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Abstract

When convolutional neural network (CNN) is used for welding defect detection image
recognition, the recognition result will be affected by many factors such as human factors,
the activation function is sensitive to input parameters, and the edge features are weak-
ened. In order to overcome the above problems, the methods include image processing,
exponential linear unit (ELU) activation function and improved pooling model are used.
According to the experiment, the image processing method can effectively segment the
weld and defects, and the defect location in the weld image can be located. Using the
ELU activation function in the CNN model can improve the robustness of the neural
network to the input parameters and increase the sparsity of the network to increase the
model’s convergence speed. The improved pooling method based on grayscale adapta-
tion can increase the extraction range of weld defect features and reduce the impact of
noise, and has certain dynamic adaptability to the defect features. The result shows that
the improved convolutional neural network(ICNN) method can effectively improve the
accuracy of recognition in weld image recognition, and the overall recognition rate can
reach 98.13%.
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1 Introduction

In the processing of industrial welding production, various defects will be generated due to the
instability of weld parameters, which are mainly divided into external defects (undercut, excess
weld metal, cavities, etc.) and internal defects (crack, gas pore, slag inclusions, lack of
penetration, etc.) [20]. X-ray inspection technology is often used to detect internal defects in
welds, and the results are identified and evaluated manually. Given the problems such as
misdetection, false detection, and inefficiency in the process of current manual inspection and
evaluation, it is particularly important to seek an automatic detection and recognition method
for welding defects, which can make defect detection efficient, standardized and intelligent
[19].

CNN does not need to manually describe and extract the target image, it can learn the
features from the training samples autonomously through the neural network, and these
features are closely related to the classifier, which solves the problem of manually extracting
features and classifier selection. Meanwhile, using its ‘end-to-end’ advantage to solve some
problems that were considered difficult to solve in the past defect detection of weld images
[23]. The widely used CNN model is the simplified version of the Hubel-Wiesel model [30],
and the research on this model mainly focused on algorithm improvement [8, 11, 13, 27] and
structural improvement for different fields [6, 12, 21, 22, 24]. The deep learning model
improved by the algorithm has achieved significant results in image recognition, but there
are still some shortcomings in the defect recognition of weld images based on x-rays, for
example: the needed volume of image data during the training process is large, a small amount
of data is easy to cause the neural network to underfit, while the number of industrial-level
weld defect images can be used is small, which is difficult to meet the training requirements.
At the same time, the human workload is large in image processing, and the defects need to be
located manually. In addition, Rectified Linear Unit (ReLU) as a non-saturated activation
function, there is a phenomenon of neuron death during training. When a large gradient flow
through the neuron and the parameters are updated, the neuron will no longer activate. If there
is a large learning rate, it will lead to excessive neuron death, which will affect the accuracy of
training. The common pooling methods used in traditional convolutional neural network
models are mean pooling and max pooling. In the weld images, for the grayscale changes at
the weld zone, defect and the transition area between them, the defect characteristics may
weaken if using mean pooling, the use of max pooling may introduce noise.

According to the shortcomings and deficiencies of the existing CNN model in weld flaw
detection images, this paper uses an adaptive pooling layer and an improved activation
function to test its improvement in weld flaw detection image recognition. Many existing
studies have started with the recognition of the types of defects in the weld inspection image
and the accuracy of the recognition. In terms of the recognition of the types of defects, the
CNN model used in the article can identify five types of defects including no defects. In terms
of comparison with other existing methods, it shows the superiority and robustness of this
method in recognition. First, the image enhancement method is used to expand the existing
industrial welding images to prevent insufficient fitting due to lack of training data. At the
same time, the ELU improved activation function feature model selection method [1, 7] is used
to identify weld defect detection image defects, and the effectiveness and correct rate of the
improved activation function in weld defect detection image defect recognition are studied.
The merging method will affect the weld image recognition. We use an improved merging
method based on gray-scale adaptation, which can comprehensively consider the impact of
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gray-level changes on the weld area, defects and transition areas. Compared with traditional
methods, the gray-scale feature extraction from the input features has a certain dynamic
adaptability.

