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Abstract
Alzheimer’s disease (AD) is an irreversible and progressive brain disease causing
brain degenerative disorder and dementia. An early diagnosis of AD provides the
individual an opportunity to participate in clinical trials. Computer Aided Diag-
nosis (CAD) system in the health care sector has been widely used and plays an
important role in detecting such diseases. However, the main challenge of such
systems is through identifying the region of interest obtained through precise
segmentation. This paper attempts to solve the segmentation issue by developing
a precise image segmentation model. The proposed model used a derivation of a
hybrid cross entropy thresholding technique for the precise extraction of infected
regions. In other words, a novel segmentation methodology has been proposed
using the output derivation of both Gamma and Gaussian distributions. Moreover,
to tackle the performance and time-consuming problems in digital image segmen-
tation, a parallel boosting methodology has been developed and implemented.
Through using the ADNI, OASIS, and MIRIAD benchmark datasets, the exper-
imentation results validate the effectiveness of the proposed model through
achieving more than 90% accuracy with 2x times speed improvement compared
to other benchmark segmentation methods.
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1 Introduction

AD is a progressive brain disease causing dementia gradually over several years [12]. AD is a
type of neurodegenerative disease that leads to a brain volume shrink due to the death of its
nerve cells. Figure 1 shows a difference between a healthy and AD brain (obtained from the
OASIS dataset [11]). Eventually, it has no current cure; however, early diagnostics of such
disease provides the individual an opportunity to participate in clinical trials. According to the
literature [14], in 2050 one out of 85 people will be infected by AD. According to the World
Alzheimer’s disease 2019 report [2], the number of dementia persons all over the world is
around 50 million and this subjected to be 152 million by the near 2050. However, AD
accounts for 60–80% of the total number of dementia persons. Accordingly, diagnosis of AD
disease in its early stage is crucial to understand the disease behavior and its development stage
in preparation for finding a medical solution.

Recently, the diagnosis of AD disease through the CAD system has been widely taking
researchers’ attention due to its powerfulness in early AD detection [26]. However, despite the
importance of the CAD system as a powerful tool that provides a reliable diagnosis of different
diseases using magnetic resonance imaging (MRI) brain images, segmentation accuracy of the
endometrial areas of the brain still the most challenging task. Therefore, the fundamental
obstacle in advancing computer vision in the role of AD detection is through developing
precise segmentation techniques to provide an accurate clinical diagnosis to extract accurate
features of the Alzheimer’s region.

Minimum Cross Entropy Thresholding (MCET) is one of the commonly used segmentation
techniques due to its simplicity and ease of implementation. However, MCET has the
disadvantages of its computational complexity that increase significantly with thresholding
levels [23]. Moreover, using hybrid distributions shall lead to high time complexity. To tackle
these problems, in this paper a multithreading image segmentation technique is proposed to
achieve rapid execution.

In particular, a new approach based on accurate segmentation of MRI brain images is
proposed. The proposed model depends on using the derived Minimum Cross Entropy
Thresholding (MCET) technique with a hybrid combination of Gamma and Gaussian distri-
butions (DMGG) to undertake accurate and precise segmentation.

The main contributions of this paper are as follows:

Fig. 1 Difference between a healthy, and b AD brain [11]
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& Modeling a sequential accurate segmentation model based on the MCET technique using a
hybrid derivation of Gaussian and Gamma distributions.

& Modeling the DMGG segmentation technique for early detection of AD diseases as a form
of an optimization problem.

& Designing and implementing a parallel segmentation algorithm based on parallel program-
ming to improve and boost the performance of the proposed DMGG derivative model.

& Extensive simulation using benchmark AD datasets (ADNI, OASIS, MIRIAD) to inves-
tigate the effectiveness and performance of the proposed DMGG model.

The rest of the paper is organized as follows. Section 2 studies the related works. Section 3
presents the image segmentation and thresholding techniques. Section 4 illustrates the deriv-
ative of the proposed image segmentation technique using hybrid distributions. Section 5
presents the used performance measures. Section 6 models the segmentation problem as an
optimization problem. Section 7 solves the optimization problem and proposes the DMGG
new algorithm. Section 8 proposes the DMGG performance boosting mechanism. Section 9
presents the evaluation results and the simulation setup. Section 10 concludes this paper and
proposes future work.

2 Related work

In the domain of CAD systems, accurate image segmentation is essential not only in
AD diagnosis but also for medical clinical imaging and the public health care sector
in general. Recently, different techniques have been introduced in the field of image
segmentation for medical or other features detection, which performs more accurately
than manual systems [5, 8].

Mukherjee et al. [19] proposed a fusion technique to detect AD by extracting the
important features from MRI images using the fuzzy clustering technique. Lella et al.
[15] developed a machine learning framework to detect the most relevant AD brain
region. Priyanka et al. [21] studied the difference between AD and Mild Cognitive
Impairment (MCI) through analyzing the tissue variations of MRI brain images using
multilevel minimum cross-entropy based Bacteria Foraging Algorithm (BFO) and
Crow Search Algorithm (CSA). A novel segmentation model developed by El-Zaart
et al. [4] for brain cancer detection sing Gaussian and gamma distributions. In his
paper, the author applied Gaussian distribution for symmetric MRI image histograms
and Gamma distribution for non-symmetric histograms. Khairuzzaman et al. [13]
developed a multilevel thresholding segmentation method based on particle swarm
optimization (PSO) for MRI brain images. Forouzannezhad et al. [6] classify different
stages of AD using a combination of random forest feature selection models with a
Gaussian-based algorithm. Hao et al. [9] developed a multi-modal neuroimaging
feature selection method with consistent metric constraints for AD analysis.

