground truth, U-Net, and

3https://www.cbica.upenn.edu/BraTS19/lboardValidation.html
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Table 7 Ablation study on the Validation BraTS 2019 Dataset and comparison segmentation results with
baselines

Methods Whole Core Enhancing

U − Net∗ 0.864 0.746 0.694

DNU-Net(our) 0.862 0.821 0.741

IRU-Net(our) 0.865 0.803 0.763

IRDNU-Net (our) 0.865 0.864 0.806

IRDNU-Net segmentation results are shown from left to right, respectively.It can be noticed
from Fig. 2 that, IRDNU-Net evident produces the best performance in the segmentation of
brain tumors. Figure 3 shows the results for Dice, Sensitivity, and Specificity for Validation
data. The boxplots show the minimum, median, maximum, lower, and upper quartile. Points
outside of the interquartile are referred to as outliers. From the boxplots, it was evident that
our algorithm achieves considerably high segmentation accuracy in most cases.

4.3.3 Evaluation results on BraTS 2020 training dataset

We also execute an experiment on the BraTS 2020 training database to demonstrate our
approach’s effectiveness further. Here, to train our brain tumor segmentation models, we use
160 cases from the training dataset and 56 cases for the test as mention in Table 1. Table 9
shows the ablation study and comparison results with baselines. Besides, Fig. 4 Represents
bar plots of the average DSC for the BraTS 2020 test dataset for the three tumor regions.
In this experiment, IRDNU-Net achieves higher segmentation efficiency in the three tumor
regions relative to its baseline U-Net. Meanwhile, IRDNU-Net exceeds the U-Net by 0.9%
in the whole, 4.7% in the core tumor, and 5% in the enhancing tumor, respectively. After
that, compared DNU-Net with IRDNU-Net, the DSC scores increased by 0.7%, 0.8%, and
3%, respectively, on three tumor segmentation regions. In specific, our models gain accu-
racy improvement over the baselines; this is also because of the efficacy of multi Inception
residual with dense nested U-net in improving the segmentation of small brain tumors.
Besides that, Fig. 5 shows a scatter diagram of the validation set. It reveals that for most
brain images, our algorithm performs well. Because the BRATS 2020 data varies widely,
and the class distribution is severely imbalanced, some outliers cause a reduction in the
average score.

Table 8 Comparison of segmentation results on the BraTS 2019 Validation Dataset with typical methods

DSC Sensitivity Specificity

Methods Whole Core Enhancing Whole Core Enhancing Whole Core Enhancing

K. Hu et al. [18] 0.882 0.748 0.718 0.907 0.76 0.868 0.991 0.996 0.994

Zhang et al. [38] 0.865 0.80 0.745 – – – – – –

Hu et al. [19] 0.850 0.70 0.65 0.83 0.79 0.65 – – –

Abouelenien et al. [1] 0.865 0.80 0.745 0.883 0.80 0 .78 0.999 0.998 0.999

Chandra et al. [6] 0.872 0.795 0.741 0.829 0.788 0.795 0.994 0.997 0.998

Pereira et al. [32] 0.84 0.72 0.62 0.86 0.76 0.68 0.85 0.82 0.60

IRDNU-Net(our) 0.865 0.864 0.806 0.885 0.884 0.842 0.992 0.966 0.966
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Fig. 2 Samples of segmentation results for the BraTS 2019 training dataset. Flair image, ground truth, U-Net,
and IRDNU-Net, respectively, from left to right. Each color describes the class of tumor Red for necrosis,
non-enhancing, green for edema, and yellow for enhancing tumor

Fig. 3 Boxplots of DSC Sensitivity and Specificity for the BraTS’2019 validation dataset. The ‘x’ signifies
the mean score, “◦” shows outliers

Table 9 Ablation study on the BraTS 2020 test dataset and segmentation results with baselines

Methods Whole Core Enhancing

U − Net∗ 0.867 0.793 0.751

DNU-Net(our) 0.869 0.832 0.771

IRU-Net(our) 0.87 0.821 0.786

IRDNU-Net (our) 0.876 0.84 0.801
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Fig. 4 Comparison of DSC score in the BraTS 2020 test dataset