2 X-ray image weld detection and defect extraction

Understanding the types of defects of tube welds is the basis for correct detection of tube weld
defects. The formation mechanism of various weld defects is different, and the image features
on X-ray images are also different in shape, but the main defects and their characteristics have
the following types: (1) cracks(CK): cracks appear as white lines with irregular shapes and
thickness on X-ray pictures, and can be divided into horizontal or vertical cracks according to
shape; (2) gas pore(GP): according to the different forms of expression, it can be divided into
single gas pore, chain gas pore and dense gas pore, etc. The image is white round or oval; (3)
lack of penetration(LOP): the characteristic of X-ray image is a thin line of white piles with
regular shape but irregular length, and the direction is generally along the direction of the weld
bead; (4) lack of fusion(LOF): its X-ray image features appear as continuous or intermittent
black lines; (5) flawless(FL): there are no obvious defects on the X-ray image. Figure 1 shows
the X-ray images of each defect.

In X-ray weld images, the target area is relatively small compared to the overall image,
redundant image information makes subsequent data processing and training more difficult,
and various types of noise in the base material area will also have a greater impact. The image
processing method can effectively segment the weld seam and the defect area, reduce the

=
(a) CK (b) GP (c) LOP
(d) LOF (e)FL

Fig. 1 X-ray weld defect images
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redundant information in the image, and prevent the influence of the base material on the
result. Due to the different formation mechanisms of various types of weld defects, the
imaging features on X-ray inspection images also have different shapes. However, the
boundaries of the welds are approximately straight lines, and the difference in thickness
between the weld and the base metal causes its gray value to change, so the weld and defects
can be extracted. The X-ray image processing process is divided into two parts: welding seam
detection and defect location. The processing flow is shown in Fig. 2.

2.1 Weld detection

In the process of X-ray inspection, because the thickness of the base metal, the weld, and the
defects are all different, different gray areas appear in the digital image through exposure.
Using this feature can achieve the purpose of detecting the weld area and extracting defects.
The generation of X-ray image noise is related to the process of image formation and
transmission channels, mainly including quantum noise caused by ray exposure, shot noise
caused by irregular emission of electrons, etc. [2]. To reduce the influence of noise on welds
and defects, filtering technology is used to remove noise. For the same weld flaw detection
image, median filter, mean filter, Gaussian filter, and bilateral filtering are used to reduce
noise. Figure 3 shows the peak signal to noise ratio (PSNR) scatter plot after reducing the noise
of gas pore, cracks, lack of fusion, lack of penetration and defect less sample image. Through
comparison, it can be seen that the median filtering technology can reduce the proportion of
noise in the signal, so median filtering can be used to denoise X-ray images.

The denoised image is enhanced with a limiting linear stretching enhancement method, that
is, the gray levels of the low gray value and high gray value pixel units of the image are
appropriately combined, and the gray value of the middle part is stretched. The limiting linear

Fig. 2 The process of weld region @el d eravscale image
extraction g y* g )
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Fig. 3 PSNR diagrams of four different filtering methods

stretching of the image is shown in Fig. 4, the range of the limiting in the figure can be freely
selected. The calculation formula is shown in Eq. (1).

’

/

gloy) =+ x [fv)=d] (1)

Where f(x, y) is the gray value at (x, y), g(x, y) is the gray value output through the mapping
transformation, and a, b is the gray stretch interval. The sample image of the weld before and
after the limiting linear stretching is shown in Fig. 5. It can be seen from the figure that the
contrast of the image after the limiting linear stretching is more obvious, and the weld
boundary and defects can be clearly distinguished.

There are differences in the gray distribution of the images after limiting linear stretching
enhancement. Conventional image segmentation methods cannot well adapt to weld inspection

Fig. 4 Image linear stretching g 4
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. .

Fig. 5 Contrast enhancement

images with different gray distributions, the OSTU algorithm can be used to segment weld
inspection images. The grayscale image is divided into two parts by the adaptive threshold K,
namely the target A and the background B, so that the inter-class variance of A and B reaches
the maximum. The definition of the inter-class variance between target A and background B is

Eq. 2):
E*(K) = P,(0-04)" + Py(o—0p)* (2)

Where o is the gray value of the image, and o, and o}, are the averages of target A and
background B respectively, when E2(K) reaches the maximum value, K is the optimal
threshold value. The binary image after the OSTU method is used to segment the weld region
is shown in Fig. 6.