Image segmentation is computationally expensive especially when run on large medical
datasets; for that reason, different contributions have been made to boost its performance.
Satpute et al. [25] developed a parallel segmentation method based on cross-modality using the
GPU acceleration platform. While Roels et al. [24] studied the importance of coarse-grained
parallelism to benefit from GPU parallelization in boosting microscopy image segmentation
algorithms.
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In view of the literature, most of the proposed MCET thresholding techniques
follow a single distribution method and ignore the computational effort which results
in. In this paper, our contribution is folded in the following two areas. 1- Construct-
ing an accurate MCET based segmentation model for AD detection using a hybrid
combination of two benchmark segmentation derivation methods (i.e. Gaussian and
gamma distributions). 2- Optimizing the performance of the proposed DMGG seg-
mentation model by applying the multithreading technique using a single node parallel
processor to boost its performance. To the best of our knowledge, this paper is the
first research that develops and implements a hybrid combination derivation of two
benchmark distributions to extract the optimum thresholds.

3 Image segmentation and thresholding techniques

The main actor in the CAD systems is the process of image segmentation, which plays
a crucial role in image analysis [22]. According to the literature, many techniques
have been proposed, however, histogram-based approaches still one of the most
widely applied and accurate techniques [17]. The key concept of the histogram-
based thresholding technique is through finding the optimal threshold that divides
the object from its background [22]. Although numerous thresholding techniques have
been proposed over the year, however, entropy-based thresholding technique is still
the most popular one [17].

3.1 Cross entropy thresholding of the MRI brain image

Let F = {f1, f2,…, fn} and G = {g1, g2,…, gn} be two probability distributions on the same set,
such that fi and gi come from the same location in the image space. The cross-entropy between
F and G, that proposed by Kullback in 1968, is an information theoretic distance between the
distributions defined as follows [22]:

D F;Gð Þ ¼ ∑
n

i¼1
f i*log

f i
gi

� �
ð1Þ

Let I(x, y) and It(x, y) be the original MRI image and the thresholded MRI brain image
respectively that defined as:

I t x; yð Þ ¼ μ1 1; tð Þ ¼ μa tð Þ; I x; yð Þ < t
μ2 t; Lþ 1ð Þ ¼ μb tð Þ; I x; yð Þ≥ t

�
ð2Þ

such that t is the threshold value; μa(t) is the mean value of dark region A, i.e. Alzheimer
region; and μb(t) is the mean value of bright region B, i.e. other brain tissues as shown in
Fig. 2.

Then, the cross-entropy between I(x, y) and It(x, y) is defined by:

D I ; I tð Þ ¼ ∑
t−1

i¼0
i*h ið Þ*log i

μa tð Þ
� �

þ ∑
L

i¼t
i*h ið Þ*log i

μb tð Þ
� �

ð3Þ

such that h(i) is the original MRI image histogram defined on the grey level range [1, L],
where i = 1,2,…, L, and L = 255 being the number of grey levels.
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3.2 Minimum cross entropy thresholding (MCET) of MRI brain image

Li et al. [16], proposed the MCET technique that is based on determining the optimum
threshold t* through minimizing the cross entropy of the image and the thresholded region.
Therefore, the optimal threshold t* using MCET will be as follows:

t* ¼ argmint D I ; I tð Þð Þ ¼ argmint D tð Þð Þ ð4Þ
where D(I, It) that can be written as an objective function D(t) determined as follows:

D tð Þ ¼ ∑
L

i¼1
i*h ið Þ*log ið Þ− ∑

t−1

i¼1
i*h ið Þ*log μa tð Þð Þ− ∑

L

i¼t
i*h ið Þ*log μb tð Þð Þ ð5Þ

Since ∑
L

i¼1
i*h ið Þ*log ið Þ is constant for a given image, the objective function can be redefined

using the following equation:

n tð Þ ¼ − ∑
t−1

i¼1
i*h ið Þ*log μa tð Þð Þ− ∑

L

i¼t
i*h ið Þ*log μb tð Þð Þ ð6Þ

Let A tð Þ ¼ − ∑
t−1

i¼1
i*h ið Þ and B tð Þ ¼ − ∑

L

i¼t
i*h ið Þ, hence, the objective can be defined as follows:

n tð Þ ¼ A tð Þ*log μa tð Þð Þ þ B tð Þ*log μb tð Þð Þ ð7Þ

3.3 Probabilistic distributions

Each image can be modeled using statistical distribution. It could be a combination of
symmetric and non-symmetric distributions [23]. Thus, finding the best distribution forming
pixels of an image segment is the best method to approach optimum thresholding. In this
paper, we propose a solution for this problem by predicting that the histogram of the MRI AD
images is a combination of Gaussian (symmetric) and Gamma (non-symmetric) distributions.

Gaussian Distribution: In probability theory, Gaussian distribution that known as normal
distribution is often described as a bell-shaped curve [22]. Moreover, the image histogram is
assumed to be Gaussian distribution if it has symmetric gray level distribution. Thus, we can

Fig. 2 MRI brain Bi-modal image histogram
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see that image I(x, y) is composed of two Gaussian distributions. Therefore, μa(t) and μb(t) can
be estimated from two Gaussian distributions as follows [28]:

μa tð Þ ¼
∑
t−1

i¼0
i*h ið Þ

∑
t−1

i¼0
h ið Þ

ð8Þ

μb tð Þ ¼
∑
L

i¼t
i*h ið Þ

∑
L

i¼t
h ið Þ

ð9Þ

Gamma Distribution: In probability theory, Gamma distribution is a general type of statistical
distribution [17]. Thus, if the non-symmetric data in the image is assumed to be modeled by
Gamma distribution, we can see that image I(x, y) is composed of two Gamma distributions.
Thus, and to find the mean of the regions μa(t) and μb(t) we can follow El-Zaart et al.
derivation as follows [1]:

μa tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
t−1

i¼0
h ið Þ*i2*q2

∑
t−1

i¼0
h ið Þ

vuuuuut ð10Þ

μb tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
L

i¼t
h ið Þ*i2*q2

∑
L

i¼t
h ið Þ

vuuuuut ð11Þ

where

q ¼ μ N þ 0:5ð Þffiffiffiffiffiffiffi
N*

p
μ Nð Þ

such that N is the shape of the distribution.