Moreover, the proposed model decreases the number of trainable parameters,reducing the
computational cost. Table 10 displays a comparison of the trainable parameters and times
for one epoch for both the proposed model, and related models, which demonstrate that
IRDNU-Net has 5.91M trainable parameters only, which is the least parameters among all
competitive methods. Lin et al. [27] have 24.62M parameters, which are almost four times
the proposed method. Zhou exceeds our proposed method by little margin in the training
times for one epoch. These results showed that IRDNU-Net requires the lower computa-
tional resources with only 5.91M parameters. Generally, our suggested approach obtains
a good balance between brain tumor segmentation accuracy and the number of training
parameters of the BRATS2019 and BRATS2020 datasets.

Fig. 5 Scatter plot on the BRATS 2020 dataset using the proposed approach
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Table 10 The number of trainable parameters and the average time for one epoch

Methods Parameters Time/epoch(seconds)

U-Net(baseline) 7.76 M 381

Zhou et al. [41] 9.04 M 280

Ibtehaz et al. [20] 7.26 M 295

Kermi et al. [24] 10.15 M 446

Wang et al. [40] 13.81 M –

Lin et al. [27] 24.62 M –

Lou et al. [28] 10.07M –

IRDNU-Net(our) 5.91M 300

5 Discussion

Accurate segmentation of gliomas has garnered considerable interest from medical doctors
and researchers as a critical component of tumor diagnosis, treatment preparation, and sub-
sequent assessment. Since manual tumor segmentation is laborious and time-consuming,
developing an accurate automated segmentation is very important. Therefore, in this study,
We develop an inception residual model with nested dense paths based on the U-Net to
achieve high segmentation accuracy with fewer parameters. We evaluated the network on
BRATS 2019 and BRATS 2020 datasets. These datasets are composed of MRI images taken
from various institutions. It is gathered by regular clinical assessment of preoperative scans
for glioblastoma patients. The proposed network achieved better results compared to the
U-Net, and other techniques. The results in Fig. 2, indicates that the size, shape, location,
and intensity of tumors in these samples are different, and also enhance the segmentation
performance for small tumor regions. Generally, the results of the proposed architecture are
comparable to the ground truth result. In Tables 5, and 8 it is also observed a small gaps
for the evaluation metrics between training and validation dataset because we used only 66
cases in validation due to memory limitations of the current GPU. Figure 3 shows boxplots
for validation of the BraTS’2019 dataset it is observed that the variance of the specificity
tumor core (TC) is larger than that of specificity enhancing tumor(ET), the most likely rea-
son for this is that the network sometimes incorrectly predicts the whole tumor as the tumor
core due to the influence of the LGG tumor samples, resulting in increased variance. Due
to the memory limitations of the current GPU, and the multi-modality nature of MRI, it is
worth noting that in the proposed method, the time for one epoch is around 5 min.

6 Conclusion

This paper introduced an efficient IRDNU-Net model for automated brain tumor segmen-
tation from Multi-modality MRI images. This approach is an efficient extension to the
successful idea of encoder-decoder fully convolutional neural networks. First, we inte-
grate the Inception module and residual units into U-Net in each block to enhance brain
tumor segmentation performance. A series of dense nested pathways then connect the
sub-networks encoder and decoder. The re-modeled skip connections aim to minimize the
semantic gape between the feature maps of the encoder and decoder networks. We assessed
our proposed approach using the BRATS 2019 and BRATS 2020 datasets. The experiment
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results showed that IRDNU-Net surpassed the U-Net and other typical brain tumors seg-
mentation approaches by a large margin. IRDNU-Net is capable of achieving comparable
segmentation accuracy with fewer parameters. However, to build our segmentation model,
we used 2D slices due to computational resources limitations. In the future, we expect to
work on 3D networks while seeking a balance between high accuracy and computational
resources. In addition, we will use a more powerful GPU. Also, for further evaluation, we
will extend our model to other medical segmentation image tasks.
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