2.2 Weld defect location

The binary image can be used to directly distinguish the base metal, weld zone and defect
position in the flaw detection negative film. To automatically locate the defect location in the
weld zone, an edge detection method based on the canny operator [S] can be used. Different
thresholds to detect strong edges and weak edges respectively, and only when strong edges and
weak edges are connected, weak edges can be included in the image to avoid being filled with
weak noise [14, 17]. During the canny edge detection process, the weld area and defects can be
detected at the same time. The obtained weld and defect boundary information are shown in
Fig. 7a. For different types of defects in the weld, the position coordinates of the weld defect
can be obtained at the same time by using the 8-chain code boundary traversal tracking
method, and the center position coordinates can be calculated by the horizontal and vertical

Fig. 6 OSTU binarized segmentation image
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o

(a) weld and defect boundary (b) weld defect location

Fig. 7 Weld region extraction and defects location. a weld and defect boundary, b weld defect location

coordinate values, and finally to complete the weld defect Positioning. Using coordinates to
locate the weld defect is shown in Fig. 7b. The gas pore defects contained in it include A, B,
and C. The position coordinates of each point are: A (448, 255), B (899, 253), and C (1580,
247).

This section first introduces the image characteristics of the tube weld X-ray image, and
then uses a series of image processing methods to process the weld flaw detection images, and
extracts and locates the circular defect area, which verifies the reliability of the method.

3 Improved CNN feature selection method

This part first introduces the basic structure of the traditional convolutional neural network
model. Secondly, through the comparison between the traditional activation function and the
improved activation function principle, it shows the superiority of the improved activation
function in the recognition of weld defects. Finally, the principle of adaptive pooling method
and its role in image recognition are introduced.

3.1 CNN network overview

The basic structure of a CNN consists of an input layer, a convolutional layer, a pooling layer,
a fully connected layer, and an output layer. In the CNN model, the convolutional layer and the
pooling layer include multiple layers and are alternately connected. A typical CNN model is
shown in Fig. 8.

It can be seen that each neuron of the output feature surface in the convolutional layer is
locally connected to its input [9], and each weighted sum of the linear function of the weight
and bias value is passed to a non-linear function such as the ReLU function to obtain the output
value of each neuron, this process is the convolution process [10]. Hidden layers containing
multiple convolutional layers and down-sampling layers in the convolutional neural network
can perform feature extraction to obtain feature vectors of a certain dimension, and obtain the
output of classification results through the output layer. In addition, a weight sharing strategy
can also be used and it can effectively reduce the number of parameters to be trained in the
neural network and increase the training speed. After multi-layer convolution pooling, one or
more fully connected layers are usually connected, and each neuron in the fully connected
layer is fully connected to all neurons in the previous layer [28, 29]. In order to improve the
performance of the CNN network, the excitation function of each neuron in the fully connected
layer generally uses the ReLU function [16], and the output layer is classified by softmax
regression.
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Fig. 8 Typical convolutional neural network

3.2 ELU activation function application

For the neural network, the activation function can be used to introduce nonlinear transfor-
mation to the neuron, and the neural network can be approximated by any nonlinear function
through training, then the different features of the function in the network recognition can be
fitted. The sigmoid function has an exponential function shape, which is similar to biological
neurons and is widely used in artificial neural networks. However, its output in the x direction
gradually approaches zero and has soft saturation, once it enters the saturation region during
training, appearing gradient disappearance will make it difficult to effectively train the network
parameters. The unilateral suppression ability of the ReLU activation function can make the
neurons in the network sparsely activating, and thus better mine relevant features and fit the
training data, effectively solving the gradient explosion/gradient disappearance problem. It can
be seen that when x > 0, there is no saturation problem in the ReLU function, and the gradient
can be kept attenuated during the training process, thereby alleviating the problem of gradient
disappearance. When x < 0, hard saturation occurs. As the training progresses, some of the
inputs enter the hard saturation zone, causing the weights to be unchanged. Therefore, the
ReLU activation function is weak in the network training process, and the problem that the
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neurons no longer react when the large gradient flows through the neurons and updates the
parameters.

For the problems in traditional convolutional neural networks, this paper adopts an ELU
nonlinear activation function that can comprehensively consider the saturation of the activation
function, the expression is shown in (3).

X x>0

fx) = {a(e"—l) x ; 0 (3)

From this expression we can see that the activation function can fuse the advantages of the
Sigmoid and ReLU functions and maintain the unsaturation on the right side of the function.
At the same time, the soft saturation on the left side of the function is increased, so that the
non-saturation part can alleviate the gradient disappearance phenomenon during the model
training process, the soft saturation can make the model more robust to the input parameter and
existing noise [3, 4, 25]. Various activation function images are shown respectively in Fig. 9.