4 MRI brain image segmentation using hybrid distributions

Based on the above section, obtaining the mean value of the dark (Alzheimer’s region) and
bright (other grey brain tissue region) regions play a crucial role in finding the optimal
threshold. However, and according to the literature [22], there is no clear formula to estimate
such function. In this paper, a hybrid model is suggested using Gaussian and Gamma
distributions combination. Thus, and to provide high accuracy and reliable diagnosis of AD,
the DMGG hybrid model for image segmentation is proposed based on the following
derivations.
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4.1 MRI brain image histogram with homogenous Gaussian distributions

If the data in theMRI Brain image is assumed to bemodeled using only Gaussian distribution in
both regions (as shown in Fig. 2), then μa(t) and μb(t) values will be as shown in Eqs. 8 and 9
respectively. Hence, the optimum threshold t* could be obtained using the following derivation.

let μa tð Þ ¼
∑
t−1

i¼0
i*h ið Þ

∑
t−1

i¼0
h ið Þ

¼ m1a tð Þ
m0a tð Þ and μb tð Þ ¼

∑
L

i¼t
i*h ið Þ

∑
L

i¼t
h ið Þ

¼ m1b tð Þ
m0b tð Þ; consequently, the optimal thresh-

old t* is given by minimizing n(t) as shown in Eq. 7 through setting its first derivative to zero
as follow:

n
0
tð Þ ¼ A

0
tð Þ*log μa tð Þð Þ þ B

0
tð Þ*log μb tð Þð Þ þ A tð Þ m

0
1a tð Þ

m1a tð Þ −
m

0
0a tð Þ

m0a tð Þ
� �

þ B tð Þ m
0
1b tð Þ

m1b tð Þ −
m

0
0b tð Þ

m0b tð Þ
� �

¼ 0 ð12Þ

where A′(t) = − t ∗ h(t), B′(t) = t ∗ h(t),m
0
1a tð Þ ¼ t*h tð Þ, m0

1b tð Þ ¼ −t*h tð Þ, m0
0a tð Þ ¼ h tð Þ, and

m
0
0b tð Þ ¼ −h tð Þ.
Through replacing each derivative term with its expression in Eq. 12, the following

equation will be obtained:

n
0
tð Þ ¼ −t*h tð Þ*log μa tð Þð Þ þ t*h tð Þ*log μb tð Þð Þ þ A tð Þ t*h tð Þ

m1a tð Þ −
h tð Þ

m0a tð Þ
� �

þ B tð Þ −t*h tð Þ
m1b tð Þ þ h tð Þ

m0b tð Þ
� �

¼ 0

The above equation can be simplified using h(t) ≠ 0;

n
0
tð Þ ¼ −t*log μa tð Þð Þ þ t*log μb tð Þð Þ þ A tð Þ t

m1a tð Þ −
1

m0a tð Þ
� �

þ B tð Þ −t
m1b tð Þ þ

1

m0b tð Þ
� �

¼ 0

n
0
tð Þ ¼ t* log μb tð Þð Þ−log μa tð Þð Þ þ A tð Þ

m1a tð Þ −
B tð Þ

m1b tð Þ
� �� �

þ B tð Þ
m0b tð Þ −

A tð Þ
m0a tð Þ

� �
¼ 0

Therefore,

t* ¼ x
y

ð13Þ

where x ¼ log μb tð Þð Þ −log μa tð Þð Þ þ A tð Þ
m1a tð Þ −

B tð Þ
m1b tð Þ, and y ¼ B tð Þ

m0b tð Þ −
A tð Þ

m0a tð Þ.

4.2 MRI brain image histogram with homogenous gamma distributions

If the data in the MRI Brain image is assumed to be modeled using Gamma distribution in both
regions (i.e. dark and the bright region as shown in Fig. 2), then μa(t) and μb(t) values will be
as shown in Eqs. 10 and 11 respectively. Therefore, the optimum threshold t* could be
obtained using the following derivation.

Let μa tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
t−1

i¼0
h ið Þ*i2*q2

∑
t−1

i¼0
h ið Þ

vuuuuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
t−1

i¼0
h ið Þ*i2*q2

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
t−1

i¼0
h ið Þ

s ¼ m1a tð Þ
m0a tð Þ ð1Þ
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thus, m1a tð Þ ¼ ∑
t−1

i¼0
h ið Þ*i2*q2

� �1=2

, and m0a tð Þ ¼ ∑
t−1

i¼0
h ið Þ

� �1=2:

The same derivation for the bright region B lead to the following:

m1b tð Þ ¼ ∑
L

i¼t
h ið Þ*i2*q2

� �1=2

; and m0b tð Þ ¼ ∑
L

i¼t
h ið Þ

� �1=2

Since the optimal threshold t* is obtained by minimizing n(t) as shown in Eq. 7 through setting
its first derivative to zero as shown

n
0
tð Þ ¼ A

0
tð Þ*log μa tð Þð Þ þ A tð Þ* μ

0
a tð Þ

μa tð Þ þ B
0
tð Þ*log μb tð Þð Þ þ B tð Þ* μ

0
b tð Þ

μb tð Þ ¼ 0 ð14Þ

where μ
0
a tð Þ ¼ m

0
1a tð Þ*m0a tð Þ−m1a tð Þ*m0

0a tð Þ
m2

0a tð Þ , and μ
0
b tð Þ ¼ m

0
1b tð Þ*m0b tð Þ−m1b tð Þ*m0

0b tð Þ
m2

0b tð Þ
Through replacing each derivative term with its expression in Eq. 14, the following

equation will be obtained:

n
0
tð Þ ¼ A

0
tð Þ*log μa tð Þð Þ þ A tð Þ* m0a tð Þ

m1a tð Þ *
m

0
1a tð Þ*m0a tð Þ−m1a tð Þ*m0

0a tð Þ
m2

0a tð Þ

þB
0
tð Þ*log μb tð Þð Þ þ B tð Þ* m0b tð Þ

m1b tð Þ *
m

0
1b tð Þ*m0b tð Þ−m1b tð Þ*m0

0b tð Þ
m2

0b tð Þ ¼ 0

n
0
tð Þ ¼ A

0
tð Þ*log μa tð Þð Þ þ B

0
tð Þ*log μb tð Þð Þ þ A tð Þ* m

0
1a tð Þ

m1a tð Þ −
m

0
0a tð Þ

m0a tð Þ
� �

þ B tð Þ* m
0
1b tð Þ

m1b tð Þ −
m

0
0b tð Þ

m0b tð Þ
� �

¼ 0

where A′(t) = − t ∗ h(t), B′(t) = t ∗ h(t), m
0
1a tð Þ ¼ h tð Þ*t2*q2

2*m1a tð Þ , m
0
0a tð Þ ¼ h tð Þ

2*m0a tð Þ,
m

0
1b tð Þ ¼ −h tð Þ*t2*q2

2*m1b tð Þ , and m
0
0b tð Þ ¼ −h tð Þ

2*m0b tð Þ.
Through replacing each derivative term with its expression in Eq. 14, the following

equation will be obtained:

n
0
tð Þ ¼ −t*h tð Þ*log μa tð Þð Þ þ t*h tð Þ*log μb tð Þð Þ þ A tð Þ* h tð Þ*t2*q2

2*m2
1a tð Þ −

h tð Þ
2*m2

0a tð Þ
� �

þ B tð Þ* −h tð Þ*t2*q2
2*m2

1b tð Þ þ h tð Þ
2*m2

0b tð Þ
� �

¼ 0

The above equation can be simplified using h(t) ≠ 0;

n
0
tð Þ ¼ −t*log μa tð Þð Þ þ t*log μb tð Þð Þ þ A tð Þ

2
*

t2*q2

m2
1a tð Þ −

1

m2
0a tð Þ

� �

þ B tð Þ
2

*
−*t2*q2

m2
1b tð Þ þ 1

m2
0b tð Þ

� �
¼ 0
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n
0
tð Þ ¼ A tð Þ

m2
1a tð Þ −

B tð Þ
m2

0a tð Þ
� �

t2q2 þ 2t log
�
μb tð Þ−log

�
μa tð Þ

� 	
þ B tð Þ

m2
0b tð Þ −

A tð Þ
m2

0a tð Þ
� �

¼ 0

Therefore, the optimal threshold shall be obtained through solving the following quadratic
equation:

Mt2 þ 2Nt þ P ¼ 0 ð15Þ

where M ¼ A tð Þ
m2

1a tð Þ −
B tð Þ
m2

0a tð Þ
� 	

, N = log(μb(t) − log(μa(t), and P ¼ B tð Þ
m2

0b tð Þ −
A tð Þ
m2

0a tð Þ
� 	

taking into consideration that if we get two optimum threshold t*1 and t
*
2, we select the value

that satisfies the following condition

μa tð Þ < t* < μb tð Þ

4.3 MRI brain image histogram with heterogeneous distributions (Gaussian-gamma)

If the data in the image is assumed to be modeled using Gaussian distribution in its dark region
and Gamma distribution in its bright region, then μa(t) and μb(t) values will be as shown in
Eqs. (8) and (11) respectively. As a result, the optimum threshold t* could be obtained using
the following derivation.

let μa tð Þ ¼
∑
t−1

i¼0
i*h ið Þ

∑
t−1

i¼0
h ið Þ

¼ m1a tð Þ
m0a tð Þ and let μb tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
255

i¼t
h ið Þ*i2*q2

∑
255

i¼t
h ið Þ

vuuuuut ¼ m1b tð Þ
m0b tð Þ

The optimal threshold t* is obtained by minimizing n(t) as shown in Eq. 7 through setting its
first derivative to zero as follow (Eq. 12).

n
0
tð Þ ¼ A

0
tð Þ*log μa tð Þð Þ þ B

0
tð Þ*log μb tð Þð Þ þ A tð Þ m

0
1a tð Þ

m1a tð Þ −
m

0
0a tð Þ

m0a tð Þ
� �

þ B tð Þ m
0
1b tð Þ

m1b tð Þ −
m

0
0b tð Þ

m0b tð Þ
� �

¼ 0

where A′(t) = − t ∗ h(t), B′(t) = t ∗ h(t),m0
1a tð Þ ¼ t*h tð Þ,m0

0a tð Þ ¼ h tð Þm0
1b tð Þ ¼ −h tð Þ*t2*q2

2*m1b tð Þ , and

m
0
0b tð Þ ¼ −h tð Þ

2*m0b tð Þ.

replacing the above derivative term by its expression in Eq. 12, the following equation will
be obtained:

n
0
tð Þ ¼ −t*h tð Þ*log μa tð Þð Þ þ t*h tð Þ*log μb tð Þð Þ þ A tð Þ t*h tð Þ

m1a tð Þ −
h tð Þ

m0a tð Þ
� �

þ B tð Þ −h tð Þ*t2*q2
2*m2

1b tð Þ þ h tð Þ
2*m0b tð Þ

� �
¼ 0
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Simplifying the above equation using h(t) ≠ 0;

n
0
tð Þ ¼ −t*log μa tð Þð Þ þ t*log μb tð Þð Þ þ A tð Þ t

m1a tð Þ −
1

m0a tð Þ
� �

þ B tð Þ −t2*q2

2*m2
1b tð Þ þ

1

2*m0b tð Þ
� �

¼ 0

n
0
tð Þ ¼ −B tð Þ*q2

2*m2
1b tð Þ * t2


 �þ log μb tð Þð Þ þ log μa tð Þð Þ þ A tð Þ
m1a tð Þ

� �
* tð Þ

þ B tð Þ
2*m0b tð Þ −

A tð Þ
m0a tð Þ

� �
¼ 0

Therefore, the optimal threshold shall be obtained through solving the following quadratic
equation:

Mt2 þ Nt þ P ¼ 0 ð16Þ

where M ¼ −B tð Þ*q2
2*m2

1b tð Þ , N ¼ log μb tð Þð Þ þlog μa tð Þð Þ þ A tð Þ
m1a tð Þ, and P ¼ B tð Þ

2*m0b tð Þ −
A tð Þ
m0a tð Þ

taking into consideration that if we get two optimum threshold t*1 and t
*
2, we select the value

that satisfies the following condition

μa tð Þ < t* < μb tð Þ

4.4 MRI brain image histogram with heterogeneous distributions (gamma-Gaussian)

If the data in the image is assumed to be modeled using Gamma distribution in its dark region
and Gaussian distribution in its bright region, then μa(t) and μb(t) values will be as shown in
Eqs. (10) and (9) respectively. So, the optimum threshold t* could be obtained using the
following derivation.

Let μa tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
t−1

i¼0
h ið Þ*i2*q2

∑
t−1

i¼0
h ið Þ

vuuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
t−1

i¼0
h ið Þ*i2*q2

q
ffiffiffiffiffiffiffiffiffiffi
∑
t−1

i¼0
h ið Þ

q ¼ m1a tð Þ
m0a tð Þ and μb tð Þ ¼

∑
L

i¼t
i*h ið Þ

∑
L

i¼t
h ið Þ

¼ m1b tð Þ
m0b tð Þ;

The optimal threshold t* is obtained by minimizing n(t) as shown in Eq. 7 through setting
its first derivative to zero as follow (Eq. 12).

n
0
tð Þ ¼ A

0
tð Þ*log μa tð Þð Þ þ B

0
tð Þ*log μb tð Þð Þ þ A tð Þ m

0
1a tð Þ

m1a tð Þ −
m

0
0a tð Þ

m0a tð Þ
� �

þ B tð Þ m
0
1b tð Þ

m1b tð Þ −
m

0
0b tð Þ

m0b tð Þ
� �

¼ 0

where A′(t) = − t ∗ h(t), B′(t) = t ∗ h(t), m
0
1a tð Þ ¼ h tð Þ*t2*q2

2*m1a tð Þ , m
0
0a tð Þ ¼ h tð Þ

2*m0a tð Þ,

m
0
1b tð Þ ¼ −t*h tð Þ, and m

0
0b tð Þ ¼ −h tð Þ.
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replacing the above derivative term by its expression in Eq. 12, the following equation will
be obtained:

n
0
tð Þ ¼ −t*h tð Þ*log μa tð Þð Þ þ t*h tð Þ*log μb tð Þð Þ þ A tð Þ* h tð Þ*t2*q2

2*m2
1a tð Þ −

h tð Þ
2*m2

0a tð Þ
� �

þ B tð Þ −t*h tð Þ
m1b tð Þ þ h tð Þ

m0b tð Þ
� �

¼ 0

Simplifying the above equation using h(t) ≠ 0;

n
0
tð Þ ¼ −t*log μa tð Þð Þ þ t*log μb tð Þð Þ þ A tð Þ* t2*q2

2*m2
1a tð Þ −

1

2*m2
0a tð Þ

� �

þ B tð Þ −t
m1b tð Þ þ

1

m0b tð Þ
� �

¼ 0

n
0
tð Þ ¼ t* log μb tð Þð Þ−log μa tð Þð Þ½ � þ A tð Þ*t2*q2

2*m2
1a tð Þ −

A tð Þ
2*m2

0a tð Þ −
−t*B tð Þ
m1b tð Þ þ B tð Þ

m0b tð Þ ¼ 0

n
0
tð Þ ¼ A tð Þ*q2

2*m2
1a tð Þ * t2


 �þ log μb tð Þð Þ−log μa tð Þð Þ− B tð Þ
m1b tð Þ

� �
* tð Þ þ B tð Þ

m0b tð Þ −
A tð Þ

2*m2
0a tð Þ

� �
¼ 0

as a result, the optimal threshold shall be obtained through solving the following quadratic
equation:

Mt2 þ Nt þ P ¼ 0 ð17Þ
Where M ¼ A tð Þ*q2

2*m2
1a tð Þ, N ¼ log μb tð Þð Þ−log μa tð Þð Þ − B tð Þ

m1b tð Þ, and P ¼ B tð Þ
m0b tð Þ −

A tð Þ
2*m2

0a tð Þ
taking into consideration that if we get two optimum threshold t*1 and t

*
2, we select the value

that satisfies the following condition

μa tð Þ < t* < μb tð Þ

5 DMGG performance measure

Image segmentation is an important stage in the CAD system that plays an important
role in AD diagnosis. Although the literature reveals various image segmentation
techniques [2, 26], however, determining the quality and accuracy of the segmented
MRI images is an important role to obtain consistency in the CAD system. Literature
reveals that there are no benchmark evaluation metrics for image segmentation
techniques [3, 18]. Moreover, each segmentation technique may have its advantages
and disadvantages according to the used application. This paper combines two well-
known image segmentation metrics to evaluate the proposed DMGG model
objectively.
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Image uniformity (IU): IU, which is a distance metric, has been investigated as an
effective evaluation metric for entropy-based segmentation methods [3]. It measures
quantitatively the inter and intra-region uniformity difference between the original and
segmented image. IU value ranges between [0, 1], such that 1 and 0 indicate perfect and
bad segmentation output respectively. Consequently, for a given threshold t, the image
uniformity IU(t) is defined as:

IU tð Þ ¼ 1−
σ2
1 tð Þ þ σ2

2 tð Þ
C

ð18Þ

where σ2
1 tð Þ and σ2

2 tð Þ represents the class variance of the object and its background respec-
tively such that:

σ21 tð Þ ¼
∑
t−1

i¼0
i−μ1 tð Þð Þ2*h ið Þ

∑
t−1

i¼0
h ið Þ

σ2
2 tð Þ ¼

∑
L

i¼t
i−μ2 tð Þð Þ2*h ið Þ

∑
L

i¼t
h ið Þ

such that h represents the image histogram, μ1(t) and μ2(t), is the mean value of dark and
bright regions respectively (as shown in Fig. 2) calculated using Gaussian distribution as
indicated in Eqs. (8–9), and L indicates the different image gray level L [0, 255]. Where C
represents half of the squared difference between the maximum and minimum original grey-
level value and calculated as follows:

C ¼ gmax−gminð Þ2
2

such that gmax and gmin ∈ [0…. L], are the maximum and minimum grey-level values of the
original image respectively:

gmax ¼ max x;yð Þ f x; yð Þf g

gmin ¼ min x;yð Þ f x; yð Þf g

Region Contrast (RC): The RC metric is defined as the inter-region disparity. RC
calculated using the absolute difference of the object mean value of dark and bright
regions respectively divided by the sum of their average mean [3], as shown in Eq. 21:

RC tð Þ ¼ μ1 tð Þ−μ2 tð Þj j
μ1 tð Þ þ μ2 tð Þ ð19Þ
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for a given value of threshold t, RC(t) value ranges between [0, 1], such that 0 and 1 indicate
bad and perfect segmentation performance respectively.

6 DMGG model formulation

In this research, a DMGG segmentation model is proposed for the early detection of AD. The
proposed model aims to detect the AD by approaching an optimum segmentation threshold t*
using MCET. This section model the AD segmentation problem as an optimization problem,
such that the main objective is to find the optimum distribution forming the segmented image
histogram.

6.1 Modeling the image segmentation problem

The MCET technique has been used to determine the optimal threshold t* by minimizing the
cross entropy as shown in Eq. 4. However, the histogram’s distribution type plays an important
role in minimizing MCET and finding the optimum threshold t*. The proposed DMGG
segmentation model turns the segmentation problem into an NP-hard optimization. Therefore,
the DMGG entropy-based problem can be modeled using the following equation:

Minimize t*

 � ð20Þ

subject to optimize the accuracy of the thresholded output by maximizing the DMGG model
quality constraints (DMGGQC).

Maximize DMGGQC t*

 �
 �

t*∈ 0; 255½ � ð21Þ

where DMGGQC defined as a vector of the two image segmentation performance measure
using Eqs. (18–19) as follow:

DMGGQC t*

 � ¼ IU t*


 �
RC t*


 �� �
IU t*


 �
;RC t*


 �
∈ 0; 1½ �

6.2 DMGG methodology

In this paper, a DMGG entropy-based model associated with the derived MCET technique
with a hybrid combination of Gamma and Gaussian distributions has been proposed. The
DMGG model proposes that the image I(x, y) histogram is made up of hybrid distributions.
Consequently, we can see that image I(x, y) is composed of two different distributions (i.e.
Gamma/Gaussian and Gaussian/Gamma). Accordingly, and through applying the derived
hybrid distributions (as shown in Section 4), the image histogram is modeled using the
following function:

h xð Þ ¼ Pa*dista x;μa tð Þð Þ þ Pb*distb x;μb tð Þð Þ
such that; 1) dista(x, μa(t)) is the first distribution and can be Gaussian/Gamma; 2) distb(x,
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μb(t)) is the 2nd distribution type and can be Gamma/Gaussian. Noting that Pa, Pb are 2 prior
probabilities such that Pa + Pb = 1.

7 Solving the optimization problem

This section proposes an improved MCET algorithm based on the proposed DMGG segmen-
tation model. The main aim of the developed DMGG algorithm is to find an optimal solution
to the proposed segmentation NP-hard optimization problem.

7.1 Gaussian/gamma/Gaussian-gamma/gamma-Gaussian thresholding using DMGG

Algorithm 1 shows a high-level pseudo code of image thresholding based on DMGG. It reads
a number as input such that the 1 = Gu-Gu = Gaussian-Gaussian, 2 = Ga-Ga = Gamma-
Gamma, 3 = Gu-Ga = Gaussian-Gamma, and 4 = Ga-Gu = Gamma-Gaussian (lines 1–9). It
returns the optimum thresholding value (t*) (line 10) based on the derived equations as shown
in Section 4.

7.2 Performance measure algorithms

Algorithms 2 and 3 calculate the IU and RC performance measures metrics used for the
DMGG model using Eqs. 18 and 19 respectively (as shown in Section 5). Each algorithm
takes the original image and estimated threshold using the above DMGG model as inputs then
it returns the IU and RC value that range between [0, 1] as indicated in Section 5.
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7.3 DMGG thresholding algorithm using MCET

The high-level pseudo code shown in Algorithm 4 designed the proposed DMGG segmenta-
tion algorithm based on the derived MCET technique with a hybrid combination of Gamma
and Gaussian distributions. The proposed DMGG segmentation algorithm started with histo-
gram computation (line 2) after the original image reading (line 1). DMGG segmentation
algorithm works iteratively (line 4–11) on each derived equation (as shown in section 4) to find
the threshold t* using the four derived Eqs. 13, 15, 16, and 17 respectively. It searches the
optimal t* using Eq. 21 (line 8–10). Finally, the algorithm returns the best t* threshold (line
12) that solves the segmentation optimization problem proposed in Eq. 20 on the best accuracy
threshold condition using Eq. 21.

The iterative method discussed in Algorithm 4 to obtain an optimum threshold using the
DMGG model will lead to a computational complexity equal to O(L2) using a homogenous
distribution environment [23]. As a result, the DMGG algorithm could lead to O(Ln + 1)
computational complexity for the n-thresholding problem. Moreover, the model could lead to
an exhaustive and time-consuming problem if it is applied to hybrid distribution scenarios.
Therefore, in this paper, we propose to apply parallel processing technology to boost the
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performance of the proposed DMGG algorithm, such that the used computational resources
could be used efficiently to achieve minimum processing time.