3.3 Pooling method based on gray feature adaptive

For the problems in the weld inspection image of the pooling method selected in the traditional
convolutional neural network, an adaptive pooling method that comprehensively considers the
defects and the gray level of the weld zone is used to characterize the pooling domain and
feature maps. The values are dynamically adjusted to prevent feature weakening and noise
effects. The principle of the improved pooling method based on adaptive grayscale features is
shown in Fig. 10.

During the pooling process, the area where the local defect is located abstracted as a
pooling domain, the feature layer of the convolution layer is abstracted as a feature map, the
relationship between the feature variance o), in the pooling domain and the feature map
variance oy is used to construct a correction factor y for the pooling domain. Eigenvalues
with large variances are modified to improve the traditional average pooling model, the

expression is shown in Eq. (4).

1 n n
- > 2 Fiy0p < om
ne =1 j=1
S=3 u (s )
=\ 2 X Fij|,0p=0m
ne o\ =1 j=1
Sigmoid(x) Relu(x) ELU(X)
1: -~
0.5
X
0 X 0 X
(a) Sigmoid function (b) ReLU function (c) ELU function

Fig. 9 activation functions. a Sigmoid function, b ReLU function, ¢ ELU function
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Fig. 10 Improved pooling principle abstraction

When op < oy, the feature distribution in the pooling domain is uniform, and the feature
extraction method is the same as the average pooling method. When o, > oy, the feature
variance of the pooling domain is large. At this time, a correction factor p is introduced to
modify the average pooling model, the calculation method of the correction factor p is shown

in (5):

p sum
K psum_(pmax_pmin) (5)
Among them, Py, Pmaw Pmin are the eigenvalue sum, the maximum and minimum eigenvalues
in the pooling domain respectively. The pooling model can comprehensively consider the gray
value changes of the welding defect and the transition area around the defect, improve the
feature extraction area of the weld defect, and have a certain dynamic adaptability for feature
extraction at different positions.

4 Improved CNN model construction and defect recognition

This part mainly introduces the collection and processing methods of training and verification
data sets used to improve the model, the training and processing procedures of different
models, and the comparison of the final conclusions.

4.1 Image data processing of weld defects

The radiographic image of the weld selected in this paper consists of two parts, one is taken
from a public database named GDXray [15], and the other is a radiographic image of a pipe
weld provided by a domestic welding processing company. Because the area of interest of the
image required during image processing is small, and the proportion of uninteresting areas in
the weld inspection image as a whole is relatively large, it is difficult to use the overall image
for training. Therefore, before the CNN model is trained, image pre-processing is performed.
According to the type and size of the defect of the weld flaw detection image, the OpenCV
image processing tool is used to normalize the five types of weld flaw detection images to 68
x 68 size area of interest. In order to further increase the amount of training data for weld
inspection images, image enhancement technology was used to expand the original data image
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by 1:10, and the final sample was expanded to 5200, including gas pore(GP), crack(CK),
defectless(DL), lack of penetration(LOP), lack of fusion(LOF). Manual classification method
is used to store the images in 5 folders according to the type of defect, and the label is 1-5, and
the naming format of the image is image x(y), where x is the defect label and y is the type of
defect Sample serial number, and finally divide all data into training set, verification set and
test set according to 8:1:1.The number of samples of various defects and some experimental
image data is shown in Fig. 11a, b.

In the image processing process, the input image samples are first shuffled and arranged
randomly to form an input file queue, then the file is subjected to operations such as image
widening and enhancement, and finally a data combination queue is formed, which is input
into the deep learning framework input layer. Input image processing flow is shown in Fig. 12.

1500

—_
N
=1
=

number of defects

GP FL LOP LOF CK
type of defects

(a) experimental image data statistics

GP

LOP

LOF

DL

CK

(b) Partial experimental image data

Fig. 11 Number of various types of defects and partial experimental image data. a experimental image data
statistics, b Partial experimental image data
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Fig. 12 Input image processing flow
4.2 Improved CNN model construction