8 DMGG performance boosting

Image processing plays a vital role in the health area especially for the early diagnosis of
diseases that needs to participate in clinical trials such as AD. Despite the wide range of
methodologies invented by the researchers to provide optimum segmentation [5, 8], which is
the main actor of the CAD system, the performance that carries out the process gaining
momentum in today’s technological era.

Entropy-based thresholding is recognized as a reliable segmentation technique that provides
excellent results. Nevertheless, MCET computation is a complex task due to an exhaustive
search to locate the optimum threshold [20]. For this reason, recursive programming had been
used widely to optimize MCET computation complexity. However, this will not be effective
using the DMGG model that requires simultaneous computation. To achieve an efficient and
practical evaluation, in this paper, we divide the problem into smaller ones, which are then
solved concurrently. This technique takes advantage of multithreading technology and saves
computing resources which leads to DMGG performance boosting.

Modern processors provide parallel processing capabilities that include multiple computing
cores in one processor. Each core can concurrently execute multiple independent streams of
instructions called threads [29]. Therefore, we propose to boost the DDMG segmentation
solution model without the need to require special hardware and using low cost machines that
are commercially available.

Parallel implementation depends on dividing the computing process into different threads
sharing the same data area in memory. In particular, the multithreaded architecture of modern
CPUs can reduce the latency delay and avoid repeated sequential processing in the proposed
DMGG algorithm. However, one of the main constraints that should be applicable to undergo
the parallelization process using a multiprocessor computing architecture is data independence.

Independency The development of high performance parallel algorithm requires achieving
the independencey condition of the parallelized problem [29]. Given a concurrent system S,
and let Segi and Segj be two program segments in S, such that each segment has an input set
(read values) and an output set (written values). Therefore, to execute Segi and Segj concur-
rently, the following should be satisfied:

Inputi∩Output j ¼ ∅

Input j∩Outputi ¼ ∅

Outputi∩Ouput j ¼ ∅

DMGG performance boosting methodology The applied parallelization process to the
proposed DMGG algorithm is generic and can be adapted to any application that satisfies
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the independence constraint. In particular, the DMGG algorithm follows the subsequent two-
stage methodology to take up the parallelization process.

1- DMGG hybrid thresholds computation: compute the different thresholds t*‘s using
DMGG hybrid distribution based on different hybrid derivations as shown in Eqs. 13,
15, 16, and 17. In this stage the concurrent computation is divided into k parts (k =
different types of hybrid derivations, where k = 4), such as each part is treated as a
separate task.

2- DMGGQC evaluation: using parallel computing processors, evaluate the obtained DMGG
thresholds (4-t*s) via the average mean of DMGGQC performance measure proposed
combination model (Eq. 21).

Following the above 2-stage methodology the proposed DMGG algorithm up to p
times using p parallel processors in one computing machine. Figure 3 illustrates the
outline of the workflow architecture of the DMGG algorithm parallelization process.
However, the high-level pseudo code for the parallelized DMGG algorithm is shown
in Algorithm 5

Fig. 3 Parallelized DMGG algorithm workflow architecture
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9 Performance evaluation

In this section, experiments are conducted to test the validity of the proposed DMGG model.
All experiments are conducted on a 3.4 GHz Intel(R) Core(TM) i7–4770 machine of 8 GB
RAM using MATLAB R2019b toolbox. Via MATLAB parallel computing toolbox, we
develop the multithreaded implementation through the parpool function that provides the
parallelization technology on a multicore computing platform [30]. Besides, it’s worthy to note
that, the used Core i7 desktop processors feature 4 cores with 8 concurrent threads.

9.1 Datasets

To test objectively and evaluate the model performance and accuracy, three different bench-
mark AD datasets have been used as follows.

ADNI. The Alzheimer’s Disease Neuroimaging Initiative (ADNI), consisting of 3-phases
datasets (ADNI-1, ADNI-2, and ADNI-GO) for the early detection and tracking of AD
[31]. The dataset contains more than 5000 MRI scans of adults aged between 55 and 90,
consisting of individuals diagnosed with mild cognitive impairment (MCI), early AD, and
normal older persons. For more information, see www.adni-info.org.
OASIS. The Open Access Series of Imaging Studies (OASIS) dataset was created by the
Washington University Knight Alzheimer’s Disease Research Centre [11]. It consists of
3-phases datasets (OASIS-1, OASIS-2, and OASIS-3). OASIS is a collection of cross-
sectional and longitudinal sections from MRI types of demented and non-demented
subjects. It contains more than 2800 MRI scans of adults aged between 18 and 96,
consisting of individuals who have been clinically diagnosed with very mild to moderate
AD. For more information, see www.oasis-brains.org/
MIRIAD. The Minimal Interval Resonance Imaging in Alzheimer’s Disease (MIRIAD)
dataset is made available through the support of the UK Alzheimer’s Society [32].
MIRIAD database consists of more than 700 MRI scans of Alzheimer’s sufferers and
healthy elderly people. The main of the MIRIAD study was to investigate the possibility
of using MRI scans as an outcome measure for clinical trials of Alzheimer’s treatments.
For more information, see www.miriad.drc.ion.ucl.ac.uk/

Table 1 summarizes the used benchmark AD datasets’ specifications

9.2 Region of interest extraction

One of the significant difficulties to do accurate image segmentation is the process of
identifying the area of interest [12]. Accurate segmenting of brain tissues from MRI images
is not an easy task since we have to extract the skull from the brain for an accurate diagnosis of

Table 1 AD datasets’ Specifications

Dataset name Number of subjects Age Number of MRI images

ADNI 1450 55 to 90 5738
OASIS 1664 18 to 96 2975
MIRIAD 69 >55 708
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brain AD disease. Skull striping is the way to ease the process of image segmentation accuracy
through different methods available in the literature [10]. In this paper, the contour based brain
segmentation CBBS method is used and the region of interest (ROI) are detected [27]. Figure 4
presents the flow chart of the steps involved in the applied methodology. Algorithm 5
illustrates the summary of the steps applied by the DMGG model.