For the convolutional neural network model, the connection layers and depth of the
convolutional neural network can be adjusted appropriately according to the size of the input
layer. As the model depth increases, the learning effect is also better, but increasing the depth
of the network will increase the calculation time and network parameter, and if the training
data is insufficient will increase the risk of overfitting.so in the experiment increasing the depth
of the network layer is not the first choice for the network model. In the establishment of the
convolutional neural network model, the network parameters are effectively selected to obtain
the maximum output with the minimum number of layers. By connecting the local receptive
fields of each feature surface, the original pixels of the input image are mapped hierarchically
to extract the layers of the receptive fields. Using weight sharing strategies to reduce the
amount of data in the neural network, and additionally change the activation function to reduce
the complexity of the model and make the network easier to train. To verify the effectiveness
of the method used in this paper, models named CNN-1, CNN-2, CNN-3, CNN-4 and CNN-5
were constructed. The CNN-1 model uses the ReLLU activation function, and the CNN-2
model uses the ELU activation function, all pooling layers use the mean pooling method.
CNN-3 model uses maximum pooling, and CNN-4 uses the improved pooling method
described in this article, the activation function uses the ReLU function. The construction
methods of each model are shown in Table 1. By constructing different CNN models for
comparative experiments, CNN-1 and CNN-2 model tests use the same pooling method to
verify the validity of the ELU activation function; CNN-1, CNN-2, and CNN-3 model tests all
use ReLU activation Function to verify the effectiveness of the improved pooling method in

Table 1 Structure method of CNN model

Model name Activation function Pooling method
CNN-1 ReLU Mean-pooling
CNN-2 ELU Mean-pooling
CNN-3 ReLU Max-pooling
CNN-4 ReLU Improved-pooling
CNN-5 ELU Improved-pooling
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this article by using different pooling methods; CNN-5 model can compare the recognition rate
under the condition of ELU activation function and improved pooling model.. The improved
CNN model is shown in Fig. 13.

The input image is the input layer and C is the convolution layer. The size of the
convolution kernel is 5 x 5, and the depth is 6, 12, and 16 in turn. Each convolution layer
consists of several convolution units and uses the back-propagation algorithm to optimize the
parameters of the convolution unit, iteratively extract more complex features by extracting
different features of the input. N is regularization, which can constrain the convolution results.
E is the ELU activation function, the calculation result is de-linearized by the ELU function. P
is the pooling layer, the size of the convolution kernel is set to 2 x 2, the moving step is 2. The
convolution layer and the pooling layer are all filled with 0. FC is a fully connected layer.
Through two fully connected layers, the number of nodes can reduce to 60 through. Because
the type of CNN to be classified and identified in this paper is 5 types, the number of output
layers S is set to 5.

4.3 Image defect recognition and analysis

The experiment is based on the Linux Ubuntul6.04 operation system and is performed under
the Tensorflow framework. CNN-1, CNN-2, CNN-3, and CNN-4 models are trained 400
times using the image data set provided in the article. Using the Tensorboard visualization
module to visualize the accuracy and cross-entropy loss during the iteration process and store
the data at each step. After the iteration is completed, the data can visualized and output. The
training accuracy rate, verification accuracy rate and cross-entropy loss, which was shown in
Fig. 14. By comparing and analyzing the CNN-1 and CNN-2 training accuracy and cross-
entropy loss changes in Fig. 14a, b, we can see that under the same number of iterations, the
CNN model with the ELU activation function convergence faster than the ReLU activation
function, and the training accuracy and cross-entropy loss value have stabilized at the 100th
epoch, while the CNN model with the ReLU activation function has a slower convergence rate
and reaches dynamic stability at 200th epoch. As is shown in Fig. 14e, It can be seen from the
change of the correctness of the validation set that using the ELU activation function also has a
better effect in terms of recognition accuracy. From this comparison test, it can be concluded
that the ELU activation function has better convergence and better defect recognition ability

Input image } c1 N1 El Pl o) N2 E2 P2
68x68 | 6@64x64 6@64x64 6@64x64 6@32x32 12@28x28 12@28x28 12@28x28 12@]14x14
|
|
|
| | I
| ﬁ . .
|
! . ,I I
| i
|
| c3 N3 E3 P3 ECl FC2 S
|

16@i0x10 16@10x10 16@10x10 16@sx5 Representation of each layer:
C : convolutional layer
N : batch normalization
E : ELU function

: pooling layer
FC : fully connected layer

S : softmax layer

Fig. 13 Improved CNN model
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< Fig. 14 The training accuracy, validation accuracy, cross entropy of each model. a the training accuracy rate of
CNN-1 and CNN-2, b the cross-entropy loss of CNN-1 and CNN-2, ¢ the training accuracy rate of CNN-1,CNN-
3 and CNN-4, d the cross-entropy loss of CNN-1, CNN-3 and CNN-4, e the validation accuracy rate of CNN-1
and CNN-2, f the validation accuracy rate of CNN-1, CNN-3 and CNN-4, g the training accuracy rate of CNN-2,
CNN-4 and CNN-5, h the validation accuracy rate of CNN-2, CNN-4 and CNN-5

than the ReLU function in weld defect image recognition. Figures 14c, d, f show the training
accuracy, cross-entropy loss and verification accuracy changes of convolutional neural network
models using different pooling methods. The CNN-4 model achieved higher recognition rates than
the CNN-1 model of the mean pooling method and the CNN-2 model of the max pooling method. It
can be verified that the improved pooling method can be used in defects and weld transition areas to
Increase the defect feature domain, improve accuracy in feature selection, and the extracted features
can better describe the image, which is conducive to the improvement of the defect recognition rate.
Figures 14g, h are the images of the training and verification accuracy changes using the improved
activation function and adaptive pooling method. It can be seen from the figure that using both
methods can obtain very good results and performance in weld flaw detection image recognition at
the same time.

In order to further verify the validity and reliability of the model in the identification of
weld inspection images, another part of the weld inspection images were taken for testing. In
the test results, 2 pieces of each of the 5 defect categories were randomly selected and
numbered. The recognition results are shown in Table 2. The classification results indicate
shows the probability of the image to be identified as non-defective, non-welded, unfused,
stomatal, and cracked after calculation by the softmax layer. It can be seen that the overall
effect of different convolutional neural network models recognizes non-defective, stomatal,
and non-welded is good, while the recognition effect of unwelded and crack defects is
relatively poor. The reason may be that the amount of training data for the two defects is
too small, which causes the model to insufficiently learn the feature of defects. For the same
defect type, the improved convolutional neural network model has a better recognition rate,
which shows that the method in this paper has more advantages in feature extraction. Through
the overall test sample recognition analysis, the method proposed in this paper can effectively
identify 5 types of weld inspection images, and the overall recognition accuracy is 98.13% for
CNN-5. It can be seen that the method described in this article can improve the recognition rate
by 1.5% compared with the traditional convolutional neural network, and has a higher

Table 2 Partial sample recognition results

Experiment Test sample CNN-1 CNN-2 CNN-3 CNN-4 CNN-5
1 FL 99.9% 99.9% 99.7% 99.9% 99.9%
2 FL 99.9% 99.9% 99.8% 99.9% 99.9%
3 GP 99.9% 99.9% 99.9% 99.9% 99.9%
4 GP 99.9% 99.9% 99.9% 99.9% 99.9%
5 CK 55.9% 60.2% 51.1% 63.7% 70.2%
6 CK 49.9% 62.3% 52.7% 59.8% 68.4%
7 LOF 71.3% 85.8% 56.1% 86.2% 88.5%
8 LOF 82.4% 87.7% 79.6% 87.9% 88.0%
9 LOP 96.2% 96.8% 93.6% 97.7% 97.9%
10 LOP 90.7% 925 91.8% 97.3% 97.4%
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Table 3 Recognition effect comparison

algorithm Recognition accuracy
Literature [18] 93.5%

Literature [7] 96.77%

Literature [26] 97.0%

Algorithm in the text 98.13%

recognition rate. it is fully expected to achieve accurate subdivision and recognition of various
defects in the weld image.

4.4 Compared with other methods

Through the verification and analysis of weld flaw detection images, the method used in this
article has a good recognition rate in defect recognition. In order to further illustrate the
superiority of this method, the improved method is compared with other model algorithms, and
the comparative analysis is shown in Table 3.

Compared with other methods, the method adopted in this paper has better performance in
defect recognition accuracy, generalization ability and robustness.

5 Conclusion

1. The image processing method can effectively segment the weld and defects, and the defect
location in the weld image can be located.

2. The ELU activation function is used in the construction of the CNN model, which makes
the model more robust during training, and increases the convergence speed through good
network sparsity and a smaller mean value of output.

3. An improved pooling method based on grayscale feature adaptation can dynam-
ically adjust the characteristics of weld images, reduce the impact of image noise
on the training process, increase the extraction range of weld defect features, and
have dynamic adaptability to certain pooling domains with different feature
distributions.

4. The CNN model constructed by the ELU activation function and the improved pooling
method based on adaptive grayscale features provided in this article can be used in the
field of automatic detection of weld images, and can significantly improve the accuracy of
defect recognition in the weld image, the overall recognition rate can reach 98.13%. We
can see that the method described in this article can improve the recognition rate by 1.5%
compared with the traditional convolutional neural network. It is completely predictable to
realize the accurate subdivision and identification of various defects in the weld image,
and the method is universal and can be extended to other fields.
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