9.3 Experimental results

The DMGG algorithm is compared against two benchmark and classic MCET based
segmentation algorithms that support Gaussian, and Gamma distributions. To objec-
tively quantify the importance of the proposed model, the IU and RC performance
measure metrics have been used (as considered in Section 5). Moreover, the sequen-
tial DMGG processing time is compared to the multithreaded performance boosting
methodology (discussed in Section 8) to display the usefulness of parallel implemen-
tation. Noting that all experiments employ 500 brain MRI scans from each benchmark
AD used datasets (i.e., ADNI, OASIS, and MIRIAD). Moreover, the images are
selected randomly from random subjects.

Accuracy The accuracy of the proposed DMGG model demonstrated using the output com-
parison in Table 2. Table 2 contains the detailed comparison of various DMGG model hybrid
combinations (as mentioned in Section 4) using three different benchmark AD datasets. As
shown in Table 2, the proposed DMGG model achieves an average of more than 90%
accuracy compared to other benchmark segmentation methods. The recorded output
may lead come to an interesting outcome and draw a new conclusion that image
histogram is a combination of different distribution types. Moreover, MCET classical
methods that are based on single distribution, such as Gaussian and gamma, may face
great difficulties in finding the optimum threshold value that could lead to an accurate
and precise AD diagnosis.

Figure 5 shows the precision of the generated segmented images using the DMGG
segmentation model from the tested three different AD datasets as follow: (a) the original
image, (b) the skull stripping image, (c) the DMGG segmentation model output, and (d) the
image histogram including the threshold. The promising output results demonstrate the high-
performance output of the DMGG model over the benchmark segmentation models as shown
in Table 2.

The quality of the proposed DMGG segmentation model is analyzed by comparing
it with DMGGQC performance measure metrics (i.e. IU and RC). The DMGG algo-
rithm obtains different optimal values over benchmark segmentation algorithms (i.e.
Gaussian and Gamma) as shown in Fig. 6. This figure reflects the DMGGQC average
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output of randomly selected various images using different datasets, noting that higher
values indicate a more precise segmentation model which emphasises the accuracy of
the proposed DMGG model.

Multithreading Efficiency The second goal of this study was to investigate the usefulness of
the multithreading technique in boosting the performance of the proposed DMGGmodel. This
will support our main goal to attain maximum accuracy with optimum efficiency that could be

Fig. 4 Flowchart of DMGG applied methodology
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Table 2 Hybrid distribution combinations results of DMGG model using AD benchmark datasets

DMGG hybrid
distributions

ADNI OASIS MIRIAD

# of best
segmented
images

Best
Performance
(%)

# of best
segmented
images

Best
Performance
(%)

# of best
segmented
images

Best
Performance
(%)

Gaussian 2 0.4% 1 0.2% 3 0.6%
Gamma 5 1% 4 0.8% 0 0%
Gaussian-Gamma 142 28.4% 174 27.4% 137 27.4%
Gamma-Gaussian 351 70.2% 321 72% 360 72%

Fig. 5 Segmentation result of DMGG model. a Original image, b Skull stripping, c Segmented image, and d
image histogram including the threshold
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Fig. 6 Performance metric measurement comparing the DMGGQC segmentation model accuracy with bench-
mark Gaussian and Gamma segmentation methods
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achieved through minimizing the total processing time taken by the CPU to complete
the segmentation process. Taking into account that our implementation takes place on
Core i7 desktop processors feature 4 cores with 8 concurrent threads, Table 3 reflects
the effectiveness and the speed up achieved through applying the proposed DMGG
boosting methodology (as illustrated in Section 8). As shown in Table 3, the com-
putation time performance under multithreading is superior to the sequential method
with an average of 67%. It is worthy to consider the importance of the proposed
DMGG model design that able to be executed on parallel cores due to model data-
dependent properties. This reflects the conventional wisdom in academics and industry
through workload distribution rather than scaling up systems.

Although the visualized efficiency recorded in Table 3 validates the efficacy of the
DMGG multithreading technique, though, the Wilcoxon statistical test [7] has been
conducted to shed the light on the importance of the proposed parallel processing
segmentation model. The difference in performance gain achieved using DMGG
parallel model and sequential one recorded a p value of 0.005 validating the signif-
icance of multithreading improvement.

Based on the aforementioned experimental results, it can be observed that the
proposed DMGG segmentation model is a robust, accurate, and highly consistent
method with high-performance ability. In particular, the DMGG segmentation model
advances the medical field of clinical imaging and provides a highly accurate seg-
mentation model for early detection of AD disease using MCET based on hybrid
distributions for optimum thresholding.

10 Conclusion and future work

This paper addressed the problem of brain MRI image segmentation for the early
detection of AD disease. A novel MCET based image segmentation model has been
proposed using hybrid distributions derivations, Gaussian, and gamma, for accurate
thresholding to keep the proximity of accuracy in AD detection. To boost the
performance of the DMGG model, we proposed and implemented a parallel and
multithreading methodology to minimize the proposed segmentation model processing
time. The accuracy of the proposed model was tested objectively using several
benchmark datasets: ADNI, OASIS, and MIRIAD. The experimental results produced
an excellent improvement using our proposed DMGG model for AD detection as
compared to benchmark well-known methods.

One of the important goals that should be studied carefully in the future is to extend the
applied performance metric that measures the accuracy of the proposed DMGG segmentation
model to improve the quality and precision of AD detection.

Table 3 Performance gain using DMGG multithreading computing model implementation

Dataset name Sequential (secs) Parallel computing (secs) Speed-up saving (%)

ADNI 340.88 112.46 67.05%
OASIS 345.41 107.58 68.98%
MIRIAD 331.88 109.88 67.06%
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